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Outline

= Bayesian Networks Inference
= Exact Inference: Variable Elimination
= Approximate Inference: Sampling



Remember Variable Elimination?

P(B,j,m)= EP(b, j,m,AE)= @
EP(B)P(E)P(A |B,E)P(m| A)P(jlA) @

EP(B)P(E)E P(A|B,E)P(m| A)P(jlA) @ O
J

_ E P(B)P(E)E P(m,j,A|B,E)

= > P(B)P(E)P(m, j| B,E)=P(B)Y P(m, j,E|B)

- P(B)P(m, j| B)



Approximate Inference
O
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= Sampling is a hot topic in machine learning,
and it's really simple

= Basic idea:
= Draw N samples from a sampling distribution S @
= Compute an approximate posterior probability
= Show this converges to the true probability P

= Why sample?
= Learning: get samples from a distribution you don’'t know

» |nference: getting a sample is faster than computing the right
answer (e.g. with variable elimination)



Sampling

= Sampling from given distribution

= Step 1: Get sample u from uniform
distribution over [0, 1)
= E.g.random() in python

= Step 2: Convert this sample u into an
outcome for the given distribution by
having each outcome associated with
a sub-interval of [0,1) with sub-interval
size equal to probability of the
outcome

= Example
C P(C)
red 0.6
green 0.1
blue 0.3

0<u<0.6,—C=red
0.6 <u<0.7, = C = green
0.7<u<1,— C = blue

= |f random() returns u =0.83,
then our sample is C = blue

= E.g, after sampling 8 times:



Sampling in BN
Prior Sampling
Rejection Sampling
Likelihood Weighting

Gibbs Sampling



Prior Sampling

P(C)
+C 0.5
-C 0.5

P(S[C)
+s | 0.1
+c | -s [ 0.9
+s | 0.5
-c | -s [0.5
P(WIS, R)
+w | 0.99
+r -W 0.01
+w | 0.90
+S -r -W 0.10
+w | 0.90
+r -W 0.10
+w | 0.01
-S -r -W 0.99

P(R|C)

+r | 0.8

+c | -r |0.2

+r | 0.2

-c | -r |0.8
Samples:

+C, -S, +I, +W
-C, +S, I, +W




Prior Sampling

" Fori=1, 2, ..., n
= Sample x, from P(X, | Parents(X,))

= Return (X, X5, ..., X,)




Prior Sampling

= This process generates samples with probability:

n
Sps(zy...zn) = || P(x;|Parents(X;)) = P(z1...zn)
i=1

...i.e. the BN's joint probability

= | et the number of samples of an event be Npg(x1...zn)

* Then jim P(aq,...,an) = lim Npg(zy,...,zn)/N
N —o00 N —o00

= |.e., the sampling procedure is consistent



Example

We'll get a bunch of samples from the BN:

+C, -S, +r, +W
+C, +S, +r, +W
-C, tS, +r, -w
+C, -S, +r, +w

-C, -S, -, +wW

If we want to know P(W)

We have counts <+w:4, -w:1>

Normalize to get P(W) = <+w:0.8, -w:0.2>

This will get closer to the true distribution with more samples
Can estimate anything else, too

What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?

Fast: can use fewer samples if less time (what’ s the drawback?)



Rejection Sampling

= |Let's say we want P(C)
* No point keeping all samples around
= Just tally counts of C as we go

Let’ s say we want P(C| +s)

= Same thing: tally C outcomes, but
ignore (reject) samples which don’ t *C, -8, *, W

+C, +s, +r. +
have S=+s C, S, 7 TW
-C, +S, +I, -W

» This is called rejection sampling +G, -8, +r, +W
= |t is also consistent for conditional "G, S, YW
probabilities (i.e., correct in the
limit)



Sampling Example

= There are 2 cups.
* The first contains 1 penny and 1 quarter
* The second contains 2 quarters

= Say | pick a cup uniformly at random, then pick a
coin randomly from that cup. It's a quarter (yes!).
What is the probabillity that the other coin in that
cup is also a quarter?



Rejection Sampling

IN: evidence instantiation
Fori=1, 2, ..., n

= Sample x, from P(X. | Parents(X.))

= |f x, not consistent with evidence

= Reject: Return, and no sample is generated in this cycle

Return (x;, X, ..., X))
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Likelihood Weighting

= Problem with rejection sampling:
» |f evidence is unlikely, you reject a lot of samples
= You don't exploit your evidence as you sample b, -a
= Consider P(B|+a) -b, -a

-b, -a
Burglary @ -b, -a
+b, +a

= |dea: fix evidence variables and sample the rest

-b +a
-b, +a
-b, +a
= Problem: sample distribution not consistent! *b, +a

= Solution: weight by probability of evidence given parents



Likelihood Weighting

P(C)
+C 0.5
-C 0.5

P(S|C)
+s | 0.1
+c | -s [ 0.9
+s | 0.5
-c | -s [0.5
P(WIS, R)
+w | 0.99
+r -W 0.01
+w | 0.90
+S -r -W 0.10
+w | 0.90
+r -W 0.10
+w | 0.01
-S -r -W 0.99

P(R|C)

+r | 0.8

+c | -r |0.2

+r | 0.2

Samples:

+C, +S, +r, +W

w=1.0x0.1x%x0.99



Likelihood Weighting

= Sampling distribution if z sampled and e fixed evidence

[

Sws(z,e) = || P(z]|Parents(Z;))
i=1

= Now, samples have weights
m

w(z,e) = || P(e;|Parents(E;))
i=1

= Together, weighted salmpling distribution is cor;?%istent
Sws(z,€) - w(z,€) = | | P(z;|Parents(z;)) | | P(e;|Parents(e;))
i=1 i=1

= P(z,e)



Likelihood Weighting

IN: evidence instantiation
w=1.0
fori=1, 2, ..., n
= jf X, is an evidence variable
= X; = observation x, for X,
= Setw=w *P(x;, | Parents(X))
" else
= Sample x, from P(X. | Parents(X))

return (x;, Xy, ..., X,), W
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Likelihood Weighting

= Likelihood weighting is good
= We have taken evidence into account as
we generate the sample

= E.g. here, W's value will get picked
based on the evidence values of S, R

= More of our samples will reflect the state
of the world suggested by the evidence
= Likelihood weighting doesn’t solve
all our problems

» Evidence influences the choice of
downstream variables, but not upstream
ones (C isn't more likely to get a value
matching the evidence)

= \We would like to consider evidence
when we sample every variable




Markov Chain Monte Carlo*

* |dea: instead of sampling from scratch, create samples
that are each like the last one.

* Gibbs Sampling: resample one variable at a time,
conditioned on the rest, but keep evidence fixed.

O D ORI O NI Ca®

= Properties: Now samples are not independent (in fact
they’ re nearly identical), but sample averages are still

consistent estimators!

= What' s the point: both upstream and downstream
variables condition on evidence.



Gibbs Sampling Example
P(S|+r)

= Step 2: Initialize other variables
= Randomly

= Step 1: Fix evidence

= R=+r

= Steps 3: Repeat
= Choose a non-evidence variable X
= Resample X from P( X | all other variables)

e&m e&w e%w e&@

Sample from P(S|+ ¢, —w,+r)  Sample from P(C|+ s,—w,+r) Sample from P(W|+ s,+c,+7)
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Sampling One Variable

= Sample from P(S | +c, +r, -w)

P(S|+ b, —u) = e )
_ P(S,+c, 41, —w)
> P(s,+c,+r, —w)

_ P(+c)P(S|+c)P(+r| + ) P(—w|S, +7)
>, P(+¢)P(s| + ¢)P(+7| + c) P(—w|s, +7)

P(4+c)P(S| 4+ ¢)P(+r|+ ¢)P(—w|S, +1)
~ P(+c)P(+r|+¢) >, P(s| + ¢)P(—w|s, +7)
_ P(S|+c)P(—wl|S,+r)
>, P(s| 4+ ¢)P(—wls, +7)

= Many things cancel out — only CPTs with S remain!

= More generally: only CPTs that have resampled variable need to be considered, and
joined together
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How About Particle Filtering?

Elapse

o0 | ¢%

Weight

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

Resample
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(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)




Dynamic Bayes Nets (DBNs)

= We want to track multiple variables over time, using multiple sources of evidence
= |dea: Repeat a fixed Bayes net structure at each time

= Variables from time t can condition on those from t-1

t=1 t =2 t=3
s o G2 - -- -
L — _—] ,a"»
N sz ' G3b e ——— »

@& ®&E

= Discrete valued dynamic Bayes nets (with evidence on the bottom) are HMMs
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Exact Inference in DBNs

= Variable elimination applies to dynamic Bayes nets

= Procedure: “unroll” the network for T time steps, then eliminate variables until P(X;|e,.;)
is computed

= Online belief updates: Eliminate all variables from the previous time step; store factors
for current time only
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Particle Filtering in DBNs

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G,;?=(3,3) G,*=(5,3)

Elapse time: Sample a successor for each particle
= Example successor: G,2=(2,3) G,°=(6,3)

Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample

= Likelihood: P(E,® |G,?) * P(E,” | G,?)

Resample: Select prior samples (tuples of values) in proportion to their likelihood
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