
Can we do better?

 3 12 8 2 4 6 14 5 2

max

min

α-β Pruning Example

[3,3] [-∞,2] [2,2]

[3,3]

 3 12 8 2 14 5 2

max

min

α-β Pruning

§ General configuration
§ α is the best value that

MAX can get at any
choice point along the
current path

§ If n becomes worse than
α, MAX will avoid it, so
can stop considering n’s
other children

§ Define β similarly for MIN

Player

Opponent

Player

Opponent

α

n

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=8
β=3

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=2

α=3
β=+∞

α=3
β=14

α=3
β=5

α=3
β=1

Alpha-Beta Pseudocode

function MAX-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← −∞
for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s,α,β))
if v ≥ β then return v
α ← MAX(α,v)

return v

inputs: state, current game state
 α, value of best alternative for MAX on path to state
 β, value of best alternative for MIN on path to state

returns: a utility value

function MIN-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← +∞
for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s,α,β))
if v ≤ α then return v
β ← MIN(β,v)

return v

Alpha-Beta Pruning Example

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

2 3 5 9
5 62 17 40

Alpha-Beta Pruning Example

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

2 3 5
2 10

Alpha-Beta Pruning Properties

§ This pruning has no effect on final result at the root
!

§ Values of intermediate nodes might be wrong!
§ but, they are bounds
!

§ Good child ordering improves effectiveness of pruning
!

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ Full search of, e.g. chess, is still hopeless…

Resource Limits
§ Cannot search to leaves
§ Depth-limited search

§ Instead, search a limited depth of tree
§ Replace terminal utilities with an eval

function for non-terminal positions
§ e.g., α-β reaches about depth 8 –

decent chess program
§ Guarantee of optimal play is gone
§ Evaluation function matters

§ It works better when we have a
greater depth look ahead

? ? ? ?

-1 -2 4 9

4
min min

max
-2 4

Depth Matters

depth 2

Depth Matters

depth 10

Evaluation Functions
§ Function which scores non-terminals

§ Ideal function: returns the utility of the position
§ In practice: typically weighted linear sum of features:

§ e.g. f1(s) = (num white queens – num black queens), etc.

Evaluation for Pacman

What features would be good for Pacman?

Evaluation Function

Evaluation Function

Bad Evaluation Function

Why Pacman Starves

§ He knows his score will go up by eating the dot now
§ He knows his score will go up just as much by eating the

dot later on
§ There are no point-scoring opportunities after eating the

dot
§ Therefore, waiting seems just as good as eating

Why#Pacman#Starves#

!  A#danger#of#replanning#agents!#
!  He#knows#his#score#will#go#up#by#ea)ng#the#dot#now#(west,#east)#
!  He#knows#his#score#will#go#up#just#as#much#by#ea)ng#the#dot#later#(east,#west)#
!  There#are#no#point<scoring#opportuni)es#aver#ea)ng#the#dot#(within#the#horizon,#two#here)#
!  Therefore,#wai)ng#seems#just#as#good#as#ea)ng:#he#may#go#east,#then#back#west#in#the#next#

round#of#replanning!#

Which algorithm?

α-β, depth 4, simple eval fun

Which algorithm?

α-β, depth 4, better eval fun

Minimax Example

Suicidal agent

Expectimax

§ Uncertain outcomes are controlled by chance
not an adversary

§ Chance nodes are new types of nodes (instead
of Min nodes)

