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Outline 
§  Agents that Plan Ahead 

§  Search Problems 

§  Uninformed Search Methods (part review for some) 
§  Depth-First Search 
§  Breadth-First Search 
§  Uniform-Cost Search 

§  Heuristic Search Methods (new for all) 
§  Best First / Greedy Search 



Review: Agents 

Search -- the environment is: 
fully observable, single agent, deterministic, static, 
discrete 
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Reflex Agents 

§  Reflex agents: 
§  Choose action based 

on current percept (and 
maybe memory) 

§  Do not consider the 
future consequences of 
their actions 

§  Act on how the world IS 
§  Can a reflex agent 

achieve goals? 



Goal Based Agents 

§  Goal-based agents: 
§  Plan ahead 
§  Ask “what if” 
§  Decisions based on 

(hypothesized) 
consequences of 
actions 

§  Must have a model of 
how the world evolves 
in response to actions 

§  Act on how the world 
WOULD BE 



Search thru a  

§  Set of states 
§  Successor Function [and costs - default to 1.0] 
§  Start state 
§ Goal state [test] 

• Path: start ⇒ a state satisfying goal test 
•  [May require shortest path] 
•  [Sometimes just need state passing test] 

•  Input: 

• Output: 

Problem Space / State Space  



Example: Simplified Pac-Man 
§  Input: 

§  A state space 

§  A successor function 

§  A start state  

§  A goal test 

§  Output: 

“N”, 1.0 

“E”, 1.0 



Ex: Route Planning: Romania à Bucharest 

§  Input: 
§  Set of states 

§  Operators [and costs] 

§  Start state 

§  Goal state (test) 

§  Output: 



Example: N Queens 

§  Input: 
§  Set of states 

§ Operators [and costs] 

§  Start state 

§ Goal state (test) 

§  Output 

Q 

Q 

Q 

Q 



Algebraic Simplification 

§  Input: 
§  Set of states 

§  Operators [and costs] 

§  Start state 

§  Goal state (test) 
 

§ Output: 



What is in State Space? 

§  A world state includes every details of the environment 

What’s#in#a#State#Space?#

!  Problem:#Pathing#
!  States:#(x,y)#loca)on#
!  Ac)ons:#NSEW#
!  Successor:#update#loca)on#

only#
!  Goal#test:#is#(x,y)=END#

!  Problem:#EatJAllJDots#
!  States:#{(x,y),#dot#booleans}#
!  Ac)ons:#NSEW#
!  Successor:#update#loca)on#

and#possibly#a#dot#boolean#
!  Goal#test:#dots#all#false#

The#world#state#includes#every#last#detail#of#the#environment#

A#search#state#keeps#only#the#details#needed#for#planning#(abstrac)on)#

§  A search state includes only details needed for planning 
Problem: Pathing Problem: Eat-all-dots 

States: {x,y} locations 
Actions: NSEW moves 
Successor: update location 
Goal: is (x,y) End? 
 

States: {(x,y), dot booleans} 
Actions: NSEW moves 
Successor: update location 
and dot boolean 
Goal: dots all false? 
 



State Space Sizes? 

§  World states:  

§  Pacman positions: 
  10 x 12 = 120 

§  Pacman facing: 
  up, down, left, right 

§  Food Count: 30 
§  Ghost positions: 12 



State Space Sizes? 

§  How many? 
§  World State: 

§  States for Pathing: 

§  States for eat-all-dots: 

120*(230)*(122)*4 

120 

120*(230) 



Quiz:#Safe#Passage#

!  Problem:#eat#all#dots#while#keeping#the#ghosts#permaJscared#
!  What#does#the#state#space#have#to#specify?#

!  (agent#posi)on,#dot#booleans,#power#pellet#booleans,#remaining#scared#)me)#



State Space Graphs 

§  State space graph: 
§  Each node is a state 
§  The successor function 

is represented by arcs 
§  Edges may be labeled 

with costs 
§  We can rarely build this 

graph in memory (so we 
don’t) 

State#Space#Graphs#

!  State#space#graph:#A#mathema)cal#
representa)on#of#a#search#problem#
!  Nodes#are#(abstracted)#world#configura)ons#
!  Arcs#represent#successors#(ac)on#results)#
!  The#goal#test#is#a#set#of#goal#nodes#(maybe#only#one)#

!  In#a#search#graph,#each#state#occurs#only#once!#

!  We#can#rarely#build#this#full#graph#in#memory#
(it’s#too#big),#but#it’s#a#useful#idea#

#



Search Trees 

§  A search tree: 
§  Start state at the root node 
§  Children correspond to successors 
§  Nodes contain states, correspond to PLANS to those states 
§  Edges are labeled with actions and costs 
§  For most problems, we can never actually build the whole tree 

“E”, 1.0 “N”, 1.0 



Example: Tree Search 
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State Graph: 

What is the search tree? 

Ridiculously tiny search graph 
for a tiny search problem 



State Graphs vs. Search Trees 
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We construct both 
on demand – and 
we construct as 
little as possible. 

Each NODE in in the 
search tree is an entire 
PATH in the problem 
graph. 



States vs. Nodes 
§  Nodes in state space graphs are problem states 

§  Represent an abstracted state of the world 
§  Have successors, can be goal / non-goal, have multiple predecessors 

§  Nodes in search trees are plans 
§  Represent a plan (sequence of actions) which results in the node’s 

state 
§  Have a problem state and one parent, a path length, a depth & a cost 
§  The same problem state may be achieved by multiple search tree 

nodes 

Depth 5 

Depth 6 

Parent 

Node 

Search Nodes 
Problem States 

Action 



Quiz:#State#Graphs#vs.#Search#Trees#

S G 

b 

a 

Consider#this#4Jstate#graph:##

Important:#Lots#of#repeated#structure#in#the#search#tree!#

How#big#is#its#search#tree#(from#S)?#



Building Search Trees 

§  Search: 
§  Expand out possible plans 
§ Maintain a fringe of unexpanded plans 
§  Try to expand as few tree nodes as possible 



General Tree Search 

§  Important ideas: 
§  Fringe 
§  Expansion 
§  Exploration strategy 

§  Main question: which fringe nodes to explore? 

Detailed pseudocode is 
in the book! 



Search Methods 
 
§  Uninformed Search Methods (part review for some) 

§  Depth-First Search 
§  Breadth-First Search 
§  Uniform-Cost Search 

§  Heuristic Search Methods (new for all) 
§  Best First / Greedy Search 



Review: Depth First Search 
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Strategy: expand 
deepest node first 

Implementation: 
Fringe is a LIFO 
queue (a stack) 



Review: Depth First Search 
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Expansion ordering: 

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G) 
 



Review: Breadth First Search 

S 

G 

d 

b 

p q 

c 

e 

h 
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f 

r 

Strategy: expand 
shallowest node 
first 
Implementation: 
Fringe is a FIFO 
queue 



Review: Breadth First Search 
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Search 

Tiers 

Expansion order: 
(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G) 



Search Algorithm Properties 

§  Complete?  Guaranteed to find a solution if one exists? 
§  Optimal?    Guaranteed to find the least cost path? 
§  Time complexity? 
§  Space complexity? 
 

Variables: 

n Number of states in the problem 
b The maximum branching factor B 

(the maximum number of successors for a state) 
C* Cost of least cost solution 
d Depth of the shallowest solution 
m Max depth of the search tree 



DFS 

§  Infinite paths make DFS incomplete… 
§  How can we fix this? 
§  Check new nodes against path from S 

§  Infinite search spaces still a problem 
§  If the left subtree has unbounded depth 

Algorithm Complete Optimal Time Space 
DFS Depth First 

Search 
N N O(BLMAX) O(LMAX) 

START 

GOAL a 

b 

No No Infinite Infinite 



DFS 

Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking Y if finite N O(bm) O(bm) 

…
b 1 node 

b nodes 

b2 nodes 

bm nodes 

m tiers 

* Or graph search – next lecture. 



BFS 

§  When is BFS optimal? 

Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking 

BFS 

Y N O(bm) O(bm) 

Y Y* O(bd) O(bd) 

…
b 1 node 

b nodes 

b2 nodes 

bm nodes 

d tiers 

bd nodes 



Comparisons 

§  When will BFS outperform DFS? 

§  When will DFS outperform BFS? 





34 



Iterative Deepening 
Iterative deepening uses DFS as a subroutine: 
 

1.  Do a DFS which only searches for paths of 
length 1 or less.   

2.  If “1” failed, do a DFS which only searches paths 
of length 2 or less. 

3.  If “2” failed, do a DFS which only searches paths 
of length 3 or less. 
    ….and so on. 

Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking 

BFS 

ID 

Y N O(bm) O(bm) 

Y Y* O(bd) O(bd) 

Y Y* O(bd) O(bd) 

…
b 



Costs on Actions 

Notice that BFS finds the shortest path in terms of number of 
transitions.  It does not find the least-cost path. 
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Best-First Search 
§  Generalization of breadth-first search 
§  Priority queue of nodes to be explored 
§  Cost function f(n) applied to each node 

Add initial state to priority queue 
While queue not empty 
   Node = head(queue) 
       If goal?(node) then return node 

     Add children of node to queue 



Priority Queue Refresher 

pq.push(key, value) inserts (key, value) into the queue. 

pq.pop() returns the key with the lowest value, and 
removes it from the queue. 

§  You can decrease a key’s priority by pushing it again 

§  Unlike a regular queue, insertions aren’t constant time, 

usually O(log n) 
§  We’ll need priority queues for cost-sensitive search methods 

§  A priority queue is a data structure in which you can insert and 
retrieve (key, value) pairs with the following operations: 



Uniform Cost Search 
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Expand 
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node first: 
Fringe is a 
priority 
queue 



Uniform Cost Search 
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Uniform Cost Search 
Algorithm Complete Optimal Time Space 
DFS w/ Path 

Checking 

BFS 

UCS 

Y N O(bm) O(bm) 

Y Y* O(bd) O(bd) 

Y* Y O(bC*/ε) O(bC*/ε) 

…
b 

C*/ε tiers 



Uniform Cost Issues 
§  Remember: explores 

increasing cost contours 

§  The good: UCS is 
complete and optimal! 

§  The bad: 
§  Explores options in every 
“direction” 

§  No information about goal 
location Start Goal 

…

c ≤ 3 

c ≤  2 
c ≤ 1 



Uniform Cost: Pac-Man 

§  Cost of 1 for each action 
§  Explores all of the states, but one 



Search Heuristics 

§  Any estimate of how close a state is to a goal 
§  Designed for a particular search problem 

10 

5 
11.2 

§  Examples: Manhattan distance, Euclidean distance 



Heuristics 



Best First / Greedy Search 
Best first with f(n) = heuristic estimate of distance to goal 



Best First / Greedy Search 

§  Expand the node that seems closest… 

§  What can go wrong? 



Best First / Greedy Search 
§  A common case: 

§  Best-first takes you straight 
to the (wrong) goal 

§  Worst-case: like a badly-
guided DFS in the worst 
case 
§  Can explore everything 
§  Can get stuck in loops if no 

cycle checking 

§  Like DFS in completeness 
(finite states w/ cycle 
checking) 

…
b 

…
b 


