CSE P 573

Artificial Intelligence
Spring 2014

Ali Farhadi
Problem Spaces and Search

slides from
Dan Klein, Stuart Russell, Andrew Moore, Dan Weld, Pieter Abbeel, Luke Zettelmoyer

Outline

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods (part review for some)
= Depth-First Search
= Breadth-First Search
= Uniform-Cost Search

» Heuristic Search Methods (new for all)
» Best First / Greedy Search

Review: Agents

JUSWUOJIAUT

An agent:

i /Agent h
e Perceives and acts
e Selects actions that maximize Sensors —

its utility function
e Has a goal
Environment:
Actuators _
* Input and output to the agent Actions
_ Y

Search -- the environment is:

fully observable, single agent, deterministic, static,
discrete

= Reflex agents:

= Choose action based
on current percept (and
maybe memory)

= Do not consider the
future consequences of
their actions

= Act on how the world IS

= Can a reflex agent
achieve goals?

* * *
* *
* * * * * * * *

* * * *

Goal Based Agents

= Goal-based agents:

Plan ahead
Ask “what if”

Decisions based on
(hypothesized)
consequences of
actions

Must have a model of
how the world evolves
In response to actions

Act on how the world
WOULD BE

* * *

*

*

* * * * * * * *

* * * *

Search thru a

Problem Space / State Space
* [nput:
» Set of states
» Successor Function [and costs - default to 1.0]
» Start state
= Goal state [test]

* Output:

» Path: start = a state satisfying goal test
» [May require shortest path]
» [Sometimes just need state passing test]

Example: Simplified Pac-Man

" |nput:
= A state space

= A successor function N 10

\
= A start state “E", 1.0

= A goal test

= Qutput:

Ex: Route Planning: Romania - Bucharest

= |nput:
= Set of states

» Operators [and costs]
» Start state

» Goal state (test)

= Qutput:

Example: N Queens

= |nput:
= Set of states

= Operators [and costs]
» Start state

» Goal state (test)

= Qutput

I Introduc

gm;«mgmms Algebraic Simplification
A “ advanced alqonthms wnh unparallel
N _ speed, scope, and scalability » [' l+ 1]

g2 (az ut; Z - [E'- u+1 e*] u(
o~ _L ~[E" -1 e®] u
* |nput: b 4] :
pu [)] - - [E’— (1+%) e““—e”’] u(s)
= Set of states

R
= —e2 [E' - (I + E) e 2 — 62’] v

» Operators [and costs]
» Start state

» Goal state (test)

= Qutput:

What is in State Space?

= A world state includes every details of the environment

= A search state includes only details needed for planning

Problem: Pathing Problem: Eat-all-dots
States: {x,y} locations States: {(x,y), dot booleans}
Actions: NSEW moves Actions: NSEW moves
Successor: update location Successor: update location

Goal: is (x,y) End? and dot boolean

Goal: dots all false?

= \World states:

State Space Sizes?

Pacman positions:
10x12 =120

Pacman facing:
up, down, left, right

Food Count: 30
Ghost positions: 12

State Space Sizes?

= How many?
= \World State:

120%(230)*(122)*4

= States for Pathing:
120

= States for eat-all-dots:

120%(230)

Quiz: Safe Passage

. e o o o @ o o

* *
Ce- -

" Problem: eat all dots while keeping the ghosts perma-scared
* What does the state space have to specify?

State Space Graphs

= State space graph:
= Each node is a state

= The successor function
IS represented by arcs

= Edges may be labeled
with costs !

= We can rarely build this
graph in memory (so we
don't)

~ /7 N/

@
-
.-
-

N\ S

!
.

*ﬂ\

/ N

Search Trees

“‘N”, 1.0 “‘E”, 1.0
/\

AT AT

= A search tree:
= Start state at the root node
= Children correspond to successors
= Nodes contain states, correspond to PLANS to those states
= Edges are labeled with actions and costs
= For most problems, we can never actually build the whole tree

Example: Tree Search

State Graph:

Ridiculously tiny search graph
for a tiny search problem

What is the search tree?

State Graphs vs. Search Trees

Each NODE in in the
search tree is an entire
PATH in the problem

graph.
S
-
d e p
We construct both b C e h r g
on demand — and | N AN
we construct as a a h r p q f
little as possible. N | N
p q f q C G
| PN |
q G a

States vs. Nodes

= Nodes in state space graphs are problem states
» Represent an abstracted state of the world
» Have successors, can be goal / non-goal, have multiple predecessors

= Nodes in search trees are plans

= Represent a plan (sequence of actions) which results in the node’s
state

» Have a problem state and one parent, a path length, a depth & a cost
» The same problem state may be achieved by multiple search tree

nodes Search Nodes

Parent

Problem States

Depth 5

Depth 6

Quiz: State Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

Important: Lots of repeated structure in the search tree!

Building Search Trees

o

- Rimnicu Vilcea
lllllllll

“Bucharest

SCraiova /.
lllllll

Sibiu @ @

= Search:
= Expand out possible plans
* Maintain a fringe of unexpanded plans
* Try to expand as few tree nodes as possible

General Tree Search

function T'REE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

™~

* Important ideas:
* Fringe Detailed pseudocode is

- Expansion in the book!
= Exploration strategy

= Main question: which fringe nodes to explore?

Search Methods

= Uninformed Search Methods (part review for some)
» Depth-First Search
» Breadth-First Search
» Uniform-Cost Search

= Heuristic Search Methods (new for all)
= Best First / Greedy Search

Review

Strategy: expand
deepest node first

Implementation:
Fringe is a LIFO
queue (a stack)

- Depth First Search

Review: Depth First Search

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,rf,c,a,G)

©)
@%\@ R @
I | /\L
@ @& @r|>qA
P

|
@
@ ©© °
@

Review: Breadth First Search

Strategy: expand
shallowest node
first

Implementation:
Fringe is a FIFO
queue

Review: Breadth First Search

Expansion order:

(S,d,e,p,b,c,e,n,r,q,a,a
,h,r.p,q.f,p,q.f,q,c,G)

” [
Search /QDN R @

- | @O ®o o«
a h r p q f
® SN N
N p q f q ¢ G
Ny |

q C G a
|
a

Search Algorithm Properties

= Complete? Guaranteed to find a solution if one exists?
= Optimal? Guaranteed to find the least cost path?

= Time complexity?

= Space complexity?

Variables:
n Number of states in the problem
b The maximum branching factor B

(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm

Complete

Optimal

Time

Space

DFS

Depth First
Search

No

No

Infinite

Infinite

= Infinite paths make DFS incomplete...

= How can we fix this?

= Check new nodes against path from S

* Infinite search spaces still a problem
= |f the left subtree has unbounded depth

1 node
b nodes
b2 nodes
m tiers <
b™ nodes
Algorithm Complete |Optimal |Time Space
DFS ¥ cang | Y if finite N O(b™) O(bm)

* Or graph search — next lecture.

BFS

Algorithm Complete |Optimal |Time Space
/ Path m
DFS VC\ilhec?king Y N O(b) O(bm)
BFS Y Y* O(b%) O(bY)
(1 node
_ b nodes
d tiers < 02 nodes
x bd nodes
b™ nodes

C

Comparisons

= When will BFS outperform DFS?

= When will DFS outperform BFS?

7t scwsvocsr oo SIS .

7% Search Strategies Demo

Iterative Deepening

lterative deepening uses DFS as a subroutine: b

1. Do a DFS which only searches for paths of

length 1 or less. / \\
2. If “17 failed, do a DFS which only searches paths / {
of length 2 or less. O

3. If “2" failed, do a DFS which only searches paths
of length 3 or less.

....and so on.
Algorithm Complete [Optimal [Time Space
oFS i, |y | N [oo O(brm
BFS Y Y* O(bd) O(b%)
ID Y Y* O(bd) O(bd)

Costs on Actions

3

2

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

Best-First Search

= Generalization of breadth-first search
* Priority queue of nodes to be explored
= Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty
Node = head(queue)
If goal?(node) then return node
Add children of node to queue

Priority Queue Refresher

= A priority queue is a data structure in which you can insert and
retrieve (key, value) pairs with the following operations:

pg.push(key, value) |inserts (key, value) into the queue.

Pg.pop() returns the key with the lowest value, and
removes it from the queue.

= You can decrease a key's priority by pushing it again

= Unlike a regular queue, insertions aren't constant time,
usually O(log n)

= We'll need priority queues for cost-sensitive search methods

Uniform Cost Search

Expand
cheapest
node first:

Fringe is a
priority
queue

Uniform Cost Search

Expansion order:
(S,p,d,b,e,a,rf,eG)

Cost (L) 6

contours

Uniform Cost Search

Algorithm Complete |Optimal |Time Space
DFS [wPah ~ Ty N O(bm) O(bm)
BFS Y Y* O(b9) O(bY)
UCS Y* Y O(bC*/g) O(bC*/a)

C*/e tiers <

Uniform Cost Issues

= Remember: explores
Increasing cost contours

* The good: UCS is
complete and optimal!

= The bad:

= Explores options in every

“direction”
= No information about goal
location Goal

Uniform Cost: Pac-Man

= Cost of 1 for each action
= Explores all of the states, but one

Search Heuristics

= Any estimate of how close a state is to a goal
» Designed for a particular search problem

= Examples: Manhattan distance, Euclidean distance

Heuristics

] Oradea

Zerind 151

75
Arad [®
. Siblu g9 Fagaras
118 = Wee——— =
80
L Timisoara . Rimnicu Vilcea
1
"1 Lugo) Pitest
70 -
M Mehadia 10
75 138
Dobreta [120
- Craiova

Bucharest

J Giurgiu

] lasi

Urziceni

92
] Vaslui
142
98
™) Hirsova
86
inl
Eforie

Straight—line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Glurgiu
Hirsova
Iasi

Lugo)
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

366
0
160
242
161
178
77
151
226
244
241
234
3R0
98
193
253
329
80
199
374

Best First / Greedy Search

Best first with f(n) = heuristic estimate of distance to goal

Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Arad [Fftorie 161
Fagaras 178
. Glurgiu 77
e] Vaslui Hirsova 151
|3I\| 226
Timisoara Lugo) 244
142 Mehadia 241
1 Lu Neamt 234
9o} Oradea 380
70 Pitesti 98
'] Hirsova ’
Mehadia Urziceni Rimnicu Vilcea 193
75 -Tilh“; _;23)
misoara 32¢
Dobreta \“1_2_2_‘_ Urziceni 80
Eforie Vaslui 199

M Giurgiu Zerind 374

Best First / Greedy Search

= Expand the node that seems closest...

Arad
Sibiu

253 0

= \WWhat can go wrong?

Best First / Greedy Search

= A common case:

= Best-first takes you straight
to the (wrong) goal

= Worst-case: like a badly-
guided DFS in the worst
case
= Can explore everything

= Can get stuck in loops if no
cycle checking

= Like DFS in completeness
(finite states w/ cycle
checking)

