CSEP 573: Artificial Intelligence Spring 2014

Uncertainty & Probabilistic Reasoning

Ali Farhadi

Many slides adapted from Pieter Abbeel, Dan Klein, Dan Weld, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Outline

- Probability review
 - Random Variables and Events
 - Joint / Marginal / Conditional Distributions
 - Product Rule, Chain Rule, Bayes' Rule
 - Probabilistic Inference

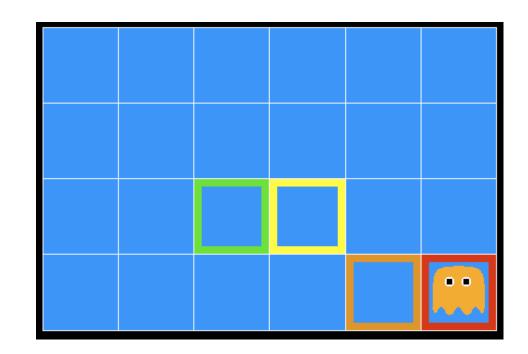
- Probabilistic sequence models (and inference)
 - Markov Chains
 - Hidden Markov Models
 - Particle Filters

Probability Review

- Probability
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes' Rule
 - Inference
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green



	Sensors	are noisy,	but we	know P(Color	Distance)	
--	---------	------------	--------	---------	-------	-----------	--

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false}
 - D in [0, 1)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distribution

Unobserved random variables have distributions

P(T)		
Т	Р	
hot	0.5	
cold	0.5	

P(VV)		
W	Р	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	

D(M)

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

• Must have:
$$\forall x \ P(X=x) \ge 0$$
 and $\sum_{x} P(X=x) = 1$

Shorthand notation:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$
...

OK if all domain entries are unique

Joint Distributions

• A joint distribution over a set of random variables: $X_1, X_2, ... X_n$ specifies a real number for each *outcome* (ie each assignment):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

• Must obey:

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

P	T	7	W)
_	/	,	y y	/

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
- A probabilistic model is a joint distribution over variables of interest
- For all but the smallest distributions, impractical to write out

Events

An outcome is a joint assignment for all the variables

$$(x_1,x_2,\ldots x_n)$$

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

■ P(+x, +y)?

- P(+x)?
- P(-y OR +x) ?

P(X,Y)

Χ	Υ	Р
+χ	+y	0.2
+χ	-у	0.3
-X	+y	0.4
-X	- y	0.1

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{w} P(t, w)$$

$$P(w) = \sum_{t} P(t, w)$$

\boldsymbol{P}	(T	7)
L	1	1	1

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

Quiz: Marginal Distribution

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	- y	0.3
-X	+y	0.4
-X	- y	0.1

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

P(X)

X	Р
+x	
-X	

P(Y)

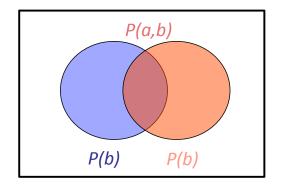
Υ	Р
+y	
- y	

Conditional Probability

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3



$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T = hot) $W \qquad P$ $sun \qquad 0.8$ $rain \qquad 0.2$ P(W|T = cold) $W \qquad P$ $sun \qquad 0.4$ $rain \qquad 0.6$

Joint Distribution

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)}$$

Quiz: Conditional Distribution

■ P(+x | +y)?

X	Υ	Р
+x	+y	0.2
+x	- y	0.3
-X	+y	0.4
-X	-y	0.1

Normalization Trick

- A trick to get a whole conditional distribution at once:
 - Select the joint probabilities matching the evidence
 - Normalize the selection (make it sum to one)

P(T,W)		
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Select		Norma	alize	
	P(T,r)		\rightarrow $P(T)$	r)
Т	R	Р	Т	
hot	rain	0.1	hot	0
cold	rain	0.3	cold	0

Why does this work? Sum of selection is P(evidence)! (P(r), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Normalization Trick

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

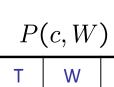
$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence



Т	W	Р
cold	sun	0.2
cold	rain	0.3

NORMALIZE the selection (make it sum to one)

$$P(W|T=c)$$

W	Р
sun	0.4
rain	0.6

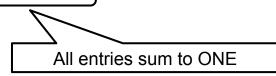
$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 \pm 0.3} = 0.6$$

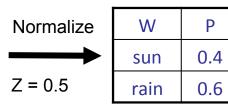
To Normalize

(Dictionary) To bring or restore to a normal condition



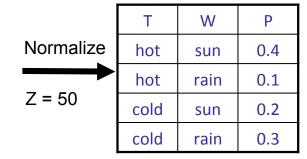
- Procedure:
 - Step 1: Compute Z = sum over all entries
 - Step 2: Divide every entry by Z
- Example 1

W	Р
sun	0.2
rain	0.3



Example 2

sun	20
rain	5
sun	10
rain	15
	rain sun



Probabilistic Inference

- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

P(sun)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

P(sun | winter)?

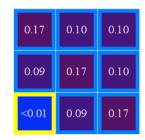
S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

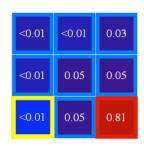
P(sun | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Uncertainty

- General situation:
 - Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
 - Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge





General case:

- We want: $P(Q|e_1 \dots e_k)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} \underbrace{P(Q, h_1 \dots h_r, e_1 \dots e_k)}_{X_1, X_2, \dots X_n}$$

Finally, normalize the remaining entries to conditionalize

Supremacy of the Joint Distribution

P(sun)?

P(sun | winter)?

P(sun | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Problems with Enumeration

Obvious problems:

- Worst-case time complexity O(dⁿ)
- Space complexity O(dⁿ) to store the joint distribution

Solutions

- Better techniques
- Better representation
- Simplifying assumptions

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \Leftrightarrow \qquad P(x,y) = P(x|y)P(y)$$

Example:

P(W)

sun

L	(D)	<i>V V</i>)	

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(D,W)

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \Leftrightarrow \qquad P(x,y) = P(x|y)P(y)$$

Example:

$$P(W) P(D|W)$$

$$W \longrightarrow D$$

The Chain Rule

• More generally, can always write any joint distribution as an incremental product of conditional distributions?

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Why is this always true?

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

That's my rule!

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Lets us build a conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later
- In the running for most important AI equation!

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}$$

- Example:
 - m is meningitis, s is stiff neck

$$P(s|m)=0.8$$
 $P(m)=0.0001$ Example $P(s)=0.1$

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes Rule

Given:

R	Р
sun	0.8
rain	0.2

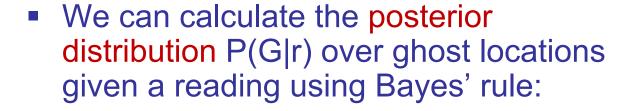
P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

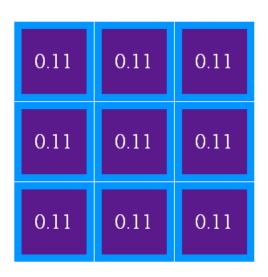
What is P(W | dry)?

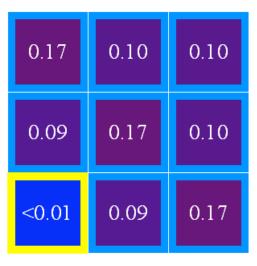
Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1



$$P(g|r) \propto P(r|g)P(g)$$





Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \perp\!\!\!\perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

$P_1(T,W)$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

Example: Independence

N fair, independent coin flips:

$$2^n \left\{ \begin{array}{c} P(X_1, X_2, \dots X_n) \\ \end{array} \right.$$

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$X \perp \!\!\!\perp Y|Z$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

Probability Summary

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

Chain rule

$$P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$$

=
$$\prod_{i=1}^{n} P(X_i|X_1, ..., X_{i-1})$$

- **X,** Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- lacksquare X and Y are conditionally independent given Z if and only if: $X \!\perp\!\!\!\perp \!\!\!\perp \!\!\! Y \!\mid\! Z$

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$