
CSE P 573: Artificial Intelligence
Winter 2016  

Adversarial Search

Luke Zettlemoyer
Based on slides from Dan Klein, Peter Abbel, Ali Farhadi

Many slides over the course adapted from either Stuart Russell or
Andrew Moore

1

Game Playing State-of-the-Art
§ Checkers: Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. 2007: Checkers is now solved!

§ Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue examined 200 million positions per
second, used very sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply. Current programs are
even better, if less historic.

§ Othello: Human champions refuse to compete against computers,
which are too good.

§ Go: Human champions are beginning to be challenged by machines,
though the best humans still beat the best machines. In go, b > 300, so
most programs use pattern knowledge bases to suggest plausible
moves, along with aggressive pruning.

§ Pacman: unknown

General Game Playing

General Intelligence in Game-Playing Agents (GIGA'13)
(http://giga13.ru.is)

General Information
Artificial Intelligence (AI) researchers have for decades worked on building game-playing agents capable of matching wits with the
strongest humans in the world, resulting in several success stories for games like chess and checkers. The success of such systems has
been partly due to years of relentless knowledge-engineering effort on behalf of the program developers, manually adding
application-dependent knowledge to their game-playing agents. The various algorithmic enhancements used are often highly tailored
towards the game at hand.

Research into general game playing (GGP) aims at taking this approach to the next level: to build intelligent software agents that can,
given the rules of any game, automatically learn a strategy for playing that game at an expert level without any human intervention. In
contrast to software systems designed to play one specific game, systems capable of playing arbitrary unseen games cannot be
provided with game-specific domain knowledge a priori. Instead, they must be endowed with high-level abilities to learn strategies
and perform abstract reasoning. Successful realization of such programs poses many interesting research challenges for a wide variety
of artificial-intelligence sub-areas including (but not limited to):

knowledge representation and reasoning
heuristic search and automated planning
computational game theory
multi-agent systems
machine learning

The aim of this workshop is to bring together researchers from the above sub-fields of AI to discuss how best to address the
challenges of and further advance the state-of-the-art of general game-playing systems and generic artificial intelligence.

The workshop is one-day long and will be held onsite at IJCAI during the scheduled workshop period August 3rd-5th (exact day is to
be announced later).

Information for Authors
The workshop papers should be submitted online (see workshop webpage). Submitted papers must adhere to the IJCAI paper
formatting instructions and not exceed 8 pages (including references). The papers must present original work that has not been
published elsewhere. However, submissions of papers that are under review elsewhere are allowed, in particular we welcome papers
submitted to the main technical track of IJCAI'13 or AAAI'13. All papers will be peer reviewed and non-archival working notes
produced containing the papers presented at the workshop.

Important dates:

Paper submission: April 20th, 2013
Acceptance notification: May 20th, 2013
Camera-ready papers due: May 30st, 2013
Workshop date: August (3rd, 4th, or 5th) 2013

If you are interesting in attending the conference without submitting a paper please send a short statement of interest to either one of
the organizers listed below before May 30st.

Workshop Organizers
Organizers:

Yngvi Björnsson, Reykjavik University
Michael Thielscher, University of New South Wales

Program Committee:

Tristan Cazenave, University of Paris-Dauphine
Stefan Edelkamp, University of Bremen
Hilmar Finnsson, Reykjavik University
Michael Genesereth, Stanford University
Lukasz Kaiser, University of Paris-Diderot
Gregory Kuhlmann, Apple Inc.
Abdallah Saffidine, University of Paris-Dauphine
Torsten Schaub, University of Potsdam
Stephan Schiffel, Reykjavik University
Sam Schreiber, Google Inc.
Nathan Sturtevant, University of Denver
Mark Winands, Maastricht University

Adversarial Search

Game Playing

§ Many different kinds of games!

§ Choices:
§ Deterministic or stochastic?
§ One, two, or more players?
§ Perfect information (can you see the state)?

§ Want algorithms for calculating a strategy
(policy) which recommends a move in each state

Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1...N} (usually take turns)
§ Actions: A (may depend on player / state)
§ Transition Function: S x A → S
§ Terminal Test: S → {t,f}
§ Terminal Utilities: S x P → R

§ Solution for a player is a policy: S → A

Single-Agent TreesSingle<Agent#Trees#

8#

2# 0# 2# 6# 4# 6#…# …#

Value of States
Value#of#a#State#

Non<Terminal#States:#

8#

2# 0# 2# 6# 4# 6#…# …# Terminal#States:#

Value#of#a#state:#
The#best#achievable#
outcome#(u)lity)#
from#that#state#

Deterministic Single-Player
§ Deterministic, single player,

perfect information:
§ Know the rules, action effects,

winning states
§ E.g. Freecell, 8-Puzzle, Rubik’s

cube
§ … it’s just search!

win loselose

§ Slight reinterpretation:
§ Each node stores a value: the

best outcome it can reach
§ This is the maximal outcome of

its children (the max value)
§ Note that we don’t have path

sums as before (utilities at end)
§ After search, can pick move that

leads to best node

Adversarial Game Trees Adversarial#Game#Trees#

<20# <8# <18# <5# <10# +4#…# …# <20# +8#

Minimax ValuesMinimax#Values#

+8#<10#<5#<8#

States#Under#Agent’s#Control:#

Terminal#States:#

States#Under#Opponent’s#Control:#

Deterministic Two-Player
§ E.g. tic-tac-toe, chess, checkers
§ Zero-sum games

§ Agents have opposite utilities
§ One player maximizes result
§ The other minimizes result

8 2 5 6

max

min§ Minimax search
§ A state-space search tree
§ Players alternate
§ Choose move to position with

highest minimax value = best
achievable utility against best
play

Tic-tac-toe Game Tree

Minimax Example

 3 12 8 2 4 6 14 5 2

Minimax Search

Minimax Properties

§ Time complexity?

§ Space complexity?

10 10 9 100

max

min
§ O(bm)

§ O(bm)

§ For chess, b ≈ 35, m ≈ 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole tree?

§ Optimal?
§ Yes, against perfect player. Otherwise?

Can we do better?

 3 12 8 2 4 6 14 5 2

max

min

α-β Pruning Example

[3,3] [-∞,2] [2,2]

[3,3]

 3 12 8 2 14 5 2

max

min

α-β Pruning

§ General configuration
§ α is the best value that

MAX can get at any
choice point along the
current path

§ If n becomes worse than
α, MAX will avoid it, so
can stop considering n’s
other children

§ Define β similarly for MIN

Player

Opponent

Player

Opponent

α

n

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=8
β=3

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=2

α=3
β=+∞

α=3
β=14

α=3
β=5

α=3
β=1

Alpha-Beta Pseudocode

function MAX-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← −∞
for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s,α,β))
if v ≥ β then return v
α ← MAX(α,v)

return v

inputs: state, current game state
 α, value of best alternative for MAX on path to state
 β, value of best alternative for MIN on path to state

returns: a utility value

function MIN-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← +∞
for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s,α,β))
if v ≤ α then return v
β ← MIN(β,v)

return v

Alpha-Beta Pruning Example

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

2 3 5 9
5 62 17 40

Alpha-Beta Pruning Example

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

2 3 5
2 10

Alpha-Beta Pruning Properties

§ This pruning has no effect on final result at the root

§ Values of intermediate nodes might be wrong!
§ but, they are bounds

§ Good child ordering improves effectiveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ Full search of, e.g. chess, is still hopeless…

Resource Limits
§ Cannot search to leaves
§ Depth-limited search

§ Instead, search a limited depth of tree
§ Replace terminal utilities with an eval

function for non-terminal positions
§ e.g., α-β reaches about depth 8 –

decent chess program
§ Guarantee of optimal play is gone
§ Evaluation function matters

§ It works better when we have a
greater depth look ahead

? ? ? ?

-1 -2 4 9

4
min min

max
-2 4

Depth Matters

depth 2

Depth Matters

depth 10

Evaluation Functions
§ Function which scores non-terminals

§ Ideal function: returns the utility of the position
§ In practice: typically weighted linear sum of features:

§ e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

What features would be good for Pacman?

Evaluation Function

Evaluation Function

Bad Evaluation Function

Why Pacman Starves

§ He knows his score will go up by eating the dot now
§ He knows his score will go up just as much by eating the

dot later on
§ There are no point-scoring opportunities after eating the

dot
§ Therefore, waiting seems just as good as eating

Why#Pacman#Starves#

!  A#danger#of#replanning#agents!#
!  He#knows#his#score#will#go#up#by#ea)ng#the#dot#now#(west,#east)#
!  He#knows#his#score#will#go#up#just#as#much#by#ea)ng#the#dot#later#(east,#west)#
!  There#are#no#point<scoring#opportuni)es#aver#ea)ng#the#dot#(within#the#horizon,#two#here)#
!  Therefore,#wai)ng#seems#just#as#good#as#ea)ng:#he#may#go#east,#then#back#west#in#the#next#

round#of#replanning!#

Which algorithm?

α-β, depth 4, simple eval fun

Which algorithm?

α-β, depth 4, better eval fun

Minimax Example

Suicidal agent

Expectimax

§ Uncertain outcomes are controlled by chance
not an adversary

§ Chance nodes are new types of nodes (instead
of Min nodes)

