CSEP 573: Artificial Intelligence

Markov Decision Processes (MDP)

Ali Farhadi

Many slides over the course adapted from Luke Zettlemoyer, Dan Klein, Pieter Abbeel, Stuart Russell or Andrew Moore

Outline (roughly next two weeks)

- Markov Decision Processes (MDP)
 - MDP formalism
 - Value Iteration
 - Policy Iteration

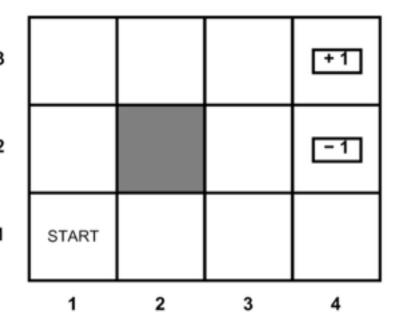
- Reinforcement Learning (RL)
 - Relationship to MDPs
 - Several learning algorithms

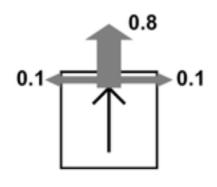
Non-deterministic Search

- Noisy execution of actions
 - Deterministic grid world vs. non-deterministic grid world

Example: Grid World

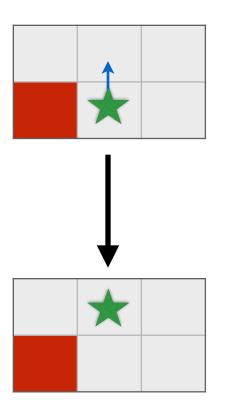
- A maze-like problem:
 - The agent lives in a grid
 - Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Agent receives rewards each time step:
 - Small "living" reward each step
 - Big rewards come at the end
- Goal: maximize sum of rewards



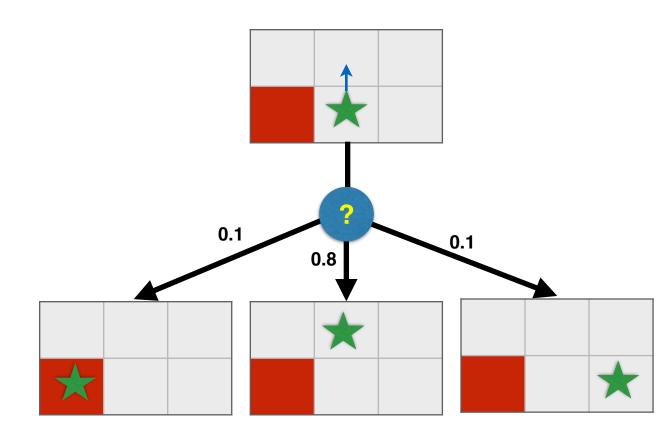


Grid World Actions

Deterministic

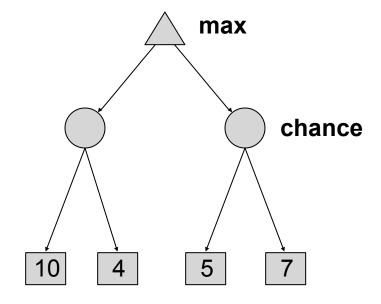


Stochastic



Review: Expectimax

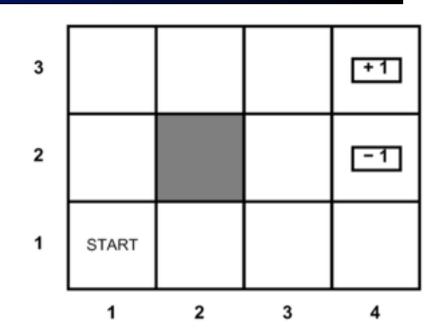
- What if we don't know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly
- Can do expectimax search
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children

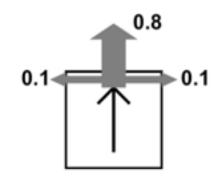


 Today, we'll learn how to formalize the underlying problem as a Markov Decision Process

Markov Decision Processes

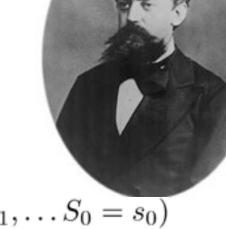
- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
 - MDPs: non-deterministic search problems
 - Reinforcement learning: MDPs where we don't know the transition or reward functions





What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:



$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$=$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

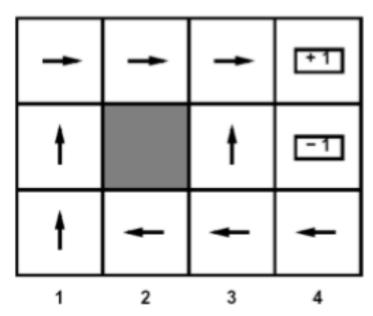
 This is just like search where the successor function only depends on the current state (not the history)

Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy π^* : $S \to A$
 - A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed

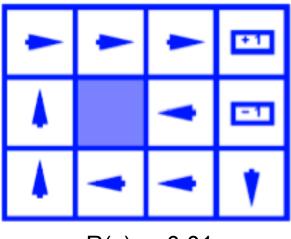
3

- Defines a reflex agent
- Expectimax didn't compute the entire policy
 - It computed the action for a single state only

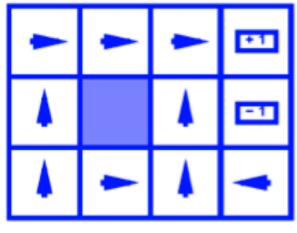


Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

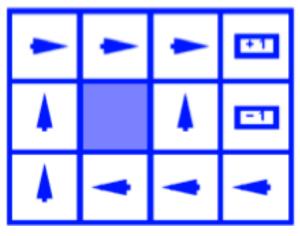
Example Optimal Policies



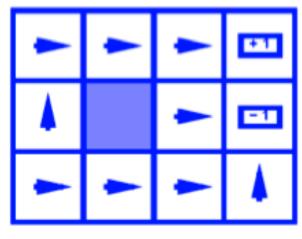
R(s) = -0.01



$$R(s) = -0.4$$



R(s) = -0.03



R(s) = -2.0

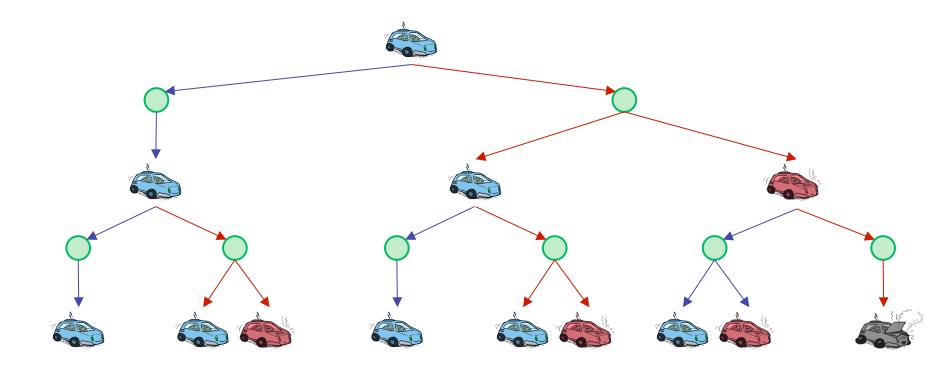
Another Example: Racing Car

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

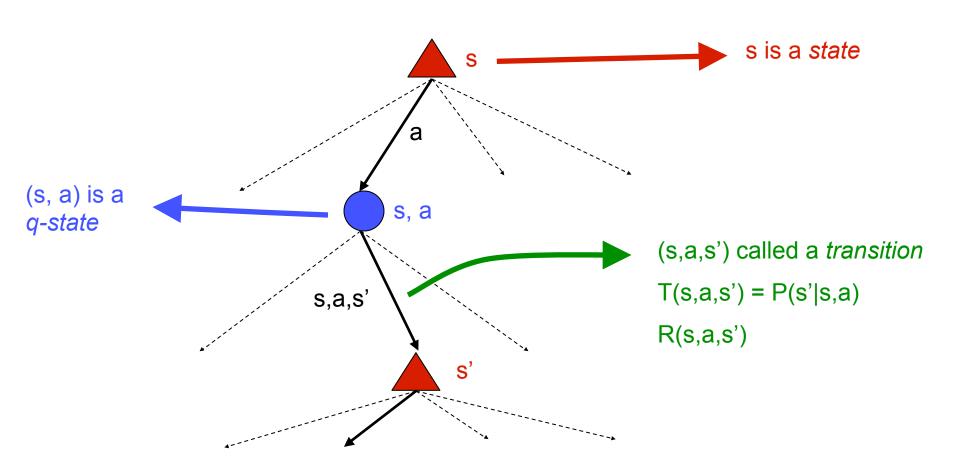
Two actions: Slow, Fast 0.5 Going faster gets double reward 1.0 Fast Slow -10 0.5 Warm Slow 0.5 + 2Fast 0.5 Cool Overheated 1.0

Racing Car Search Tree



MDP Search Trees

Each MDP state gives an expectimax-like search tree

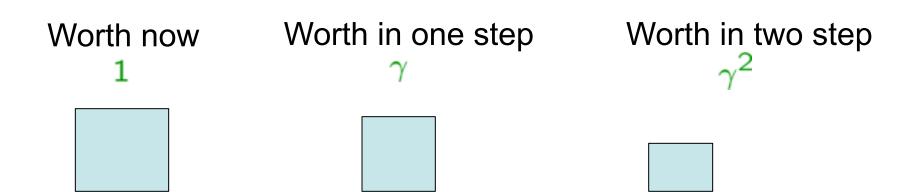


Utilities of Sequences

- What preference should an agent have over reward sequences?
- More or less:
 - [1, 2, 2] or [2, 3, 4]
- Now or later:
 - [0, 0, 1] or [1, 0, 0]

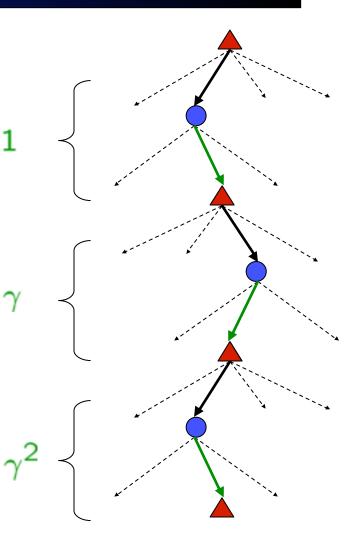
Discounting

- It is reasonable to maximize the sum of rewards
- It also makes sense to prefer rewards now to rewards later
- One solution: value of rewards decay exponentially



Discounting

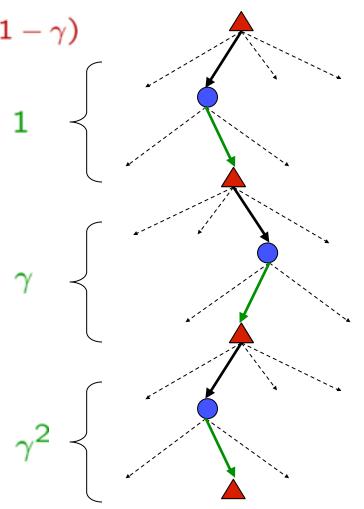
- How to discount?
 - Each time we descend, we multiply in the discount once
- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1, 2, 3]) = 1*1+.5*2 + .25*3
 - U([1,2,3])<U([3,2,1])



Discounting

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\mathsf{max}}/(1-\gamma)$$

- Typically discount rewards by γ < 1 each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge

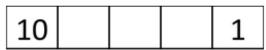


Quiz: Discounting

Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For γ = 0.1, what is the optimal policy?



• Quiz 3: For which ° are West and East equally good when in state d?

Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$$
 \Leftrightarrow
 $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$

- Two ways to define stationary utilities
 - Additive utility:

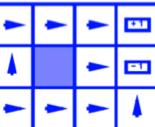
$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

• Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Infinite Utilities?!

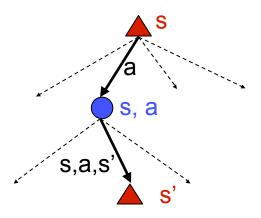
- Problem: what if the game lasts forever?
 - Infinite state sequences have infinite rewards
- Solutions:
 - Finite horizon:
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)
 - Discounting: for $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$



Recap: Defining MDPs

- Markov decision processes:
 - States S
 - Start state s₀
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)



- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility (or return) = sum of discounted rewards

Solving MDPs

- We want to find the optimal policy π^* :
 - Find best action for each state such that it maximizes
 Utility (or return) = sum of discounted rewards

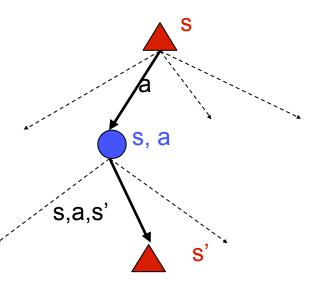
Optimal Utilities

Define the value of a state s:

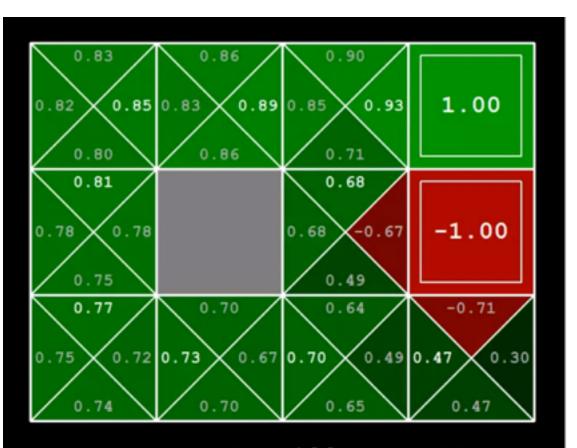
V*(s) = expected utility starting in s and acting optimally

Define the value of a q-state (s,a):

Q*(s,a) = expected utility starting in s, taking action a and thereafter acting optimally



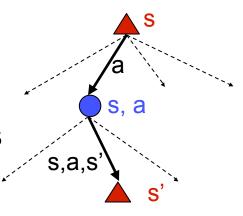
• Define the optimal policy: $\pi^*(s)$ = optimal action from state s



Q-VALUES AFTER 100 ITERATIONS

The Bellman Equations

- Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax does



Formally:

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Solving MDPs

- Find V*(s) for all the states in S
 - |S| non-linear equations with |S| unknown

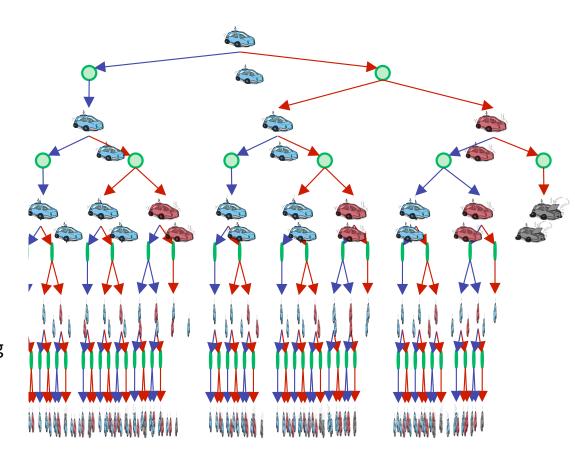
$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Our proposal:
 - Dynamic programming
 - Define V*i(s) as the optimal value of s if game ends in i steps
 - V*0(s)=0 for all the states

$$V_{i+1}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

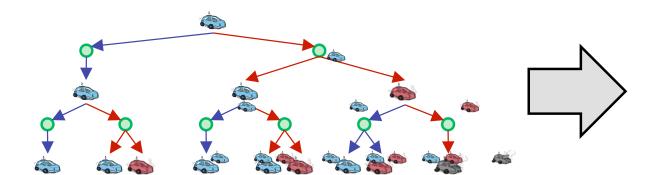
Racing Car Search Tree

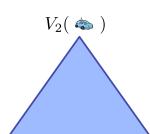
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if γ < 1



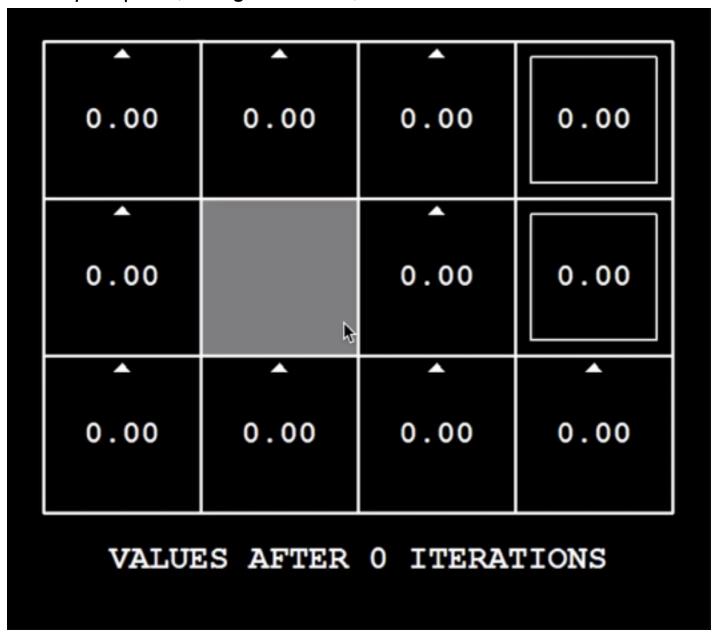
Time Limited Values

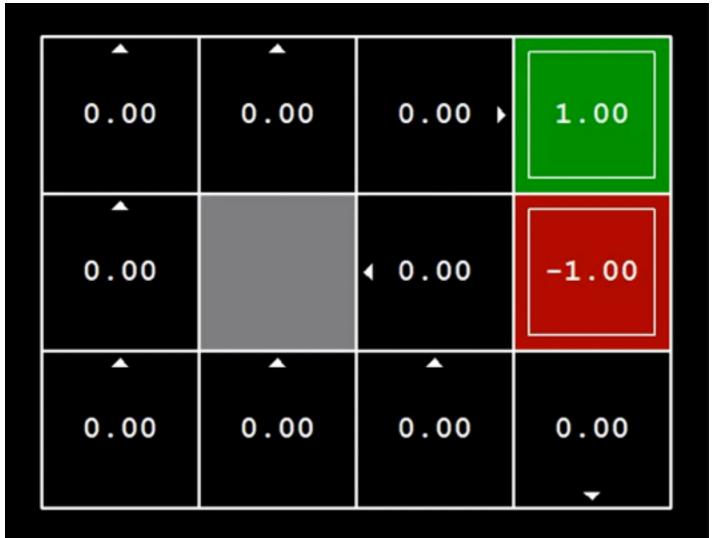
- Key idea: time-limited values
- Define V_k(s) to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from s



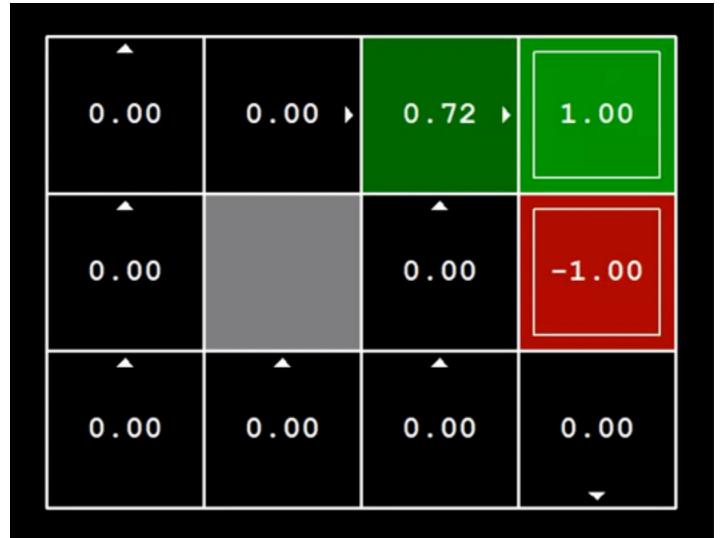


Example: γ=0.9, living reward=0, noise=0.2



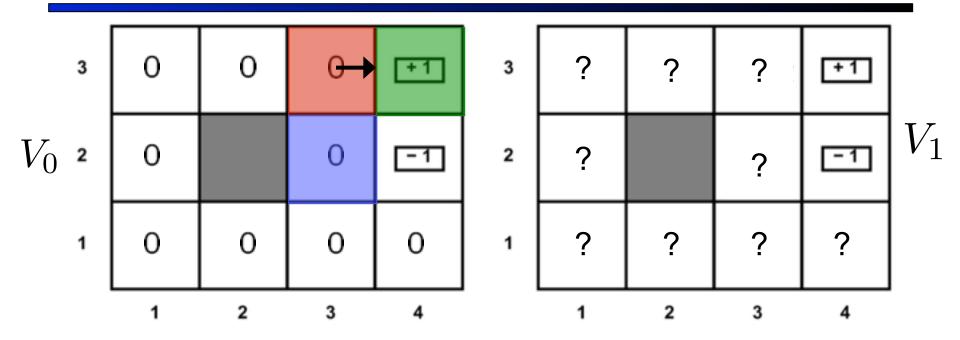


VALUES AFTER 1 ITERATIONS



VALUES AFTER 2 ITERATIONS

Example: Bellman Updates

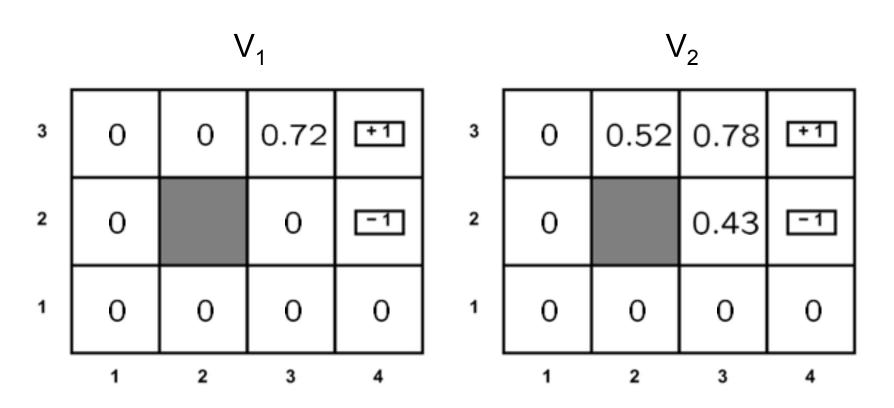


$$V_{i+1}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right] = \max_{a} Q_{i+1}(s, a)$$

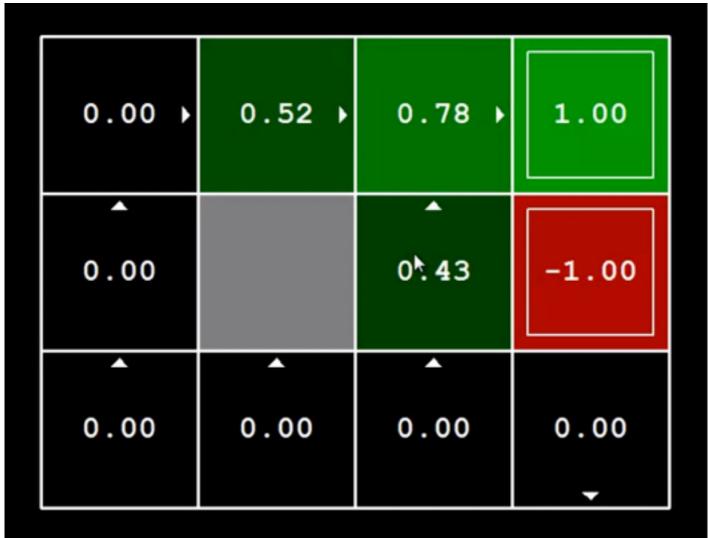
$$Q_1(\langle 3,3\rangle, \text{right}) = \sum_{s'} T(\langle 3,3\rangle, \text{right}, s') \left[R(\langle 3,3\rangle, \text{right}, s') + \gamma V_i(s') \right]$$

$$= 0.8 * [0.0 + 0.9 * 1.0] + 0.1 * [0.0 + 0.9 * 0.0] + 0.1 * [0.0 + 0.9 * 0.0]$$

Example: Value Iteration



 Information propagates outward from terminal states and eventually all states have correct value estimates



VALUES AFTER 3 ITERATIONS

0.37 ▶	0.66 ▶	0.83 ▶	1.00
0.00		0 ¹ . 51	-1.00
0.00	0.00 ▶	0.31	∢ 0.00

VALUES AFTER 4 ITERATIONS

0.51 →	0.72 ▶	0.84 →	1.00
0.27		^ 0 ¹ .55	-1.00
0.27		0.55	
0.00	0.00	^ 27	. 0 10
0.00	0.22 →	0.37	∢ 0.13

VALUES AFTER 5 ITERATIONS

0.59 ▶	0.73 ▶	0.85 →	1.00
0.41		^ 0 <u>*</u> .57	-1.00
0.21	0.31 →	0.43	∢ 0.19

VALUES AFTER 6 ITERATIONS

0.62 →	0.74 →	0.85 >	1.00
0.50		0 [*] . 57	-1.00
^		_ ^	
0.34	0.36 →	0.45	∢ 0.24

VALUES AFTER 7 ITERATIONS

Recap: Value Iteration

Idea:

- Start with $V_0^*(s) = 0$, which we know is right (why?)
- Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Why Not Search Trees?

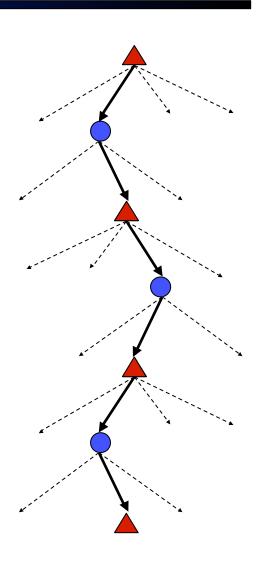
Why not solve with expectimax?

Problems:

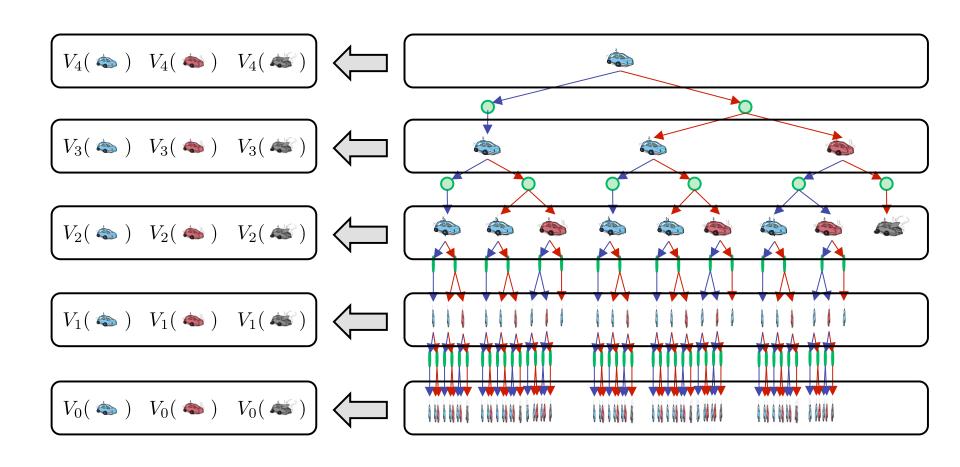
- This tree is usually infinite (why?)
- Same states appear over and over (why?)
- We would search once per state (why?)

Idea: Value iteration

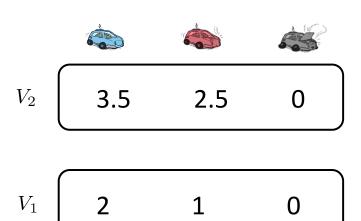
- Compute optimal values for all states all at once using successive approximations
- Will be a bottom-up dynamic program similar in cost to memoization
- Do all planning offline, no replanning needed!

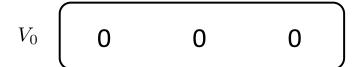


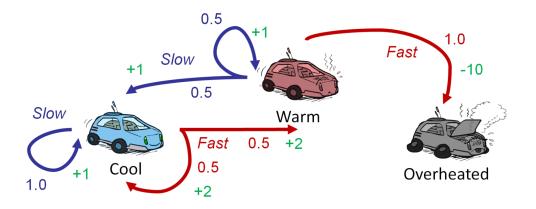
Computing time limited values



Example of Value iteration





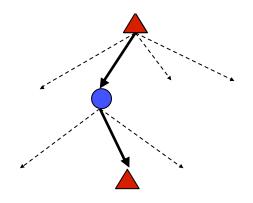


Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

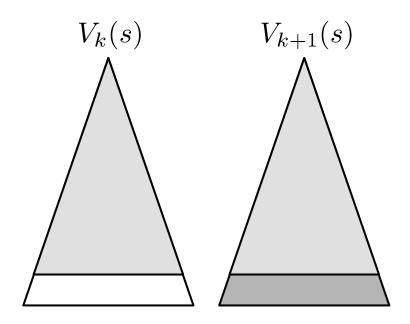
Recap: Value Estimates

- Calculate estimates V_k*(s)
 - The optimal value considering only next k time steps (k rewards)
 - As k → ∞, it approaches the optimal value
 - Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won't work



Convergence

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k
 +1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge



Value Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration
 - Computation: O(|A|·|S|²)
 - Space: O(|S|)
- Num of iterations
 - Can be exponential in the discount factor γ

Practice: Computing Actions

- Which action should we chose from state s:
 - Given optimal values Q?

$$\underset{a}{\operatorname{arg\,max}} Q^*(s,a)$$

Given optimal values V?

$$\arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Lesson: actions are easier to select from Q's!

Aside: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with $V_0^*(s) = 0$
 - Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

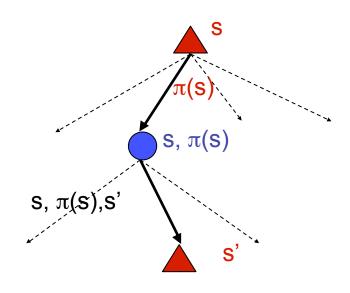
- But Q-values are more useful!
 - Start with $Q_0^*(s,a) = 0$
 - Given Q_i*, calculate the q-values for all q-states for depth i+1:

$$Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]$$

Example: Value Iteration

Utilities for Fixed Policies

- Another basic operation: compute the utility of a state s under a fix (general non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 - $V^{\pi}(s)$ = expected total discounted rewards (return) starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):



$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation

- How do we calculate the V's for a fixed policy?
- Idea one: modify Bellman updates

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Idea two: it's just a linear system, solve with Matlab (or whatever)

Policy Iteration

- Problem with value iteration:
 - Considering all actions each iteration is slow: takes |A| times longer than policy evaluation
 - But policy doesn't change each iteration, time wasted
- Alternative to value iteration:
 - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence (fast)
 - Step 2: Policy improvement: update policy using onestep lookahead with resulting converged (but not optimal!) utilities (slow but infrequent)
 - Repeat steps until policy converges

Policy Iteration

- Policy evaluation: with fixed current policy π , find values with simplified Bellman updates
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

- Note: could also solve value equations with other techniques
- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Policy Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration
 - Computation: $O(|S|^3 + |A| \cdot |S|^2)$
 - Space: O(|S|)
- Num of iterations
 - Unknown, but can be faster in practice
 - Convergence is guaranteed

Comparison

In value iteration:

 Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

In policy iteration:

- Several passes to update utilities with frozen policy
- Occasional passes to update policies

Hybrid approaches (asynchronous policy iteration):

 Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must learn to act so as to maximize expected rewards

