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Markov Chains

= Often, we want to reason about a sequence of observations
= Speech recognition
= Robot localization
= User attention

= Medical monitoring

= Need to introduce time (or space) into our models



Markov Models (Markov Chains)

= A Markov model is:
= a MDP with no actions (and no rewards)
= \alue of X is called the state

= A Markov model includes:
= Random variables X, for all time steps t (the state)

= Parameters: called transition probabilities or
dynamics, specify how the state evolves over time
(also, initial probs)

P(X;) and P(X¢| X¢—1)



Markov Models (Markov Chains)

= A Markov model defines
* a joint probability distribution:
P(X1, X2, X3, X4) = P(X1)P(X2|X1)P(X3|X2)P(X4| X3)

= More generally:
P(X1,Xo,....X7)=P(X1)P(X2|X1)P(X3|X2) ... P(Xp|X71_1)

N
P(Xy,...,Xn) = P(X1) | | P(X¢| Xe-1)
t—2

= One common inference problem:
= Compute marginals P(X)) for all time steps t



Markov Model

P(X1)
@ @ @ @ ........ *@
P(X¢| X¢—1)
P(X1,...,X,) = P(X1) HP (X¢|Xi-1)

t=2

m Questions to be resolved:
= Does this indeed define a joint distribution?

= Can every joint distribution be factored this way, or are we making some assumptions
about the joint distribution by using this factorization?



Chain Rule and Markov Models

P(X1, X2, X5, X4) = P(X1)P(Xo|X1)P(X5|X2) P(X4|X3)

= From the chain rule, every joint distribution over X;, X5, X3, X4 can be written as:

P(X1, Xo, X3, X4) = P(X1)P(Xa|X1)P(X3| X1, X2)P(X4| X1, X2, X3)



Chain Rule and Markov Models
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= From the chain rule, every joint distribution over X1, Xo, ..., X7 can be written as:

T
P(X17X27"'7XT) :P(Xl)HP(Xt‘XlaXQV"7Xt—1)
t=2
= Assuming that for all t:

Xt AL X17°"7Xt—2 ‘ Xt—l

gives us the expression posited on the earlier slide:

T
P(X1, X, ..., Xr) = P(X1) | | P(X:|Xs 1)
t=2



Conditional Independence

= Basic conditional independence:
» Past and future independent of the present
= Each time step only depends on the previous
* This is called the (first order) Markov property




Implied Conditional
Independencies

= We assumed: X3 1L X; | X, and X, 1 X1, X, | X3

= Dowe alsohave X7 Il X3,X4| Xo ?



Markov Models (Recap)

Explicit assumption forall t:  X¢ 1L Xq,..., X2 | Xy
Consequence, joint distribution can be written as:

P(X1,Xs,...,X7) = P(X1)P(X2|X1)P(X3|X2) ... P(X7|X7-1)
T

= P(X1) || P(X4]Xi-1)

Implied conditional independencies: (try to prove this!)
= Past variables independent of future variables given the present
i.e., |f t1 <to <t3 OF t1 >ty > t3 then: th J—l— Xt3 ‘ Xt2

Additional explicit assumption: P(X, | X,_,) isthe same forallt
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Example: Markov Chain

= \Weather: 09
= States: X = {rain, sun} 0.1
= Transitions: @
0.1 —
This is a
0.9 conditional
distribution

* |nitial distribution: 1.0 sun
» What's the probability distribution after one step?

P(XQISUI’]) = +
P(X, = sun|Xy = rain)P(Xy = rain)

+0.1-0.0=0.9



Markov Chain Inference

= Question: probability of being in state x at time t?

= Slow answer:
= Enumerate all sequences of length t which end in's
» Add up their probabilities

P(X: = sun) = Z P(xq,...x4_1,sun)

L]...LTt—-1

P(X1 = sun)P(Xo = sun|Xq1 = sun) P(X3 = sun|Xo = sun)P(X4 = sun|X3 = sun)

P(X1 = sun)P(Xo = rain| X1 = sun)P(X3 = sun|Xp = rain)P(X4 = sun|X3 = sun)



Mini-Forward Algorithm

= Question: What's P(X) on some day t?
* We don’t need to enumerate every sequence!

sun

> sun

rain

>

> rain

—

> | sun

—

>

rain

 ———

sun

rain

P(xy) = Y P(zlag—1)P(xi—1)

Lt—1

P(x1) = known

T

Forward simulation



Example

= From initial observation of sun

(00) (o1) {ois) = (53]

P(X)) P(X,) P(X;) P(X..)

= From initial observation of rain

(1) (05) (os2) = (53]

P(X)) P(X,) P(X;) P(X.)



Stationary Distributions

= Question: What’s P(X) at time t = infinity?

=@+

P (sun) = P(sun|sun) Py (sun) + P(sun|rain) Py (rain)
Py (rain) = P(rain|sun) P (sun) + P(rain|rain) P (rain)
Py (sun) = 0.9P4 (sun) + 0.3 P (rain)

Py (rain) = 0.1 Py (sun) + 0.7 P (rain)

Py (sun) = 3Py (rain)

Py (rain) = 1/3Ps (sun)

Py (sun) = 3/4
Also: P._(sun) 4+ Ps(rain) = 1 :> P (rain) = 1/4
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Stationary Distributions

= |f we simulate the chain long enough:
= What happens?
» Uncertainty accumulates
= Eventually, we have no idea what the state is!

= Stationary distributions:

* For most chains, the distribution we end up in is
independent of the initial distribution

» Called the stationary distribution of the chain
» Usually, can only predict a short time out



Pac-man Markov Chain

Pac-man knows the ghost’s initial position, but gets no observations!




Web Link Analysis

= PageRank over a web graph
= Each web page is a state
= [nitial distribution: uniform over pages

* Transitions:
= With prob. c, follow a random outlink (solid lines)
= With prob. 1-c, uniform jump to a random page
(dotted lines, not all shown)

= Stationary distribution
= Will spend more time on highly reachable pages
= E.g. many ways to get to the Acrobat Reader download page
= Somewhat robust to link spam

» Google 1.0 returned the set of pages containing all your
keywords in decreasing rank, now all search engines use link
analysis along with many other factors (rank actually getting less
important over time)




