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Bayesian Networks: Inference

Ali Farhadi

Many slides over the course adapted from either Luke
Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or Andrew
Moore



Outline

= Bayesian Networks Inference
= Exact Inference: Variable Elimination
= Approximate Inference: Sampling



Bayes Net
Representation

Burglary @



Bayes’ Net Semantics

Let’s formalize the semantics of a
Bayes’ net @ .

A set of nodes, one per variable X
A directed, acyclic graph

A conditional distribution for each node

* Acollection of distributions over X, one for
each combination of parents’ values P(X|Aq...

P(Xl|aq...an)

* CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities

4



Reachability (D-Separation)

= Question: Are Xand Y
conditionally independent
given evidence vars {Z}?

= Yes, if Xand Y “separated” by Z
» Look for active paths from Xto Y
= No active paths = independence!

= A path is active if each triple
IS active:

= Causal chain A— B — C where B
is unobserved (either direction)

= Common cause A < B — C where
B is unobserved

= Common effect (aka v-structure)
A — B <= C where B or one of its
descendents is observed
= All it takes to block a path is
a single inactive segment

Active Triples
(dependent)

€ §

Inactive Triples
(Independent)

O-@-O0
Slle
S



Bayes Net Joint Distribution

B | P(B) E | P(E)
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A | J | PUIA) 0 A | M |PM|A)
+a | 4 0.9 +a | +m 0.7 B : A P(AIB/E)
+a | 01 va | -m 03 +b | +e | +a 0.95
a | + | 005 a | +m | 0.1 tb|+e | 0.05
a | 4| o095 a | -m | 099 tb | e | +a 0.94

+b | -e -a 0.06

+e | +a 0.29

P(+b,—e,+a,—j,+m) =

+e -a 0.71

-e +a 0.001

P(+b)P(—e)P(+a|+ b,—e)P(—j| + a)P(+m|+ a) =

1 1 1 1
O (O |T | T

-e -a 0.999




Bayes Net Joint Distribution

B | P(B) E P(E)
+b | 0.001 +e | 0.002
b | 0.999 e | 0.998
Al J | PUlA) 0 A | M |PM|A)

B | E B.E
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a | 4 | 005 a | +m | 001 tb | +e | -a 0.0
a | 4| o095 a | -m | 099 tb | e | +a 0.94

+b | -e -a 0.06

+e | +a 0.29

P(—|—b, —e, +a, —7, -I-m) = ve|-al|l o7

b
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P(+b)P(—e)P(+a| + b, —e)P(—j| + a)P(+m| +a) = | © | < |+ | ooo1

b

0.001 x 0.998 x 0.94 x 0.1 x 0.7 e a] 0959



Probabilistic Inference

* Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities

= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(on time | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated



Inference

= |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(Q|E1 =e1,... B, = e)

= Most likely explanation:

argmax, P(Q =q|E1 =e;1 ...



Inference by Enumeration

= (General case:

= Evidence variables: E7...Ep =e€1...¢ X1, Xo, ... Xn
= Query* variable: Q |
= Hidden variables:  f, ... H, All variables

= We want: P(Qle1...ex)
= First, select the entries consistent with the evidence

= Second, sum out H to get joint of Query and evidence:

P(Q.hy.. heeq...
P(Q7€1°"€k) — hlzh \(Q 1 \;81 6@
X1, Xo. ... Xn

= Finally, normalize the remaining entries to conditionalize

= Obvious problems:
= Worst-case time complexity O(d")
= Space complexity O(d") to store the joint distribution



Inference in BN by Enumeration

= Given unlimited time, inference in BNs is easy ° e
= Reminder of inference by enumeration by example:

—ZP (B,e,a,+j,+m)

— ZP P(a|B,e)P(+j|a)P(+mla)

=P(B)P(+e)P(+a|B, +e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a| B, +e)P(+j| — a) P(+m| — a)
P(B)P(—e)P(+a|B,—e)P(+j| + a)P(+m|+a) + P(B)P(—e)P(—a|B, —e)P(+j| — a)P(+m| — a)
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Inference by Enumerataion

P(Antilock|observed variables) = 7
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Variable Elimination

= Why is inference by enumeration so slow?

* You join up the whole joint distribution before you
sum out the hidden variables

* You end up repeating a lot of work!

» |dea: interleave joining and marginalizing!
= Called "Variable Elimination”

= Still NP-hard, but usually much faster than inference
by enumeration

= \We'll need some new notation to define VE



Review

= Joint distribution: P(X,Y)
» Entries P(x,y) for all x, y

= Sums to 1

= Selected joint: P(x,Y)

= Aslice of the joint distribution

= Entries P(x,y) for fixed x, all y

= Sums to P(x)

P(T,W)

T W P
hot sun | 04
hot rain | 0.1

cold | sun | 0.2
cold | rain | 0.3
P(cold, W)
T W P
cold | sun | 0.2
cold | rain | 0.3




Review

= Family of conditionals: P(W|T)
P IY) T | W |P

= Multiple conditionals

= Entries P(x | y) forall x, y hot sun 08} P(W |hot)
" Sumsto Y] hot | rain | 0.2

cold | sun | 0.4

} P(W|cold)

A rain
LOIP(W‘COZCZ) 0.6

= Single conditional: P(Y | x)
= Entries P(y | x) for fixed x, all T W P
y cold | sun | 0.4

= Sums to 1

cold | rain | 0.6




Review

= Specified family: P(y | X)

= Entries P(y | x) for fixed vy,
but for all x hot

= Sums to ... who knows!

P(rain|T)
T W | P
rain | 0.2
cold | rain | 0.6

= In general, when we write P(Y, ... Yy | X4 ... Xy)
= |tis a “factor,” a multi-dimensional array

= |ts values are all P(y, ... Yy | X4 -+ Xy)

} P(rain|hot)
} P(rain|cold)

= Any assigned X or Y is a dimension missing (selected) from the array



Inference

* |[nference is expensive with enumeration

= \ariable elimination:

* Interleave joining and marginalization: Store
initial results and then join with the rest



Example: Traffic Domain

= Random
Variables
= R: Raining
= T: Traffic
= L: Late for class!

= First query: P(L)

P(l) = LLI’ L) P(t|r) P(r)

P(R)
+r | 0.1
-r 0.9
P(T|R)
+r +t 0.8
+r -t 0.2
-r +t | 0.1
-r -t 0.9
P(L|T)
+t +| 0.3
+t -1 0.7
-t + 0.1
-t -1 0.9




Variable Elimination Outline

= Maintain a set of tables called factors
= |nitial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t | 0.8 +t + | 0.3
r 0.9 +r -t |1 0.2 +t -| 0.7
-r +t | 0.1 -t + 0.1
-+ | -t |09 4+ | -1 |09
= Any known values are selected
= E.g.ifwe know [, = <4/, the initial factors are
P(R) P(T|R) P(44|T)
+r +t | 0.8
o mn s [ = R
-r -t |1 0.9

= VE: Alternately join factors and eliminate variables



= Combining factors:
= Just like a database join

Operation 1: Join Factors

First basic operation: joining factors

» Get all factors over the joining variable

= Build a new factor over the union of the variables involved

Example: Join on R

P(R) x P(T

+r

0.1

-r

0.9

= Computation for each entry: pointwise products

P(r,t) = P(r) - P(t|r)

vr,t .

R) ——> P(R,T)
+r | +t | 0.8 +r | +t | 0.08
+r -t |1 0.2 +r | -t | 0.02
-r | +t | 0.1 -r | +t | 0.09
-r -t |1 0.9 -r | -t | 0.81




Example: Multiple Joins

P(R)

+r | 0.1

@ tloo] JoinR PW&T)
. RyT

PUIR) o [alilom]
@) +r | +t |0.8 -r | +t10.09

+r| -t |0.2 r|-t]0.81 @
-r | +t |0.1
@ | -t]0.9

P(L|T) P(L|T)
+t | +1 |0.3 +t | +1 |0.3
+t | -1 (0.7 +t | -1 (0.7
-t |+ |0.1 -t |+ |0.1
-t | -1 |0.9 -t | -1 |0.9




Example: Multiple Joins

P(R,T)

+r

+t

0.08

+r

0.02

+t

0.09

0.81

P(L|T)

+t

+]

0.3

+t

0.7

+]

0.1

0.9

Join T

P(R,T,L)
+r | +t | +| | 0.024
+r | +t | -l 0.056
+r | -t | +| | 0.002
+r | -t -| 0.018
-r | +t | +H | 0.027
-or | +t | -l 0.063
-r | -t | 4+l | o0.081
-r | -t -| 0.729




Operation 2: Eliminate

= Second basic operation: marginalization
= Take a factor and sum out a variable

= Shrinks a factor to a smaller one

= A projection operation
= Example:

P(R,T)
w[+tfoos] SUM L P(T)

+r | -t | 0.02 > +t | 0.17

-r | +t | 0.09 -t | 0.83
-r | -t | 0.81




Multiple Elimination

P(R,T,L)
+r | +t | +l | 0.024
+r | +t | -l | 0.056
+r | -t | +l | 0.002
+r | -t | -l | 0.018
-r | +t | +l | 0.027
-r | +t | -l | 0.063
-r | -t | +l | 0081
-r | -t | -l | 0729

Sum

out R

<

Sum
P(T,L)  outT
+t | 4 [ 0.051 | —
+ | -l | 0.119
t | + | 0.083
t | - | 0.747

©

P(L)

+l

0.134

0.886




P(L) : Marginalizing Early!

P(R)

+r

0.1

-r

0.9

® P(T|R)

Join R

—

+r

+t [ 0.8

+r

-t |0.2

+t | 0.1

-
%

-t 10.9

+ 0.3

-l 10.7

+ [ 0.1

-l 10.9

Sum out R

P(R,T

+r | +t | 0.08

+r | -t | 0.02 ft | 0.17

r |+t 0.09 ‘t | 0.83

-r | -t | 0.81 @
RyT

P(L|T) P(L|T)

+t | 4 | 0.3 +t | +l [ 0.3 @

+t | -l [0.7 @ +t | -l 0.7

-t | + | 0.1 -t | 4 [0.1

-t | -l |0.9 -t | -l |0.9




Marginalizing Early (aka VE*)

P(T)

+t | 0.17

-t | 0.83
P(L|T)
+t + | 0.3
+t -1 0.7
-t + | 0.1
-t -1 1 0.9

>

:D + 10.134
-|

P(T, L)
+t | + | 0.051
#t | -l | 0119
t | + | 0.083
t | -1 | 0.747

Join T @ Sumout T @

P(L)

0.886

*VE is variable elimination



Traffic Domain
() P(L) =7

G " Inference by Enumeration = Variable Elimination

=" P(LIHP(r) P(Hr) =) P(L|t)Y  P(r)P(t|r)
0 t r | Y ) t r \ Y )
Joinonr Joinonr
L ] L ]
T |
Joinont Eliminate r
| J
Eliminate r Join !m t
[ | J
|
Eliminate t Eliminate t
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P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+l

0.3

+t

0.7

+l

0.1

0.9

Marginalizing Early

Join R

—>

P(R,T)

+r

+t

0.08

+r

-t

0.02

-r

+t

0.09

-r

-t

0.81

P(L|T)

0.3

0.7

0.1

0.9

Sum out R

—>

P(T)

+t | 0.17

-t | 0.83

P(L|T)

+t | + (0.3

+t | -l [0.7

+ (0.1

-1 10.9

JoinT

—>

Sumout T

Qo

P(T, L)

—>

+l

0.051

0.119

+l

0.083

0.747

28
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P(L)

+|

0.134

0.866




Evidence

= [f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)

+r 0.1 +r +t | 0.8 +t +| 0.3

-r 0.9 +r -t | 0.2 +t -| 0.7
-r +t | 0.1 -t + 0.1
-r -t | 0.9 -t -l 0.9

= Computing P(L| ~+ ) , the initial factors become:
P(+r) P(T|+r)  P(LIT)
+r +r +1

0.1 0.8 +t +| 0.3
+r -t | 0.2 +t -| 0.7

-t +| 0.1

-t -| 0.9

= We eliminate all vars other than query + evidence



Evidence ||

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we'd end up with:

P(+r,L) Normalize P(L| 4+ r)
+r | +l | 0.026 + | 0.26
vr | 1 | 0.074 —> 1074

= To get our answer, just normalize this!

= That’ s it!



General Variable Elimination

Query: P(Q|E1 =-e€1,...E, =er)

Start with initial factors:
» Local CPTs (but instantiated by evidence)

While there are still hidden variables (not Q or
evidence):

= Pick a hidden variable H

= Join all factors mentioning H

» Eliminate (sum out) H

Join all remaining factors and normalize



Variable Elimination Bayes Rule

Start / Select

P(B)

B

P

+b

0.1

-b

0.9

®
®

P(A|B)—P(a|B)

A

P

+a

0.8

-d

072

+a

0.1

T

079

Joinon B

Normalize

P(a, B)
A B P
+a | +b | 0.08
+a | -b | 0.09

+a | +b | 8/17

+a | -b | 9/17




Example

Query:  P(Blj,m)

P(B) P(E) P(A|B,E) P@lA)  P(m|A)
Choose A

P(A|B, FE)

P(jlA) X > P(j,m,AlB,E) |Y > P(j,m|B,E)

P(m|A)

P(B)

P(E) P(j,m|B, E)




Example

P(B) P(E) P(j,m|B, E)
Choose E
P(E) :x > P(j,m, E|B) jz > P(j,m|B)
P(j,m|B,E)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X > P(j,m,B) |Normalize > P(B|j,m)



Variable Elimination

P(B,j,m)= EP(b, j,m,AE)= @
EP(B)P(E)P(A |B,E)P(m| A)P(jlA) @

EP(B)P(E)E P(A|B,E)P(m| A)P(jlA) @ O
J

_ E P(B)P(E)E P(m,j,A|B,E)

= > P(B)P(E)P(m, j| B,E)=P(B)Y P(m, j,E|B)

- P(B)P(m, j| B)



Another Example

Query: P(X3|Y: = y1,Ys = y2, Y3 = y3)

Start by inserting evidence, which gives the following initial factors:

p(2)p(X1|2)p(X2| Z)p(X3|Z)p(y1| X1)p(y2| X2)p(ys| X3)

Eliminate X1, this introduces the factor fi(Z,y1) = ., p(z1/Z)p(y1]z1), and
we are left with:

P(2) [1(Z,y1)p(X2|Z)p(X3]| Z)p(ya| X2)p(y3| X3)

Eliminate X3, this introduces the factor f2(Z,y2) = >_,. p(2|2)p(y2|z2), and
we are left with:

P(Z)f1(Z,y1) f2(Z, y2)p(X3]| Z2)p(ys]| X3)

Eliminate Z, this introduces the factor f3(yi,y2, X3) = >, p(2) fi(2,y1) f2(2, y2)p(X3|2),
and we are left:

p(y3|X3), f3(y1,y2, X3)

No hidden variables left. Join the remaining factors to get:

Ja(y1,y2,y3, X3) = P(y3|X3) fa(y1, y2, X3).

Normalizing over X3 gives P(X3|y1,y2,ys).

Computational complexity critically
depends on the largest factor being
generated in this process. Size of factc
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as
they all only have one variable (Z, Z,
and X; respectively).
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Variable Elimination Ordering

= For the query P(X,|y,,...,y,)) work through the following two different orderings
as done in previous slide: Z, X, ..., X, ; and X,, ..., X, ;, Z. What is the size of the
maximum factor generated for each of the orderings?

= Answer: 2" versus 22 (assuming binary)

® |n general: the ordering can greatly affect efficiency.
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VE: Computational and Space
Complexity

= The computational and space complexity of variable elimination is
determined by the largest factor

= The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

= Does there always exist an ordering that only results in small factors?
= No!
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Exact Inference: Variable Elimination

= Remaining Issues:
= Complexity: exponential in tree width (size of the
largest factor created)

= Best elimination ordering”? NP-hard problem

= What you need to know:
= Should be able to run it on small examples, understand
the factor creation / reduction flow

= Better than enumeration: saves time by marginalizing
variables as soon as possible rather than at the end

= \We have seen a special case of VE already
* HMM Forward Inference



Variable Elimination

Interleave joining and marginalizing

dk entries computed for a factor over k
variables with domain sizes d

Ordering of elimination of hidden variables
can affect size of factors generated

Worst case: running time exponential in the

size of the Bayes’ net
40



