CSEP 573: Artificial
Intelligence

Bayesian Networks:
Independence

All Farhadi

Many slides over the course adapted from either Luke
Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or
Andrew Moore



Outline

* Probabilistic models (and inference)
* |Independence in BNs
* Inference in BNs



Notation

* Nodes: variables (with

domains)
— Can be assigned (observed) or

— unassigned (unobserved)

 Arcs: interactions - @
. . _ , Toothache
— Indicate “direct influence

between variables
— Formally: encode conditional

independence (more later)
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Bayes’ Net Semantics

= [et’'s formalize the semantics of a
Bayes’ net @ ne @

= A set of nodes, one per variable X

= Adirected, acyclic graph

= A conditional distribution for each node :%
= A collection of distributions over X, one for
each combination of parents’ values P(X|Aq1...Ap)
P(Xlal « o an)

= CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities



Bayes Net Probabillities

* Bayes nets compactly represent joint
distributions (instead of big joint table)

— A joint distribution using chain rule

P(x,..x )= HP(xl. | parents(x,))

e {Cavity, Toothache, Catch}

P(Cavity, Toothache, ~Catch) ?
P(Cavity, Toothache, ~Catch) =

P(cavity)P(toothache | cavity)
P(~catch|cavity) @



Example: Alarm Network
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Size of a Bayes Net

= How big is a joint distribution over N = Both give you the power to calculate

Boolean variables?
N P(X1,X5,...Xn)

BNs: Huge space savings!

= How bigis an N-node net if nodes
have up to k parents?

O(N * 2k+1)

Also easier to elicit local CPTs

Also faster to answer queries (coming)



Bayes Nets: Assumptions

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(xz;lzy - x;_1) = P(x;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= They can be read off the graph

" |mportant for modeling: understand assumptions made
when choosing a Bayes net graph



Independence in a BN

OROaOR0

= Conditional independence assumptions directly from simplifications in chain rule:

= Additional implied conditional independence assumptions?



Independence in a BN

= Important question about a BN:

* Are two nodes independent given certain evidence?

* |f yes, can prove using algebra (tedious in general)
* |f no, can prove with a counter example

= Example:



Causal Chains

X: Low pressure
Y: Rain
Z: Traffic

= This configuration is a “causal chain”

P(,y,2) = P(z) P(ylz) P(z]y)

n i ) = One example set of CPTs for which X is not
Are X and Z independent: independent of Z is sufficient to show this

independence is not guaranteed.

= Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no
traffic

®* |n numbers:

P(+y [ +x)=1,P(-y | -x) =1,
Pl(+z | +y)=1,P(-z|-y)=1



Causal Chains

» This configuration is a “causal chain”

X: Low pressure

O)—(¥)—(2) Y: Rain

Z: Traffic
P(z,y,2) = P(z)P(y|z)P(z|y)

» |s X independent of Z given Y?

P(x,y,z)  P(z)P(y|lz)P(z|y)

P(zlz,y) = P(z.1) — P(z)P(y|x)

= P(z|y) Yes!

» Evidence along the chain “blocks” the influence



Common Parent

= Another basic configuration: two
effects of the same parent
= Are X and Z independent?

= Are X and Z independent given Y? @ @

P(LL‘, Y, z) _ P(’y)P(.’II|’y)P(z|y) Y: Project due

P(zlz,y) = o
P(fL'a y) P(y)P(’Ij|y) busyeWSgl’oup
= P(z Z: Lab full
(z]y) Vos!

» Observing the cause blocks influence between effects.



Common Effect

= Last configuration: two causes of
one effect (v-structures)

= Are X and Z independent?

* Yes: the ballgame and the rain cause

traffic, but they are not correlated @
= Still need to prove they must be (try it!)

* Are X and Z independent given Y?

= No: seeing traffic puts the rain and the X: Raining
ballgame in competition as explanation? Z: Ballgame
» This is backwards from the other cases Y: Traffic

= Observing an effect activates influence
between possible causes.



The General Case

= Any complex example can be analyzed
using these three canonical cases

= General question: in a given BN, are two
variables independent (given evidence)?

= Solution: analyze the graph



Reachabillity

= Recipe: shade evidence nodes

= Attempt 1: if two nodes are
connected by an undirected path

not blocked by a shaded node,
they are conditionally independent @ @

= Almost works, but not quite
= \Where does it break? Q e
= Answer: the v-structure at T
doesn’t count as a link in a path
unless “active”



Reachability (D-Separation)

= Question: Are Xand Y
conditionally independent
given evidence vars {Z}?

= Yes, if Xand Y “separated” by Z
» Look for active paths from Xto Y
= No active paths = independence!

= A path is active if each triple
IS active:

= Causal chain A— B — C where B
is unobserved (either direction)

= Common cause A < B — C where
B is unobserved

= Common effect (aka v-structure)
A — B <= C where B or one of its
descendents is observed
= All it takes to block a path is
a single inactive segment

Active Triples
(dependent)

€ §

Inactive Triples
(Independent)
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D-Separation

= query:  X; 1L Xi{ Xgyyooo, Xi, b ?

= Check all (undirected!) paths between X; and X

= |f one or more active, then independence not guaranteed

Xi N X H{ Xy ooy X, }

= Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

X; U Xi{ Xk, Xk, }
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Example: Independent?

R1 B Yes e
RJJ_B]T

R B|T’ (1)

l
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Example: Independent?

LIT\T Yes
LUl B Yes
L1 B|T
L1 B|T’
LI B|T,R Yes



Example

= Variables:
= R: Raining
= T: Traffic
» D: Roof drips
= S: I'm sad
= Questions:

R Yes
R, S




Topology Limits Distributions

Given some graph topology
G, only certain joint
distributions can be encoded

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the
set of distributions, but has
several costs

Full conditioning can encode
any distribution

®
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Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can
be deduced from BN graph structure

= D-separation gives precise conditional
iIndependence guarantees from graph alone

= A Bayes’ net’s joint distribution may have further
(conditional) independence that is not detectable
until you inspect its specific distribution



