
CSEP 573:
 Artificial Intelligence 

Markov Decision Processes (MDP)
!

Ali Farhadi

Many slides over the course adapted from Luke Zettlemoyer,
Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore

1

Outline (roughly next two weeks)

§ Markov Decision Processes (MDP)
§MDP formalism
§Value Iteration
§Policy Iteration
!

§ Reinforcement Learning (RL)
§Relationship to MDPs
§Several learning algorithms

Non-deterministic Search

§ Noisy execution of actions
§ Deterministic grid world vs. non-deterministic

grid world

Example: Grid World
§ A maze-like problem:

§ The agent lives in a grid
§ Walls block the agent’s path

§ The agent’s actions do not always go as
planned:
§ 80% of the time, the action North takes

the agent North  
(if there is no wall there)

§ 10% of the time, North takes the agent
West; 10% East

§ If there is a wall in the direction the
agent would have been taken, the
agent stays put

§ Agent receives rewards each time step:
§ Small “living” reward each step
§ Big rewards come at the end

§ Goal: maximize sum of rewards

Deterministic Stochastic

?
0.1

0.8
0.1

 Grid World Actions

Review: Expectimax
§ What if we don’t know what the

result of an action will be? E.g.,
§ In solitaire, next card is unknown
§ In minesweeper, mine locations
§ In pacman, the ghosts act randomly

10 4 5 7

max

chance

!
!
§ Today, we’ll learn how to formalize

the underlying problem as a
Markov Decision Process

§ Can do expectimax search
§ Chance nodes, like min nodes,

except the outcome is uncertain
§ Calculate expected utilities
§ Max nodes as in minimax

search
§ Chance nodes take average

(expectation) of value of children

Markov Decision Processes
§ An MDP is defined by:

§ A set of states s ∈ S
§ A set of actions a ∈ A
§ A transition function T(s,a,s’)

§ Prob that a from s leads to s’
§ i.e., P(s’ | s,a)
§ Also called the model

§ A reward function R(s, a, s’)
§ Sometimes just R(s) or R(s’)

§ A start state (or distribution)
§ Maybe a terminal state

§ MDPs: non-deterministic
search problems
§ Reinforcement learning: MDPs

where we don’t know the
transition or reward functions

What is Markov about MDPs?

§ Andrey Markov (1856-1922)
§ “Markov” generally means that given

the present state, the future and the
past are independent

§ For Markov decision processes,
“Markov” means:

§ This is just like search where the
successor function only depends on the
current state (not the history)

Solving MDPs

§ In an MDP, we want an optimal policy π*: S → A
§ A policy π gives an action for each state
§ An optimal policy maximizes expected utility if followed
§ Defines a reflex agent

Optimal
policy when
R(s, a, s’) =
-0.03 for all
non-
terminals s

§ In deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

§ Expectimax didn’t
compute the entire policy
§ It computed the action

for a single state only

Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Another Example: Racing Car
Example:#Racing#

!  A#robot#car#wants#to#travel#far,#quickly#
!  Three#states:#Cool,#Warm,#Overheated#
!  Two#ac)ons:#Slow,#Fast)
!  Going#faster#gets#double#reward#

Cool#

Warm#

Overheated#

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Car Search TreeRacing#Search#Tree#

MDP Search Trees
§ Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

Utilities of Sequences

§ What preference should an agent have
over reward sequences?

§ More or less:
§ [1, 2, 2] or [2, 3, 4]
!

§ Now or later:
§ [0, 0, 1] or [1, 0, 0]

Discounting

§ It is reasonable to maximize the sum of rewards
§ It also makes sense to prefer rewards now to

rewards later
§ One solution: value of rewards decay

exponentially

Worth now Worth in one step Worth in two step
!

Discounting
§ How to discount?

§ Each time we descend, we
multiply in the discount once

§ Why discount?
§ Sooner rewards probably do

 have higher utility than later
rewards

§ Also helps our algorithms
converge

§ Example: discount of 0.5
§ U([1, 2, 3]) = 1*1+.5*2 + .25*3
§ U([1,2,3])<U([3,2,1])

Discounting

§ Typically discount
rewards by γ < 1
each time step
§ Sooner rewards

have higher utility
than later rewards

§ Also helps the
algorithms converge

Quiz:#Discoun)ng#

!  Given:#

!  Ac)ons:#East,#West,#and#Exit#(only#available#in#exit#states#a,#e)#
!  Transi)ons:#determinis)c#

!  Quiz#1:#For#γ#=#1,#what#is#the#op)mal#policy?#

!  Quiz#2:#For#γ#=#0.1,#what#is#the#op)mal#policy?#

!  Quiz#3:#For#which#° are#West#and#East#equally#good#when#in#state#d?#

Utilities of Sequences
§ In order to formalize optimality of a policy, need to

understand utilities of sequences of rewards
§ Typically consider stationary preferences:

§ Two ways to define stationary utilities
§ Additive utility:
!
!

§ Discounted utility:

Infinite Utilities?!
§ Problem: what if the game lasts forever?

§ Infinite state sequences have infinite rewards
§ Solutions:

§ Finite horizon:
§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (π depends on time left)

§ Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “overheated” for racing)

§ Discounting: for 0 < γ < 1  

!
!
§ Smaller γ means smaller “horizon” – shorter term focus

Recap: Defining MDPs

§ Markov decision processes:
§ States S
§ Start state s0
§ Actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount γ)
!
!

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’

Solving MDPs
§ We want to find the optimal policy π*:

§ Find best action for each state such that it maximizes
Utility (or return) = sum of discounted rewards

!

Optimal Utilities

§ Define the value of a state s:
V*(s) = expected utility starting in s

and acting optimally
!

§ Define the value of a q-state
(s,a):
Q*(s,a) = expected utility starting in

s, taking action a and thereafter
acting optimally

!
§ Define the optimal policy:

π*(s) = optimal action from state s

a

s

s, a

s,a,s’

s’

The Bellman Equations
§ Definition of “optimal utility” leads to a

simple one-step lookahead relationship
amongst optimal utility values:
§ Expected utility under optimal action
§ Average sum of (discounted) rewards
§ This is just what expectimax does
!

§ Formally:

a

s

s, a

s,a,s’
s’

Solving MDPs

§ Find V*(s) for all the states in S
§ |S| non-linear equations with |S| unknown

§ Our proposal:
§ Dynamic programming
§ Define V*i(s) as the optimal value of s if game

ends in i steps
§ V*0(s)=0 for all the states

BRIEF ARTICLE

THE AUTHOR

V0

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

1

Racing Car Search TreeRacing#Search#Tree#
Racing#Search#Tree#

!  We’re#doing#way#too#much#
work#with#expec)max!#

!  Problem:#States#are#repeated##
!  Idea:#Only#compute#needed#

quan))es#once#

!  Problem:#Tree#goes#on#forever#
!  Idea:#Do#a#depth<limited#

computa)on,#but#with#increasing#
depths#un)l#change#is#small#

!  Note:#deep#parts#of#the#tree#
eventually#don’t#maser#if#γ#<#1#

Time Limited ValuesTime<Limited#Values#

!  Key#idea:#)me<limited#values#

!  Define#Vk(s)#to#be#the#op)mal#value#of#s#if#the#game#ends#
in#k#more#)me#steps#
!  Equivalently,#it’s#what#a#depth<k#expec)max#would#give#from#s#

[demo#–#)me<limited#values]#

Time<Limited#Values#

!  Key#idea:#)me<limited#values#

!  Define#Vk(s)#to#be#the#op)mal#value#of#s#if#the#game#ends#
in#k#more#)me#steps#
!  Equivalently,#it’s#what#a#depth<k#expec)max#would#give#from#s#

[demo#–#)me<limited#values]#

Example: γ=0.9, living reward=0, noise=0.2

Example: Bellman Updates
Example: γ=0.9, living
reward=0, noise=0.2BRIEF ARTICLE

THE AUTHOR

V0

V1

1

BRIEF ARTICLE

THE AUTHOR

V0

V1

1

BRIEF ARTICLE

THE AUTHOR

V0

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

1

BRIEF ARTICLE

THE AUTHOR

V0

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

1

BRIEF ARTICLE

THE AUTHOR

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

Q1(h3, 3i, right) =

X

s0

T (h3, 3i, right, s0
)

⇥
R(h3, 3i, right, s0

) + �Vi(s
0
)

⇤

1

?

?

? ???

?

? ?

BRIEF ARTICLE

THE AUTHOR

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

Q1(h3, 3i, right) =

X

s0

T (h3, 3i, right, s0
)

⇥
R(h3, 3i, right, s0

) + �Vi(s
0
)

⇤

= 0.8 ⇤ [0.0 + 0.9 ⇤ 1.0] + 0.1 ⇤ [0.0 + 0.9 ⇤ 0.0] + 0.1 ⇤ [0.0 + 0.9 ⇤ 0.0]

1

Example: Value Iteration

§ Information propagates outward from terminal
states and eventually all states have correct
value estimates

V1 V2

Recap: Value Iteration

§ Idea:
§ Start with V0

*(s) = 0, which we know is right (why?)
§ Given Vi

*, calculate the values for all states for depth i+1:

§ This is called a value update or Bellman update
§ Repeat until convergence

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

Why Not Search Trees?

§ Why not solve with expectimax?

§ Problems:
§ This tree is usually infinite (why?)
§ Same states appear over and over (why?)
§ We would search once per state (why?)

§ Idea: Value iteration
§ Compute optimal values for all states all at

once using successive approximations
§ Will be a bottom-up dynamic program

similar in cost to memoization
§ Do all planning offline, no replanning

needed!

Computing time limited values
Compu)ng#Time<Limited#Values#

Example of Value iteration

• s

Example:#Value#Itera)on#

##0#############0#############0#

##2#############1#############0#

##3.5##########2.5##########0#

Assume no discount!

Recap: Value Estimates

§ Calculate estimates Vk
*(s)

§ The optimal value considering
only next k time steps (k rewards)

§ As k → ∞, it approaches the
optimal value

§ Why:
§ If discounting, distant rewards

become negligible
§ If terminal states reachable from

everywhere, fraction of episodes
not ending becomes negligible

§ Otherwise, can get infinite expected
utility and then this approach
actually won’t work

Convergence
Convergence*#

!  How#do#we#know#the#Vk#vectors#are#going#to#converge?#

!  Case#1:#If#the#tree#has#maximum#depth#M,#then#VM#holds#
the#actual#untruncated#values#

!  Case#2:#If#the#discount#is#less#than#1#
!  Sketch:#For#any#state#Vk#and#Vk+1#can#be#viewed#as#depth#k

+1#expec)max#results#in#nearly#iden)cal#search#trees#
!  The#difference#is#that#on#the#bosom#layer,#Vk+1#has#actual#

rewards#while#Vk#has#zeros#
!  That#last#layer#is#at#best#all#RMAX##
!  It#is#at#worst#RMIN##
!  But#everything#is#discounted#by#γk#that#far#out#
!  So#Vk#and#Vk+1#are#at#most#γk#max|R|#different#
!  So#as#k#increases,#the#values#converge#

Value Iteration Complexity

§ Problem size:
§ |A| actions and |S| states

§ Each Iteration
§ Computation: O(|A|⋅|S|2)
§ Space: O(|S|)

§ Num of iterations
§ Can be exponential in the discount factor γ

Practice: Computing Actions

§ Which action should we chose from state s:

§ Given optimal values Q?

§ Given optimal values V?

§ Lesson: actions are easier to select from Q’s!

Aside: Q-Value Iteration

§ Value iteration: find successive approx optimal values
§ Start with V0

*(s) = 0
§ Given Vi

*, calculate the values for all states for depth i+1:

§ But Q-values are more useful!
§ Start with Q0

*(s,a) = 0
§ Given Qi

*, calculate the q-values for all q-states for depth i+1:

Example: Value Iteration

Utilities for Fixed Policies
§ Another basic operation:

compute the utility of a state s
under a fix (general non-optimal)
policy

§ Define the utility of a state s,
under a fixed policy π:
Vπ(s) = expected total discounted

rewards (return) starting in s and
following π

§ Recursive relation (one-step
look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

Policy Evaluation

§ How do we calculate the V’s for a fixed policy?

§ Idea one: modify Bellman updates

§ Idea two: it’s just a linear system, solve with
Matlab (or whatever)

Policy Iteration

§ Problem with value iteration:
§ Considering all actions each iteration is slow: takes |A|

times longer than policy evaluation
§ But policy doesn’t change each iteration, time wasted

§ Alternative to value iteration:
§ Step 1: Policy evaluation: calculate utilities for a fixed

policy (not optimal utilities!) until convergence (fast)
§ Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

§ Repeat steps until policy converges

Policy Iteration

§ Policy evaluation: with fixed current policy π, find values
with simplified Bellman updates
§ Iterate until values converge
!
!
!

§ Note: could also solve value equations with other techniques

§ Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Policy Iteration Complexity

§ Problem size:
§ |A| actions and |S| states

§ Each Iteration
§ Computation: O(|S|3 + |A|⋅|S|2)
§ Space: O(|S|)

§ Num of iterations
§ Unknown, but can be faster in practice
§ Convergence is guaranteed

Comparison

§ In value iteration:
§ Every pass (or “backup”) updates both utilities (explicitly, based

on current utilities) and policy (possibly implicitly, based on
current policy)

!
§ In policy iteration:

§ Several passes to update utilities with frozen policy
§ Occasional passes to update policies
!

§ Hybrid approaches (asynchronous policy iteration):
§ Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

Reinforcement Learning

§ Basic idea:
§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must learn to act so as to maximize expected rewards

