CSEP 573: Artificial Intelligence

Bayesian Networks: Inference

Ali Farhadi

Many slides over the course adapted from either Luke Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or Andrew Moore

Outline

- Bayesian Networks Inference
 - Exact Inference: Variable Elimination
 - Approximate Inference: Sampling

Remember Variable Elimination?

$$P(B, j, m) = \sum_{A,E} P(b, j, m, A, E) = \sum_{A,E} P(B)P(E)P(A \mid B, E)P(m \mid A)P(j \mid A)$$

$$\sum_{A,E} P(B)P(E)\sum_{A} P(A \mid B, E)P(m \mid A)P(j \mid A)$$

$$= \sum_{E} P(B)P(E)\sum_{A} P(m, j, A \mid B, E)$$

 $= \sum_{i=1}^{n} P(B)P(E)P(m,j \mid B,E) = P(B)\sum_{i=1}^{n} P(m,j,E \mid B)$

$$= P(B)P(m, j \mid B)$$

Approximate Inference

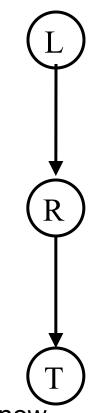
 Sampling is a hot topic in machine learning, and it's really simple

Basic idea:

- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P

Why sample?

- Learning: get samples from a distribution you don't know
- Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)



Sampling

- Sampling from given distribution
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample u into an outcome for the given distribution by having each outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability of the outcome

Example

С	P(C)
red	0.6
green	0.1
blue	0.3

$$\begin{split} 0 &\leq u < 0.6, \rightarrow C = red \\ 0.6 &\leq u < 0.7, \rightarrow C = green \\ 0.7 &\leq u < 1, \rightarrow C = blue \end{split}$$

- If random() returns u = 0.83, then our sample is C = blue
- E.g, after sampling 8 times:

Sampling in BN

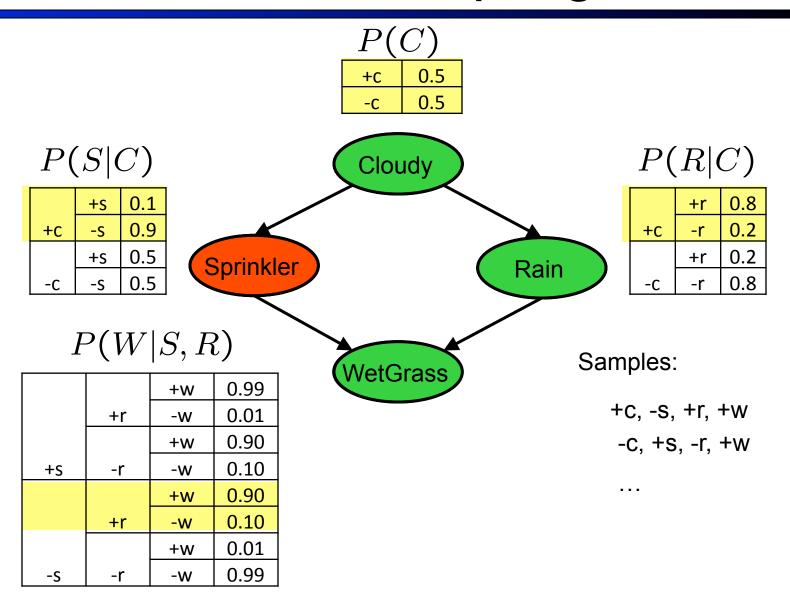
Prior Sampling

Rejection Sampling

Likelihood Weighting

Gibbs Sampling

Prior Sampling



Prior Sampling

- For i=1, 2, ..., n
 - Sample x_i from $P(X_i | Parents(X_i))$
- Return $(x_1, x_2, ..., x_n)$

Prior Sampling

This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

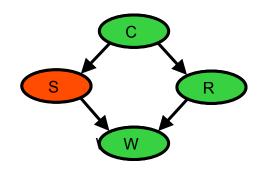
...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{PS}(x_1 ... x_n)$
- Then $\lim_{N \to \infty} \widehat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n)/N$ = $S_{PS}(x_1, \dots, x_n)$ = $P(x_1 \dots x_n)$

I.e., the sampling procedure is consistent

Example

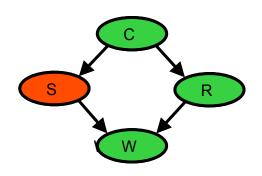
We'll get a bunch of samples from the BN:



- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
 - Fast: can use fewer samples if less time (what's the drawback?)

Rejection Sampling

- Let's say we want P(C)
 - No point keeping all samples around
 - Just tally counts of C as we go



- Let's say we want P(C|+s)
 - Same thing: tally C outcomes, but ignore (reject) samples which don't have S=+s
 - This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

Sampling Example

- There are 2 cups.
 - The first contains 1 penny and 1 quarter
 - The second contains 2 quarters

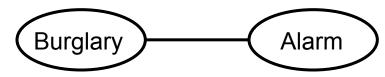
Say I pick a cup uniformly at random, then pick a coin randomly from that cup. It's a quarter (yes!). What is the probability that the other coin in that cup is also a quarter?

Rejection Sampling

- IN: evidence instantiation
- For i=1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return $(x_1, x_2, ..., x_n)$

- Problem with rejection sampling:
 - If evidence is unlikely, you reject a lot of samples
 - You don't exploit your evidence as you sample

 - Consider P(B|+a)



-b, -a

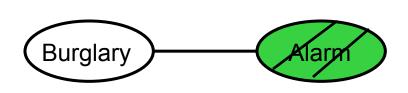
-b, -a

-b, -a

-b, -a

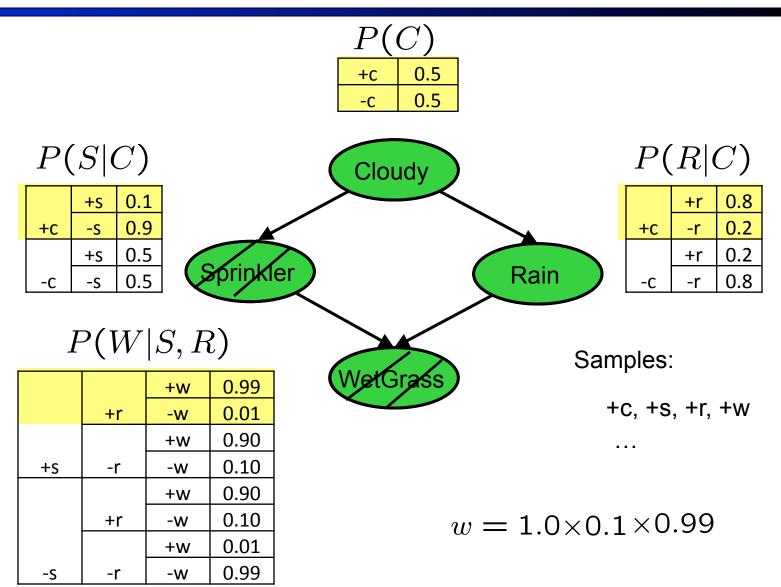
+b, +a

Idea: fix evidence variables and sample the rest



- -b +a
- -b, +a
- -b, +a
- -b, +a
- +b, +a

- Problem: sample distribution not consistent!
- Solution: weight by probability of evidence given parents

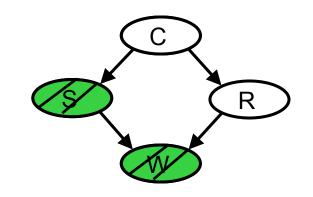


Sampling distribution if z sampled and e fixed evidence

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$



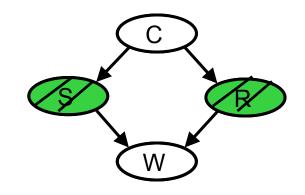
Together, weighted sampling distribution is consistent

$$S_{\text{WS}}(z, e) \cdot w(z, e) = \prod_{i=1} P(z_i | \text{Parents}(z_i)) \prod_{i=1} P(e_i | \text{Parents}(e_i))$$

= $P(\mathbf{z}, \mathbf{e})$

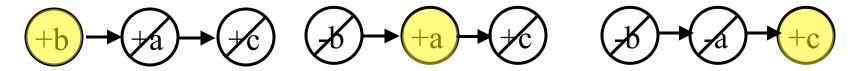
- IN: evidence instantiation
- w = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - $X_i = observation x_i for X_i$
 - Set $w = w * P(x_i | Parents(X_i))$
 - else
 - Sample x_i from P(X_i | Parents(X_i))
- return (x₁, x₂, ..., x_n), w

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W's value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence
- Likelihood weighting doesn't solve all our problems
 - Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable



Markov Chain Monte Carlo*

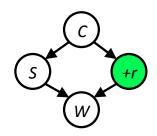
- Idea: instead of sampling from scratch, create samples that are each like the last one.
- Gibbs Sampling: resample one variable at a time, conditioned on the rest, but keep evidence fixed.



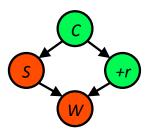
- Properties: Now samples are not independent (in fact they' re nearly identical), but sample averages are still consistent estimators!
- What's the point: both upstream and downstream variables condition on evidence.

Gibbs Sampling Example P(S|+r)

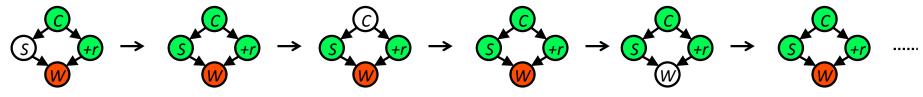
- Step 1: Fix evidence
 - R = +r



- Step 2: Initialize other variables
 - Randomly



- Steps 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | all other variables)



Sample from P(S|+c,-w,+r)

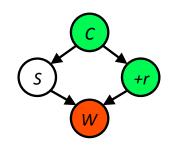
Sample from P(C|+s,-w,+r)

Sample from P(W|+s,+c,+r)

Sampling One Variable

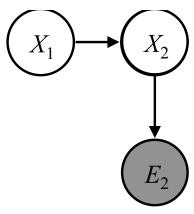
Sample from P(S | +c, +r, -w)

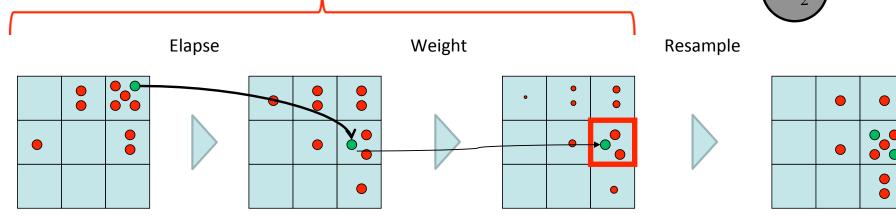
$$\begin{split} P(S|+c,+r,-w) &= \frac{P(S,+c,+r,-w)}{P(+c,+r,-w)} \\ &= \frac{P(S,+c,+r,-w)}{\sum_{s} P(s,+c,+r,-w)} \\ &= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{\sum_{s} P(+c)P(s|+c)P(+r|+c)P(-w|s,+r)} \\ &= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{P(+c)P(+r|+c)\sum_{s} P(s|+c)P(-w|S,+r)} \\ &= \frac{P(S|+c)P(-w|S,+r)}{\sum_{s} P(s|+c)P(-w|s,+r)} \end{split}$$



- Many things cancel out only CPTs with S remain!
- More generally: only CPTs that have resampled variable need to be considered, and joined together

How About Particle Filtering?





Particles:	
(3,3)	
(2,3)	
(3,3)	
(3,2)	
(3,3)	
(3,2)	
(1,2)	
(3,3)	
(3,3)	
(2,3)	

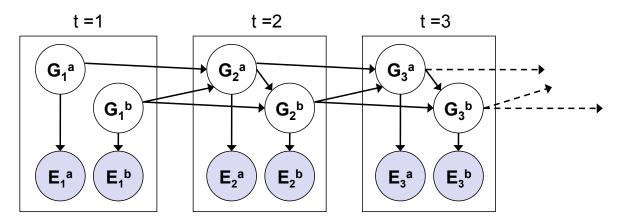
Particles:	
(3,2)	
(2,3)	
(3,2)	
(3,1)	
(3,3)	
(3,2)	
(1,3)	
(2,3)	
(3,2)	
(2,2)	

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

` (3 (2	w) Partic 3,2) 2,2)	les:
(2	3,2) 2,3) 3,3)	
(3	3,2) 1,3)	
(3	2,3) 3,2) 3,2)	

Dynamic Bayes Nets (DBNs)

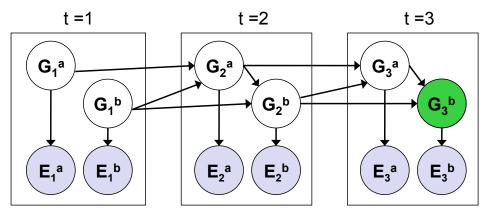
- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1



Discrete valued dynamic Bayes nets (with evidence on the bottom) are HMMs

Exact Inference in DBNs

- Variable elimination applies to dynamic Bayes nets
- Procedure: "unroll" the network for T time steps, then eliminate variables until $P(X_T | e_{1:T})$ is computed



 Online belief updates: Eliminate all variables from the previous time step; store factors for current time only

Particle Filtering in DBNs

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each <u>entire</u> sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood