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Outline (roughly next two weeks)

§ Markov Decision Processes (MDP) 
§MDP formalism 
§Value Iteration 
§Policy Iteration 
!

§ Reinforcement Learning (RL) 
§Relationship to MDPs 
§Several learning algorithms



Non-deterministic Search

§ Noisy execution of actions 
§ Deterministic grid world vs. non-deterministic 

grid world



Example: Grid World
§ A maze-like problem: 

§ The agent lives in a grid 
§ Walls block the agent’s path 

§ The agent’s actions do not always go as 
planned: 
§ 80% of the time, the action North takes 

the agent North  
(if there is no wall there) 

§ 10% of the time, North takes the agent 
West; 10% East 

§ If there is a wall in the direction the 
agent would have been taken, the 
agent stays put 

§ Agent receives rewards each time step: 
§ Small “living” reward each step 
§ Big rewards come at the end 

§ Goal: maximize sum of rewards
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Review: Expectimax
§ What if we don’t know what the 

result of an action will be? E.g., 
§ In solitaire, next card is unknown 
§ In minesweeper, mine locations 
§ In pacman, the ghosts act randomly

10 4 5 7

max

chance

!
!
§ Today, we’ll learn how to formalize 

the underlying problem as a 
Markov Decision Process

§ Can do expectimax search 
§ Chance nodes, like min nodes, 

except the outcome is uncertain 
§ Calculate expected utilities 
§ Max nodes as in minimax 

search 
§ Chance nodes take average 

(expectation) of value of children



Markov Decision Processes
§ An MDP is defined by: 

§ A set of states s ∈ S 
§ A set of actions a ∈ A 
§ A transition function T(s,a,s’) 

§ Prob that a from s leads to s’ 
§ i.e., P(s’ | s,a) 
§ Also called the model 

§ A reward function R(s, a, s’)  
§ Sometimes just R(s) or R(s’) 

§ A start state (or distribution) 
§ Maybe a terminal state

§ MDPs: non-deterministic 
search problems 
§ Reinforcement learning: MDPs 

where we don’t know the 
transition or reward functions



What is Markov about MDPs?

§ Andrey Markov (1856-1922) 
§ “Markov” generally means that given 

the present state, the future and the 
past are independent

§ For Markov decision processes, 
“Markov” means:

§ This is just like search where the 
successor function only depends on the 
current state (not the history) 



Solving MDPs

§ In an MDP, we want an optimal policy π*: S → A 
§ A policy π gives an action for each state 
§ An optimal policy maximizes expected utility if followed 
§ Defines a reflex agent

Optimal 
policy when 
R(s, a, s’) = 
-0.03 for all 
non-
terminals s

§ In deterministic single-agent search problems, want an 
optimal plan, or sequence of actions, from start to a goal

§ Expectimax didn’t 
compute the entire policy 
§ It computed the action 

for a single state only



Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Another Example: Racing Car
Example:#Racing#

!  A#robot#car#wants#to#travel#far,#quickly#
!  Three#states:#Cool,#Warm,#Overheated#
!  Two#ac)ons:#Slow,#Fast)
!  Going#faster#gets#double#reward#
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Racing Car Search TreeRacing#Search#Tree#



MDP Search Trees
§ Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition 

T(s,a,s’) = P(s’|s,a) 

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a 
q-state



Utilities of Sequences

§ What preference should an agent have 
over reward sequences? 

§ More or less:  
§ [1, 2, 2]        or       [2, 3, 4] 
!

§ Now or later: 
§ [0, 0, 1]       or       [1, 0, 0]



Discounting

§ It is reasonable to maximize the sum of rewards 
§ It also makes sense to prefer rewards now to 

rewards later 
§ One solution: value of rewards decay 

exponentially

Worth now Worth in one step  Worth in two step 
!



Discounting
§ How to discount? 

§ Each time we descend, we 
multiply in the discount once 

§ Why discount? 
§ Sooner rewards probably do

 have higher utility than later 
rewards  

§  Also helps our algorithms 
converge  

§ Example: discount of 0.5 
§ U([1, 2, 3]) = 1*1+.5*2 + .25*3 
§ U([1,2,3])<U([3,2,1])



Discounting

§ Typically discount 
rewards by γ < 1 
each time step 
§ Sooner rewards 

have higher utility 
than later rewards 

§ Also helps the 
algorithms converge



Quiz:#Discoun)ng#

!  Given:#

!  Ac)ons:#East,#West,#and#Exit#(only#available#in#exit#states#a,#e)#
!  Transi)ons:#determinis)c#

!  Quiz#1:#For#γ#=#1,#what#is#the#op)mal#policy?#

!  Quiz#2:#For#γ#=#0.1,#what#is#the#op)mal#policy?#

!  Quiz#3:#For#which#° are#West#and#East#equally#good#when#in#state#d?#



Utilities of Sequences
§ In order to formalize optimality of a policy, need to 

understand utilities of sequences of rewards 
§ Typically consider stationary preferences:

§ Two ways to define stationary utilities 
§ Additive utility: 
!
!

§ Discounted utility:



Infinite Utilities?!
§ Problem: what if the game lasts forever?  

§ Infinite state sequences have infinite rewards 
§ Solutions: 

§ Finite horizon: 
§ Terminate episodes after a fixed T steps (e.g. life) 
§ Gives nonstationary policies (π depends on time left) 

§ Absorbing state: guarantee that for every policy, a terminal state 
will eventually be reached (like “overheated” for racing) 

§ Discounting: for 0 < γ < 1  

!
!
§ Smaller γ means smaller “horizon” – shorter term focus



Recap: Defining MDPs

§ Markov decision processes: 
§ States S 
§ Start state s0 
§ Actions A 
§ Transitions P(s’|s,a) (or T(s,a,s’)) 
§ Rewards R(s,a,s’) (and discount γ) 
!
!

§ MDP quantities so far: 
§ Policy = Choice of action for each state 
§ Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’



Solving MDPs
§ We want to find the optimal policy π*: 

§ Find best action for each state such that it maximizes 
Utility (or return) = sum of discounted rewards 

!



Optimal Utilities

§ Define the value of a state s: 
V*(s) = expected utility starting in s 

and acting optimally 
!

§ Define the value of a q-state 
(s,a): 
Q*(s,a) = expected utility starting in 

s, taking action a and thereafter 
acting optimally 

!
§ Define the optimal policy: 

π*(s) = optimal action from state s

a

s

s, a

s,a,s’

s’







The Bellman Equations
§ Definition of “optimal utility” leads to a 

simple one-step lookahead relationship 
amongst optimal utility values: 
§ Expected utility under optimal action 
§ Average sum of (discounted) rewards 
§ This is just what expectimax does 
!

§ Formally:

a

s

s, a

s,a,s’
s’



Solving MDPs

§ Find V*(s) for all the states in S 
§ |S| non-linear equations with |S| unknown

§ Our proposal: 
§ Dynamic programming 
§ Define V*i(s) as the optimal value of s if game 

ends in i steps   
§ V*0(s)=0 for all the states

BRIEF ARTICLE

THE AUTHOR

V0

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)
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Racing Car Search TreeRacing#Search#Tree#
Racing#Search#Tree#

!  We’re#doing#way#too#much#
work#with#expec)max!#

!  Problem:#States#are#repeated##
!  Idea:#Only#compute#needed#

quan))es#once#

!  Problem:#Tree#goes#on#forever#
!  Idea:#Do#a#depth<limited#

computa)on,#but#with#increasing#
depths#un)l#change#is#small#

!  Note:#deep#parts#of#the#tree#
eventually#don’t#maser#if#γ#<#1#



Time Limited ValuesTime<Limited#Values#

!  Key#idea:#)me<limited#values#

!  Define#Vk(s)#to#be#the#op)mal#value#of#s#if#the#game#ends#
in#k#more#)me#steps#
!  Equivalently,#it’s#what#a#depth<k#expec)max#would#give#from#s#

[demo#–#)me<limited#values]#

Time<Limited#Values#

!  Key#idea:#)me<limited#values#

!  Define#Vk(s)#to#be#the#op)mal#value#of#s#if#the#game#ends#
in#k#more#)me#steps#
!  Equivalently,#it’s#what#a#depth<k#expec)max#would#give#from#s#

[demo#–#)me<limited#values]#



Example: γ=0.9, living reward=0, noise=0.2







Example: Bellman Updates
Example: γ=0.9, living 
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Example: Value Iteration

§ Information propagates outward from terminal 
states and eventually all states have correct 
value estimates

V1 V2













Recap: Value Iteration

§ Idea: 
§ Start with V0

*(s) = 0, which we know is right (why?) 
§ Given Vi

*, calculate the values for all states for depth i+1: 

§ This is called a value update or Bellman update 
§ Repeat until convergence

§ Theorem: will converge to unique optimal values 
§ Basic idea: approximations get refined towards optimal values 
§ Policy may converge long before values do



Why Not Search Trees?

§ Why not solve with expectimax? 

§ Problems: 
§ This tree is usually infinite (why?) 
§ Same states appear over and over (why?) 
§ We would search once per state (why?) 

§ Idea: Value iteration 
§ Compute optimal values for all states all at 

once using successive approximations 
§ Will be a bottom-up dynamic program 

similar in cost to memoization 
§ Do all planning offline, no replanning 

needed!



Computing time limited values
Compu)ng#Time<Limited#Values#



Example of Value iteration

• s

Example:#Value#Itera)on#

##0#############0#############0#

##2#############1#############0#

##3.5##########2.5##########0#

Assume no discount! 



Recap: Value Estimates

§ Calculate estimates Vk
*(s) 

§ The optimal value considering 
only next k time steps (k rewards) 

§ As k → ∞, it approaches the 
optimal value

§ Why: 
§ If discounting, distant rewards 

become negligible 
§ If terminal states reachable from 

everywhere, fraction of episodes 
not ending becomes negligible 

§ Otherwise, can get infinite expected 
utility and then this approach 
actually won’t work



Convergence
Convergence*#

!  How#do#we#know#the#Vk#vectors#are#going#to#converge?#

!  Case#1:#If#the#tree#has#maximum#depth#M,#then#VM#holds#
the#actual#untruncated#values#

!  Case#2:#If#the#discount#is#less#than#1#
!  Sketch:#For#any#state#Vk#and#Vk+1#can#be#viewed#as#depth#k

+1#expec)max#results#in#nearly#iden)cal#search#trees#
!  The#difference#is#that#on#the#bosom#layer,#Vk+1#has#actual#

rewards#while#Vk#has#zeros#
!  That#last#layer#is#at#best#all#RMAX##
!  It#is#at#worst#RMIN##
!  But#everything#is#discounted#by#γk#that#far#out#
!  So#Vk#and#Vk+1#are#at#most#γk#max|R|#different#
!  So#as#k#increases,#the#values#converge#



Value Iteration Complexity

§ Problem size:  
§ |A| actions and |S| states 

§ Each Iteration 
§ Computation: O(|A|⋅|S|2) 
§ Space: O(|S|) 

§ Num of iterations 
§ Can be exponential in the discount factor γ



Practice: Computing Actions

§ Which action should we chose from state s: 

§ Given optimal values Q? 

§ Given optimal values V? 

§ Lesson: actions are easier to select from Q’s!



Aside: Q-Value Iteration

§ Value iteration: find successive approx optimal values 
§ Start with V0

*(s) = 0 
§ Given Vi

*, calculate the values for all states for depth i+1:

§ But Q-values are more useful! 
§ Start with Q0

*(s,a) = 0 
§ Given Qi

*, calculate the q-values for all q-states for depth i+1:



Example: Value Iteration



Utilities for Fixed Policies
§ Another basic operation: 

compute the utility of a state s 
under a fix (general non-optimal) 
policy 

§ Define the utility of a state s, 
under a fixed policy π: 
Vπ(s) = expected total discounted 

rewards (return) starting in s and 
following π 

§ Recursive relation (one-step 
look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’



Policy Evaluation

§ How do we calculate the V’s for a fixed policy? 

§ Idea one: modify Bellman updates 

§ Idea two: it’s just a linear system, solve with 
Matlab (or whatever)



Policy Iteration

§ Problem with value iteration: 
§ Considering all actions each iteration is slow: takes |A| 

times longer than policy evaluation 
§ But policy doesn’t change each iteration, time wasted 

§ Alternative to value iteration: 
§ Step 1: Policy evaluation: calculate utilities for a fixed 

policy (not optimal utilities!) until convergence (fast) 
§ Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not 
optimal!) utilities (slow but infrequent) 

§ Repeat steps until policy converges



Policy Iteration

§ Policy evaluation: with fixed current policy π, find values 
with simplified Bellman updates 
§ Iterate until values converge 
!
!
!

§ Note: could also solve value equations with other techniques 

§ Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead



Policy Iteration Complexity

§ Problem size:  
§ |A| actions and |S| states 

§ Each Iteration 
§ Computation: O(|S|3 + |A|⋅|S|2) 
§ Space: O(|S|) 

§ Num of iterations 
§ Unknown, but can be faster in practice 
§ Convergence is guaranteed 



Comparison

§ In value iteration: 
§ Every pass (or “backup”) updates both utilities (explicitly, based 

on current utilities) and policy (possibly implicitly, based on 
current policy) 

!
§ In policy iteration: 

§ Several passes to update utilities with frozen policy 
§ Occasional passes to update policies 
!

§ Hybrid approaches (asynchronous policy iteration): 
§ Any sequences of partial updates to either policy entries or 

utilities will converge if every state is visited infinitely often



Reinforcement Learning

§ Basic idea: 
§ Receive feedback in the form of rewards 
§ Agent’s utility is defined by the reward function 
§ Must learn to act so as to maximize expected rewards


