CSEP 573: Artificial Intelligence Spring 2014

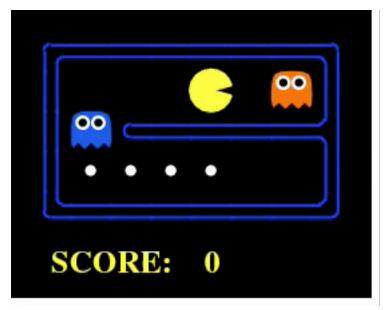
Expectimax Search

Ali Farhadi

Based on slides from Dan Klein, Luke Zettlemoyer

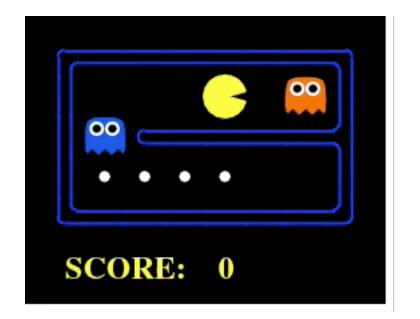
Many slides over the course adapted from either Stuart Russell or Andrew Moore

Minimax Example



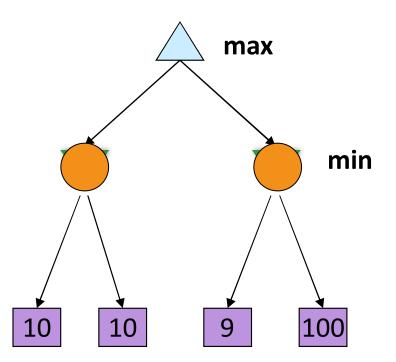
Suicidal agent

Expectimax



- Uncertain outcomes are controlled by chance not an adversary
- Chance nodes are new types of nodes (instead of Min nodes)

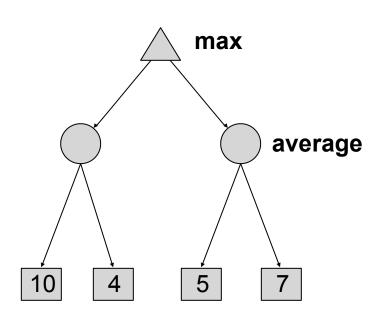
Worst-case vs. Average



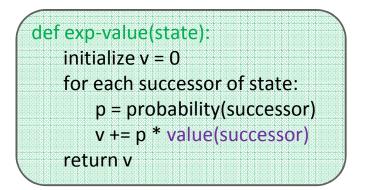
 Uncertain outcomes controlled by chance not an adversary

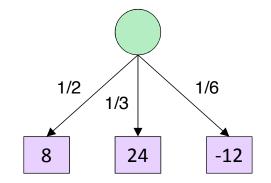
Stochastic Single-Player

- What if we don't know what the result of an action will be? E.g.,
 - In solitaire, shuffle is unknown
 - In minesweeper, mine locations
- Can do expectimax search
 - Chance nodes, like actions except the environment controls the action chosen
 - Max nodes as before
 - Chance nodes take average (expectation) of value of children



Expectimax Pseudocode





v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Maximum Expected Utility

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility: an agent should chose the action which maximizes its expected utility, given its knowledge
 - General principle for decision making
 - Often taken as the definition of rationality
 - We'll see this idea over and over in this course!
- Let's decompress this definition...

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: traffic on freeway?
 - Random variable: T = whether there's traffic
 - Outcomes: T in {none, light, heavy}
 - Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20
- Some laws of probability (more later):
 - Probabilities are always non-negative
 - Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
 - P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
 - We'll talk about methods for reasoning and updating probabilities later

What are Probabilities?

Objectivist / frequentist answer:

- Averages over repeated experiments
- E.g. empirically estimating P(rain) from historical observation
- E.g. pacman's estimate of what the ghost will do, given what it has done in the past
- Assertion about how future experiments will go (in the limit)
- Makes one think of *inherently random* events, like rolling dice

Subjectivist / Bayesian answer:

- Degrees of belief about unobserved variables
- E.g. an agent's belief that it's raining, given the temperature
- E.g. pacman's belief that the ghost will turn left, given the state
- Often *learn* probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

Uncertainty Everywhere

Not just for games of chance!

- I'm sick: will I sneeze this minute?
- Email contains "FREE!": is it spam?
- Tooth hurts: have cavity?
- 60 min enough to get to the airport?
- Robot rotated wheel three times, how far did it advance?
- Safe to cross street? (Look both ways!)
- Sources of uncertainty in random variables:
 - Inherently random process (dice, etc)
 - Insufficient or weak evidence
 - Ignorance of underlying processes
 - Unmodeled variables
 - The world's just noisy it doesn't behave according to plan!

Reminder: Expectations

- We can define function f(X) of a random variable X
- The expected value of a function is its average value, weighted by the probability distribution over inputs
- Example: How long to get to the airport?
 - Length of driving time as a function of traffic: L(none) = 20, L(light) = 30, L(heavy) = 60
 - What is my expected driving time?
 - Notation: E_{P(T)}[L(T)]
 - Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}
 - E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)
 - E[L(T)] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35

Review: Expectations

Real valued functions of random variables:

$$f: X \to R$$

Expectation of a function of a random variable

$$E_{P(X)}[f(X)] = \sum_{x} f(x)P(x)$$

Example: Expected value of a fair die roll

X	Р	f
1	1/6	1
2	1/6	2
3	1/6	3
4	1/6	4
5	1/6	5
6	1/6	6

$$1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6}$$

= 3.5

Utilities

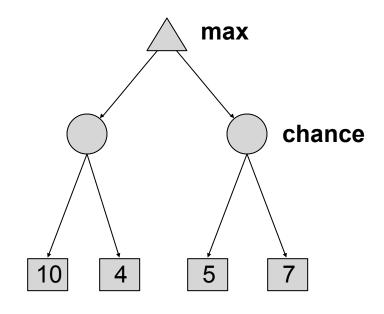
- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any set of preferences between outcomes can be summarized as a utility function (provided the preferences meet certain conditions)
- In general, we hard-wire utilities and let actions emerge
- More on utilities soon...

Expectimax Search Trees

- What if we don't know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly

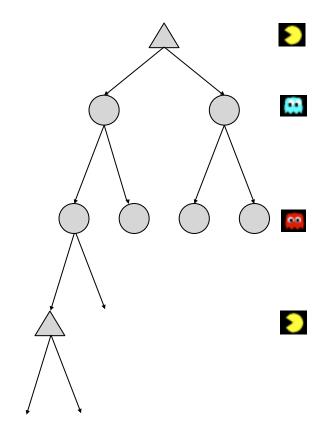
Can do expectimax search

- Chance nodes, like min nodes, except the outcome is uncertain
- Calculate expected utilities
- Max nodes as in minimax search
- Chance nodes take average (expectation) of value of children
- Later, we'll learn how to formalize the underlying problem as a Markov Decision Process

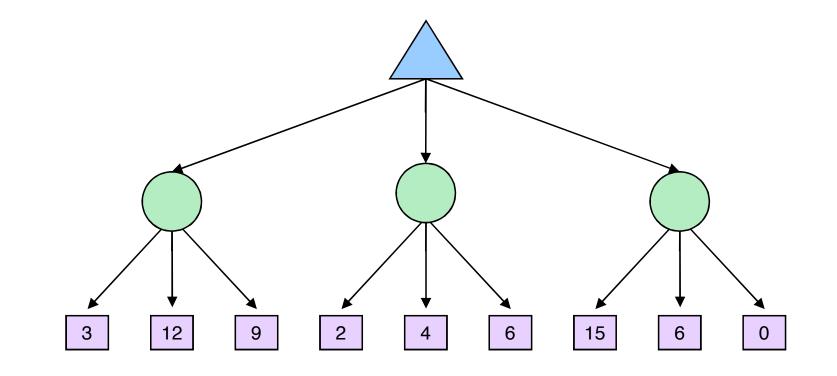


Expectimax Search

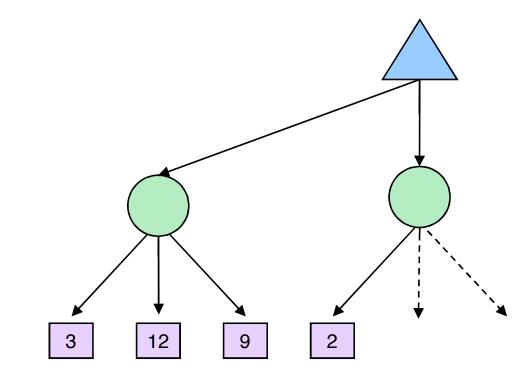
- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a node for every outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
 - For now, assume for any state we magically have a distribution to assign probabilities to opponent actions / environment outcomes



Expectimax Pruning



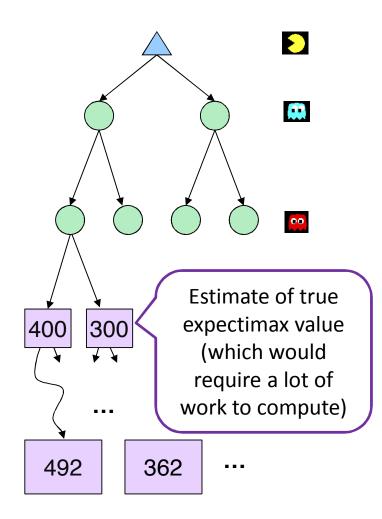
Expectimax Pruning



Not easy

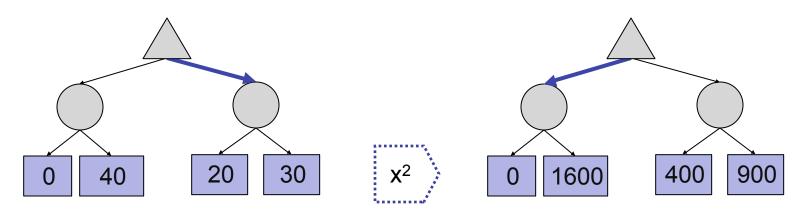
- exact: need bounds on possible values
- approximate: sample high-probability branches

Depth-limited Expectimax



Expectimax Evaluation

- Evaluation functions quickly return an estimate for a node's true value (which value, expectimax or minimax?)
- For minimax, evaluation function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
- For expectimax, we need *magnitudes* to be meaningful

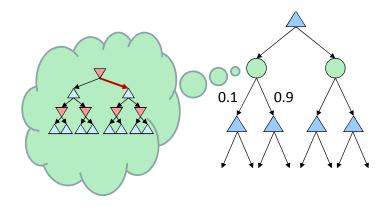


Expectimax for Pacman

- Notice that we've gotten away from thinking that the ghosts are trying to minimize pacman's score
- Instead, they are now a part of the environment
- Pacman has a belief (distribution) over how they will act
- Quiz: Can we see minimax as a special case of expectimax?

Quiz

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?



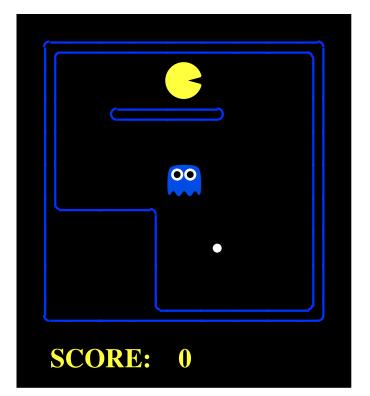
Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

Expectimax for Pacman

Results from playing 5 games

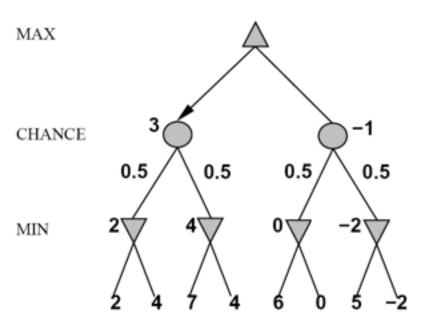
	Minimizing Ghost	Random Ghost
Minimax Pacman	Won 5/5 Avg. Score: 493	Won 5/5 Avg. Score: 483
Expectimax Pacman	Won 1/5 Avg. Score: -303	Won 5/5 Avg. Score: 503



Pacman does depth 4 search with an eval function that avoids trouble Minimizing ghost does depth 2 search with an eval function that seeks Pacman

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra player that moves after each agent
 - Chance nodes take expectations, otherwise like minimax



 $\mathbf{if} \ state \ \mathbf{is} \ \mathbf{a} \ \mathrm{MAX} \ \mathbf{node} \ \mathbf{then}$

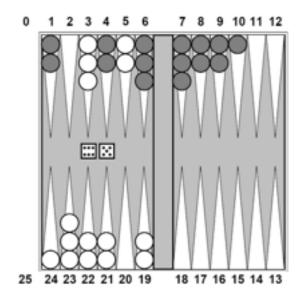
return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) if *state* is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) if *state* is a chance node then

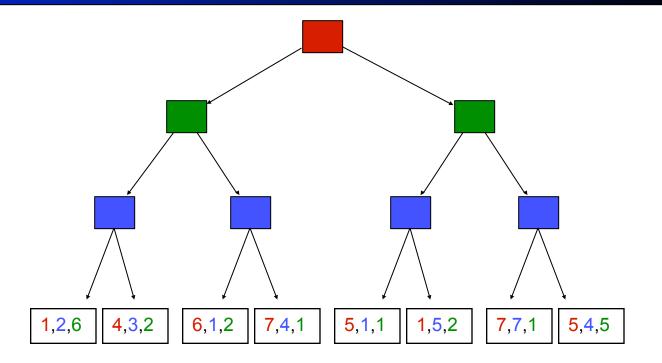
return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state)

Stochastic Two-Player

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 4 = 20 x (21 x 20)³ 1.2 x 10⁹
- As depth increases, probability of reaching a given node shrinks
 - So value of lookahead is diminished
 - So limiting depth is less damaging
 - But pruning is less possible...
- TDGammon uses depth-2 search + very good eval function + reinforcement learning: worldchampion level play



Multi-player Non-Zero-Sum Games



- Similar to minimax:
 - Utilities are now tuples
 - Each player maximizes their own entry at each node
 - Propagate (or back up) nodes from children
 - Can give rise to cooperation and competition dynamically...