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Outline 
 

§  Probabilistic sequence models (and inference) 
§  Probability and Uncertainty – Preview 
§  Markov Chains 
§  Hidden Markov Models 
§  Exact Inference 
§  Particle Filters 
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Example 
§  A robot move in a discrete grid 

§  May fail to move in the desired direction with some probability 
§  Observation from noisy sensor at each time 

§  Is a function of robot position 
§  Goal: Find the robot position (probability that a robot is at 

a specific position) 
§  Cannot always compute this probability exactly  
è Approximation methods  

Here: Approximate a distribution by sampling  
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Hidden Markov Model 
§  State Space Model 

§ Hidden states: Modeled as a Markov Process  
P(x0), P(xk | xk-1) 
§ Observations: ek 

P(ek | xk) 

x0 

y0 

x1 

y1 

xn 

yn 

P(e0|x0) 

P(x1|x0) 

… 

Position of the robot 

Observed position from 
the sensor 



Exact Solution: 
 Forward Algorithm 

§  Filtering is the inference process of finding a distribution 
over XT given e1 through eT : P( XT | e1:t ) 

§  We first compute P( X1 | e1 ): 
§  For each t from 2 to T, we have P( Xt-1 | e1:t-1 )  
§  Elapse time: compute P( Xt | e1:t-1 ) 

§  Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t ) 



Approximate Inference: 
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§  Sometimes |X| is too big for exact inference 
§  |X| may be too big to even store B(X) 
§  E.g. when X is continuous 
§  |X|2 may be too big to do updates 

 

§  Solution: approximate inference by sampling 
§  How robot localization works in practice 
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Why Sampling?  

§  Goal: Approximate the 
original distribution:  

§  Approximate with Gaussian 
distribution 

§  Draw samples from a 
distribution close enough to 
the original distribution 

§  Here: A general framework 
for a sampling method  
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Approximate Solution: 
Perfect Sampling 

)|( :0:0 nn yxp

Assume we can 
sample from the 
original distribution Particle 1 

Particle N 
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Number of samples that match 
with query N

yxP nn
1)|( :0:0 =

Converges to the exact value 
for large N 

Robot path till time n 



Approximate Inference:  
Particle Filtering 

§  Solution: approximate inference 
§  Track samples of X, not all values 
§  Samples are called particles 
§  Time per step is linear in the number of samples 
§  But: number needed may be large 
§  In memory: list of particles, not states 

§  How robot localization works in practice 
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Representation: Particles 
§  Our representation of P(X) is now 

a list of N particles (samples) 
§  Generally, N << |X| 
§  Storing map from X to counts 

would defeat the point 

§  P(x) approximated by number of 
particles with value x 
§  So, many x will have P(x) = 0!  
§  More particles, more accuracy 

§  For now, all particles have a 
weight of 1 

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (2,1) 
    (3,3) 
    (3,3) 
    (2,1) 



Particle Filtering: Elapse Time 
§  Each particle is moved by sampling 

its next position from the transition 
model 

§  This is like prior sampling – samples’ 
frequencies reflect the transition probs 

§  Here, most samples move clockwise, but 
some move in another direction or stay in 
place 

§  This captures the passage of time 
§  If we have enough samples, close to the 

exact values before and after (consistent) 



Particle Filtering: Observe 
§  How handle noisy observations? 

§  Suppose sensor gives red reading? 



Particle Filtering: Observe 
Slightly trickier: 

§  We don’t sample the observation, we fix it 
§  Instead: downweight samples based on the 

evidence (form of likelihood weighting) 

§  Note: as before, probabilities don’t sum to one, 
since most have been downweighted               
(in fact they sum to an approximation of P(e)) 



Particle Filtering: Resample 
§  Rather than tracking 

weighted samples, we 
resample 

§  N times, we choose from 
our weighted sample 
distribution (i.e. draw with 
replacement) 

§  This is equivalent to 
renormalizing the 
distribution 

§  Now the update is 
complete for this time 
step, continue with the 
next one 

Old Particles: 
    (3,3) w=0.1 
    (2,1) w=0.9 
    (2,1) w=0.9   
    (3,1) w=0.4 
    (3,2) w=0.3 
    (2,2) w=0.4 
    (1,1) w=0.4 
    (3,1) w=0.4 
    (2,1) w=0.9 
    (3,2) w=0.3 

New Particles: 
    (2,1) w=1 
    (2,1) w=1 
    (2,1) w=1   
    (3,2) w=1 
    (2,2) w=1 
    (2,1) w=1 
    (1,1) w=1 
    (3,1) w=1 
    (2,1) w=1 
    (1,1) w=1 



Particle Filtering Summary 
§  Represent current belief P(X | evidence to date)             

as set of n samples (actual assignments X=x) 
§  For each new observation e: 

1. Sample transition, once for each current particle x 

2. For each new sample x’, compute importance weights 
for the new evidence e: 

3. Finally, normalize by resampling the importance 
weights to create N new particles  



Robot Localization 
§  In robot localization: 

§  We know the map, but not the robot’s position 
§  Observations may be vectors of range finder readings 
§  State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X) 
§  Particle filtering is a main technique 



Robot Localization 

QuickTime™ and a
GIF decompressor

are needed to see this picture.



Which Algorithm? 
Exact filter, uniform initial beliefs 



Which Algorithm? 
Particle filter, uniform initial beliefs, 25 particles 



Which Algorithm? 
Particle filter, uniform initial beliefs, 300 particles 



P4: Ghostbusters 

§  Plot: Pacman's grandfather, Grandpac, 
learned to hunt ghosts for sport.   

§  He was blinded by his power, but could 
hear the ghosts’ banging and clanging. 

§  Transition Model: All ghosts move 
randomly, but are sometimes biased 

§  Emission Model: Pacman knows a 
“noisy” distance to each ghost 0 200
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True distance = 8 


