CSEP 573: Artificial Intelligence

Bayesian Networks: Independence

Ali Farhadi

Many slides over the course adapted from either Luke Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or Andrew Moore

Outline

- Probabilistic models (and inference)
 - Bayesian Networks (BNs)
 - Independence in BNs
 - Inference in BNs

Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or
 - unassigned (unobserved)
- Arcs: interactions
 - Indicate "direct influence"
 between variables
 - Formally: encode conditional independence (more later)

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities

Bayes Net Probabilities

- Bayes nets compactly represent joint distributions (instead of big joint table)
 - A joint distribution using chain rule

$$P(x_1...x_n) = \prod_i P(x_i \mid parents(x_i))$$

{Cavity, Toothache, Catch}
 P(Cavity, Toothache, ~Catch) ?

P(Cavity, Toothache, ~Catch) = P(cavity)P(toothache|cavity) P(~catch|cavity)

Example: Alarm Network

Mary

Α	J	P(J A)
+a	+j	0.9
+a	¬j	0.1
¬а	+j	0.05
¬a	¬j	0.95

calls			calls
	Α	M	P(M A)
	+a	+m	0.7
	+a	¬m	0.3
	¬a	+m	0.01
	¬a	¬m	0.99

J 3133	$\neg a$	+m	0.01					
	¬a	¬m	0.99					
P(+b, -e, +a, -j, +m) =								
P(+b)P(-e)P(+a +b,-e)P(-j +a)P(+m +a) =								
$0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$								

John

Ш	A	P(A B,E)
+e	+a	0.95
+e	¬а	0.05
¬е	+a	0.94
¬е	¬а	0.06
+e	+a	0.29
+e	га	0.71
e r	+a	0.001
¬е	¬a	0.999
	+ e + e + e + e	+e +a +e ¬a ¬e +a ¬e ¬a +e +a +e ¬a -e +a -e +a

Size of a Bayes Net

How big is a joint distribution over N Boolean variables?

 2^N

How big is an N-node net if nodes have up to k parents?

$$O(N * 2^{k+1})$$

Both give you the power to calculate

$$P(X_1, X_2, \dots X_n)$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Independence in a BN

Conditional independence assumptions directly from simplifications in chain rule:

• Additional implied conditional independence assumptions?

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

Causal Chains

This configuration is a "causal chain"

X: Low pressure

Y: Rain

Z: Traffic

- Are X and Z independent?
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Causal Chains

This configuration is a "causal chain"

Z: Traffic

Y: Rain

X: Low pressure

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Is X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y) \qquad \text{Yes!}$$

Evidence along the chain "blocks" the influence

Common Parent

- Another basic configuration: two effects of the same parent
 - Are X and Z independent?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$
 Y: Project due X: Newsgroup busy
$$= P(z|y)$$
 Z: Lab full

Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation?
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

X: Raining

Z: Ballgame

Y: Traffic

The General Case

 Any complex example can be analyzed using these three canonical cases

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars {Z}?
 - Yes, if X and Y "separated" by Z
 - Look for active paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A ← B → C where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Active Triples (dependent)

Inactive Triples (Independent)

D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

$$X_i \perp \!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Example: Independent?

Example: Independent?

$$L \perp \!\!\! \perp T' | T$$
 Yes

$$L \! \perp \! \! \perp \! \! B | T$$

$$L \perp \!\!\! \perp B | T'$$

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Example

Variables:

- R: Raining
- T: Traffic
- D: Roof drips
- S: I'm sad
- Questions:

Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution