CSE P 573: Artificial Intelligence
Spring 2014

A* Search

Ali Farhadi

Based on slides from Luke Zettelemoyer, Dan Klein, Peter Abbel

Multiple slides from Stuart Russell or Andrew Moore



Announcements

= Programming assignment 1 is on the
webpage
= Start early
* Due on Sunday April 20

= Any other Python/version issues?



Recap

= Rational Agents

* Problem state spaces and search
problems

= Uninformed search algorithms
» DFS
» BFS
= |terative Deepening
= UCS



Recap

= Heuristics
Goal

= Greedy Solutions
» Best First

= Can we do better? @
Goal



Example: Pancake Problem

Action: Flip over the
top n pancakes

| G

Cost: Number of pancakes flipped



Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.




Example: Pancake Problem

State space graph with costs as weights




General Tree Search

function I'REE-SEARCH] problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion zccording to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end
~ Action: fliptop ) /A
two Path to reach goal:
__Cost: 2 Flip four, flip three

/ Total cost: 7
l >

—




Uniform Cost Search

= Strategy: expand lowest
path cost

= The good: UCS is
complete and optimal!

= The bad:

= Explores options in every

“direction”
= No information about goal
location Goal



Uniform Cost

= Cost of 1 for each action
= Explores all of the states, but one

10



Search Heuristics

» Any estimate of how close a state is to a goal
» Designed for a particular search problem

» Examples: Manhattan distance, Euclidean distance

11



Example: Heuristic Functio

Straight—line distance
to Bucharest

Neamt Arad 366

N Bucharest 0

Cralova 160

Dobreta 242

Arad Etorie 161
Fagaras 178

11 Glurgiu 77
Hirsova 151

Iasi 226

Lugo) 244

Mehadia 241

Neamt 234

Oradea 380

85 Pitesti 08

Mehadia - Rimnicu Vilcea 193

Sibiu 253

75
120 Bucharest Timisoara 329
Dobreta —___"°" Urziceni
Vaslui 19

Giurgiu Zerind

h(x): assigns a
value to a state




Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

Jp— h(x)
el
I |
4:— 3=\
A
g 4 \/3\:




Best First Search (Greedy)

* Expand the node that seems closest...

Arad
380 193

366

253 0

= What can go wrong?

14



Best First (Greedy)

= Strategy: expand a node
that you think is closest
to a goal state
» Heuristic: estimate of

distance to nearest goal
for each state

= A common case:

= Best-first takes you
straight to the (wrong) goal

= Worst-case: like a
wrongly-guided DFS




Greedy Solution




Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost f(n)=g(n)
= Best-first orders by goal proximity, or forward cost f(n)=h(n)

= A" Search orders by the sum: f(n) = g(n) + h(n)




When should A* terminate?

= Should we stop when we enqueue a goal?

/ \
\/h”

= No: only stop when we dequeue a goal



Is A* Optimal?

N

OB .

= What went wrong?
» Actual bad goal cost < estimated good goal cost
* \WWe need estimates to be less than actual costs!



Admissible Heuristics

= A heuristic % is admissible (optimistic) if:
h(n) < h*(n)

where p*(n) Is the true cost to a nearest goal

= Examples:

4 —

= Coming up with admissible heuristics is most
of what's involved in using A* in practice.



Optimality of A*

Assume:
= G”is an optimal goal

= G is a sub-optimal goal

= his admissible

Claim:
= G* will exit fringe before G



Optimality of A*: Blocking

Notation:
= g(n) = cost to node n

= h(n) = estimated cost from n

ke
to the nearest goal (heuristic) G

= f(n)=g(n) + h(n) =
estimated total cost via n

= G*: alowest cost goal node

G: another goal node



Optimality of A*: Blocking

Proof:
= What could go wrong?

= We'd have to have to pop a
suboptimal goal G off the
fringe before G*

= This can’t happen:

= For all nodes n on the f(n) = g(n) + h(n)
pes’ path 0 3 9(n) + h(n) < g(G*)
" 1(n) <1(G) o G
= So, G* will be popped 9(G") < g(G)
before G 9(G) = f(G)

f(n) < f(G)



Properties of A*

Uniform-Cost

b

A*




UCS vs A* Contours

= Uniform-cost
expanded in all
directions

= A* expands mainly
toward the goal, but
does hedge its bets to
ensure optimality

Goal

@ Goal



Astar

26



= 9000 States

UCS



= 180 States

SCORE:

Astar

28



Creating Admissible Heuristics

= Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

= Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

* |[nadmissible heuristics are often useful too (why?)



Creating Heuristics

o

N

6

7

7 2 4
8-puzzle: . 6
8 3 I

Start State

= \What are the states?
= How many states?
= \What are the actions?

Goal State

= \What states can | reach from the start state?

= \What should the costs be?




8 Puzzle |

= Heuristic: Number of
tiles misplaced

| 2
3 4 5
6 7 S

= h(start) = 8

= |s it admissible?

7 2 -

5 6

S 3 I
Start State

Goal State

Average nodes expanded when
optimal path has length...

...4 steps | ...8 steps | ...12 steps
UCS [112 6,300 |3.6x10
TILES {13 39 227




8 Puzzle Il

= What if we had an easier
8-puzzle where any tile
could slide any direction
at any time, ignoring
other tiles?

= Total Manhattan distance
= Nh(start) =

- 5

6

7 e

7 2 -

S 6

8 3 I
Start State

Goal State

Average nodes expanded when
optimal path has length...

3+1+2+ ...
...4 steps | ...8 steps |...12 steps
=18
TILES 13 39 227
] I ?
Admissible” MANHATTAN | 12 25 73




8 Puzzle I

= How about using the actual cost as a
heuristic?
* Would it be admissible?
* \Would we save on nodes expanded?
= What's wrong with it?

= With A*: a trade-off between quality of
estimate and work per node!



Trivial Heuristics, Dominance

= Dominance: h, 2 h, if

exact
vn : hqa(n) > he(n) |
max(ha, hy)
= Heuristics form a semi-lattice: T~
= Max of admissible heuristics is admissible ha hb
h(n) = maxz(hq(n), hy(n)) |
h/(j
= Trivial heuristics ~eT0

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic



Which Search Strategy?




Which Search Strategy?




Which Search Strategy?




Which Search Strategy?




Which Search Strategy?




Tree Search: Extra Work!

* Failure to detect repeated states can cause
exponentially more work. \Why?

A o A e
! '

B = B® B®
! ' /\

¢ /= ce co cg co
f Y N N\



Graph Search

= |n BFS, for example, we shouldn’t bother
expanding some nodes (which, and why?)

d e P
N |

b/m h r q
| @ N
a h r f

N @@/\

p q f q C G

| PN |

q c G a
|



Graph Search

= |dea: never expand a state twice

= How to implement:

* Tree search + list of expanded states (closed list)
= Expand the search tree node-by-node, but...
» Before expanding a node, check to make sure its state is new

= Python trick: store the closed list as a set, not a list

= Can graph search wreck completeness? \Why/why not?

= How about optimality?



A* Graph Search Gone Wrong

State space graph Search tree

S (0+2)
/\

A (1+4) B (1+1)

l l

C (2+1) C (3+1)

l l

G (5+0) G (6+0)




Consistency

= Wait, how do we know parents have better f-values than
their successors?

g=10 / -

~ \.)l

.y

h=10

= Consistency for all edges (A,a,B):
= h(A)<c(A,a,B) + h(B)

= Proof that f(B) = f(A),
f(B) = g(B) + h(B) = g(A) + c(A,a,B) + h(B) 2 g(A) + h(AF f(A)



Optimality of A* Graph Search

Proof:

= Main idea: Show nodes are popped de \ -
with non-decreasing f-scores SN

= for n’ popped after n : R W
= f(n’) 2 f(n) N
= js this enough for optimality? R ZSRNS

dc

= Sketch: do
= assume: f(n’) =2 f(n), for all edges (n,a,n’) and all actions a

= s this true?
= proof: A" never expands nodes with the cost f(n)>C*

= proof by induction(1) always pop the lowest f-score from the
fringe, (2) all new nodes have larger (or equal) scores, (3) add
them to the fringe, (4) repeat!



Optimality

= [ree search:

= A* optimal if heuristic is admissible (and non-
negative)

» UCS is a special case (h = 0)

= Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

= Consistency implies admissibility

= |In general, natural admissible heuristics tend to
be consistent



Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* is optimal with admissible (and/or
consistent) heuristics

= Heuristic design is key: often use relaxed
problems



A* Applications

Pathing / routing problems
Resource planning problems
Robot motion planning
Language analysis

Machine translation

Speech recognition



Which Algorithm?




Which Algorithm?




Which Algorithm?




Which Algorithm?

= Uniform cost search (UCS):




Which Algorithm?

= A* Manhattan Heuristic:




Which Algorithm?

= Best First / Greedy, Manhattan Heuristic:




