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Outline

= Probability review
» Random Variables and Events
» Joint / Marginal / Conditional Distributions
* Product Rule, Chain Rule, Bayes’ Rule
* Probabilistic Inference

* Probabilistic sequence models (and inference)
= Markov Chains
» Hidden Markov Models
» Particle Filters



Probability Review

= Probability
= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution
* Product Rule, Chain Rule, Bayes’ Rule
* |Inference

= You'll need all this stuff A LOT for the next few
weeks, so make sure you go over it now!



Inference in Ghostbusters

= A ghostis in the grid
somewhere
= Sensor readings tell
how close a square
IS to the ghost
*= On the ghost: red
= 1 or 2 away: orange
= 3 or4 away: yellow

= 5+ away: green
= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) | P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Random Variables

= A random variable is some aspect of the world about
which we (may) have uncertainty

» R =lsitraining?
= D = How long will it take to drive to work?
= L =Wheream I?

= \We denote random variables with capital letters

= Random variables have domains
* Rin {true, false}
= Din |0, 1)
» L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distribution

Unobserved random variables have distributions

P(T)
T P
hot | 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

A probability (lower case value) is a single number

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

P(W =rain) = 0.1

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

Musthave: Vg P(X =z)>0 and » P(X=uz)=1
Wi




Joint Distributions

= Ajoint distribution over a set of random variables: x, X, ...X,
specifies a real number for each outcome (ie each assignment):

P(X1 =21, X0 =zo,... X5 = zn) P(T,W)

P(QZ]_,CCQ,...CCn) ! A
Mt obou hot | sun | 0.4

usSt obey. P(CIZ]_,CEQ, ce xn) >0 hot | rain | 0.1

cold | sun 0.2

> P(x1,z0,...20) = 1

cold | rain 0.3

(x1,22,...2n)

=  Size of distribution if n variables with domain sizes d?

= A probabilistic model is a joint distribution over variables of interest
= For all but the smallest distributions, impractical to write out



Events

= An outcome is a joint assignment for all the variables

(.GC]_,CUQ, < .CCn)

= An eventis a set E of outcomes

P(E) = > P(xz1...zn)

* From a joint distribution, we can
calculate the probability of any event

* Probability that it's hot AND sunny?
= Probability that it's hot?
» Probability that it's hot OR sunny?

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




= P4, +y) ?

= P(+x) ?

= P(-yOR+x)?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

P(X1=uz1) =) P(X1=u11,Xp =)

i)
P(T)
P(T, W) T P
. W = | hot 0.5
cold 0.5

hot | sun 04| P(t) = ZP(t, w)
hot rain 0.1 w P(W)
cold | sun 0.2 =——— W P
cold | rain 03| P(w)= Z P(t,w) sun 0.6
rain 04




Quiz: Marginal Distribution

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

——
P(z) =) P(z,y)
Yy

——
P(y) =) P(x,y)

P(X)

+X

P(Y)

+y
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Conditional Probability

= Asimple relation between joint and conditional probabilities
= |n fact, this is taken as the definition of a conditional probability

P(alb) = P(a,b)
P(b)
P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(b)
P(W:S‘TIC):P(W:S’T:C) :E =04
P(T = c¢) 0.5
_%

=PW=s,T=c)4+P(W=r,T =c)
=0.24+0.3 =0.5
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Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

- P(W|T = hot) P(T,W)
W P T W P
— sun 0.8 hot | sun 0.4
§ rain 0.2 hot rain 0.1
Ej P(W|T = cold) cold sun 0.2
W = cold rain 0.3
sun 0.4
P(x1,72)
rain 0.6 P(z1|z2) = P(z5)




Quiz: Conditional Distribution

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y)?

" P(-x | +y)?

" Py | +x)?
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= A trick to get a whole conditional distribution at once:
» Select the joint probabilities matching the evidence

Normalization Trick

= Normalize the selection (make it sum to one)

P(T, W) Select Normalize
T W P |—™> P(T,r) =—> P(T|r)

hot sun | 0.4 T R P T P
hot rain | 0.1] | hot | rain | 0.1f{] hot | 0.25
cold sun | 0.2] |cold| rain | 0.3]| cold | 0.75
cold rain | 0.3

= Why does this work? Sum of selection is P(evidence)! (P(r), here)

P(xq,x P(xq,x
Plafra) = E3(1562)2) - le(Péﬂ?LQﬂ)?Q)




Normalization Trick

PUV:ﬂT:c%=£Q%%%%§Q
PW=sT=c)

=P(W=s,T=c)-|—P(W=T,T=c)

=04

T02403

P(T,W) SELECT the joint NORMALIZE the
probabilities selection —

T W P matching the P(Q W) (make it sum to one) P(W’T C)
hot sun 0.4 evidence T W | p W p
hOt rain 01 I COld sun 02 sun 04
cold | sun | 02 cold | rain | 0.3 rain | 0.6
cold rain 0.3

P(W=T|T=C):%

B PW=rT=c)
T PW=sT=c)+PW=rT=c)
0.3

T noLna

=0.6
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To Normalize

= (Dictionary) To bring or restore to a[normal condition]

N

All entries sum to ONE

= Procedure:
= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

" Examp|e1 [ Examplez

W P Normalize W P T W P T W
Normalize
sun 0.2 — (o0 0.4 hot sun 20 hot sun 0.4
. _ . hot rain 5 > hot rain 0.1
rain | 0.3 Z=0.5 rain | 0.6 7 = 50
cold sun 10 cold sun 0.2
cold rain 15 cold rain 0.3
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Probabilistic Inference

Diagnosis
Speech recognition
Tracking objects

Robot mapping
Genetics

Error correcting codes
... lots more!
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Probabilistic Inference

* Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities

= P(on time | no reported accidents) = 0.90
* These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(on time | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated



Inference by Enumeration

= P(sun)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= P(sun | winter)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

= P(sun | winter, hot)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Uncertainty

= General situation:

= Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge

0.11 0.11 0.11

' . 0.05 !
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Inference by Enumeration

= (General case:

= Evidence variables: E7...Ey=e€1...¢; X1, Xo, ... Xn
= Query* variable: Q |
= Hidden variables:  H;...H, All variables

= We want: P(Qle1...ex)
= First, select the entries consistent with the evidence

= Second, sum out H to get joint of Query and evidence:

P(Q.hy.. heeq...
P(Q7€1°"€k) — hlzh \(Q 1 \;81 6@
X1, Xo. ... Xn

= Finally, normalize the remaining entries to conditionalize



Supremacy of the Joint Distribution

= P(sun)?

= P(sun | winter)?

= P(sun | winter, hot)?

S T W P
summer| hot | sun | 0.30
summer| hot | rain | 0.05
summer| cold | sun | 0.10
summer| cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Problems with Enumeration

= Obvious problems:
» Worst-case time complexity O(d")

= Space complexity O(d") to store the
joint distribution

= Solutions

= Better techniques
= Better representation
= Simplifying assumptions
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The Product Rule

= Sometimes have conditional distributions but want the joint

(> Plz,y) = P(=ly)P(y)

P(zl|y) =

= Example:

P(W)

W

=

sun

0.8

rain

0.2

P(x,y)
P(y)

P(D|W)

D W | P
wet | sun| 0.1
dry | sun| 0.9
wet | rain| 0.7
dry |rain| 0.3

P(D,W)

D W P
wet | sun | 0.08
dry | sun | 0.72
wet | rain | 0.14
dry | rain | 0.06




The Product Rule

= Sometimes have conditional distributions but want the joint

Paly) = L ]ga(?;)f) (= P(z,y) = P(aly)P(y)

= Example:

P(D,W)

P(W) P(D|W)

O (©)




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions?

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(x1,z2,...zn) = || P(ailay ... 2-1)
1

= Why is this always true?



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(x|y)P(y) = P(y|x)P(x) That's my rule!j

= Dividing, we get:
P(yl|z)
P(zly) =
V=

= Why is this at all helpful?
» |ets us build a conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems we’ll see later

P(x)

* |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:
P(Effect|Cause) P(Cause)
P(Effect)

P(Cause|Effect) =

= Example:

= m is meningitis, s is stiff neck P(slm) = 0.8 Example
P(m) =0.0001 r givens

P(s) =0.1

__ P(sjm)P(m) _ 0.8 x 0.0001
— P(s) - 0.1

= Note: posterior probability of meningitis still very small

P(m|s) = 0.0008

» Note: you should still get stiff necks checked out! Why?



Quiz: Bayes Rule

= Glven:
P(W)
R P
sun 0.8
rain 0.2

= Whatis P(W | dry) ?

P(D|W)
D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain | 0.3
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Ghostbusters, Revisited

Let's say we have two distributions:
» Prior distribution over ghost location: P(G) | | |
= Let’s say this is uniform
» Sensor reading model: P(R | G)
= Given: we know what our sensors do
* R =reading color measured at (1,1)
= E.g. P(R=yellow | G=(1,1))=0.1
We can calculate the posterior
distribution P(G]|r) over ghost locations
given a reading using Bayes' rule: M
P(glr) o< P(r|g)P(g) .n.
<0.01 0.17




Independence

= Two variables are independent if:
Vz,y : P(z,y) = P(x)P(y)

» This says that their joint distribution factors into a product two
simpler distributions

= Another form:

Vi, y: P(zly) = P(x)

= Wewrite: X || YV

* Independence is a simplifying modeling assumption
= Empirical joint distributions: at best “close” to independent
» What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

P(T)
T P
hot 0.5
Py (T, W) cold 0.5
T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3 P(W)
W P
sun 0.6

rain 0.4




Example: Independence

= N fair, independent coin flips:

 P(X1,Xp,... Xp)

\




Conditional Independence

= P(Toothache, Cavity, Catch)

If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
» P(+catch | +toothache, -cavity) = P(+catch| —cavity)

Catch is conditionally independent of Toothache given Cavity:

» P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
» P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
» P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
*= One can be derived from the other easily



Conditional Independence

» Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

Va,y,z : P(z,ylz) = P(z]z)P(y|2)

XY\ Z
Vi, y,z o Px]z,y) = P(x|2) |

= \What about this domain:
= Traffic

= Umbrella
= Raining



Probability Summary

" s P(z,y)
P(z|ly) =
Conditional probability (z|y) P(y)
Product rule P(z,y) = P(z|y) P(y)
Chain rule P(X1,X2,.... Xn) = P(X1)P(X2|X1)P(X3/X1,X2)...
= [ P(Xi|X1..-.. X 1)
i=1

X, Y independent if and only if: Vz,y: P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if: X1Y|Z
Vi,y,z : P(x,y|z) = P(z|z)P(y|z)
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