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Outline

* Probabilistic sequence models (and inference)

= Hidden Markov Models
= Exact Inference
Particle Filters



Going Hunting




Hidden Markov Models

= Markov chains not so useful for most agents
= Eventually you don’t know anything anymore
= Need observations to update your beliefs
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P(X1) P(X|X_1)
= Hidden Markov models (HMMs)

= Underlying Markov chain over states S
* You observe outputs (effects) at each time step




Example: Weather HMM
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= An HMM is defined by:

= |nitial distribution: P(X7)
P(X¢| Xt-1)

= Transitions:
= Emissions:

P(E|X)

Umbrell@




Ghostbusters HMM

1/9 1/9 1/9
P(X,) = uniform

P(X'|X) = usually move clockwise, but sometimes
move in a random direction or stay in place 19 1/9 1/9

179 1/9 1/9

P(E|X) = same sensor model as before:
red means close, green means far away.
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Hidden Markov Models
X)) -

= Defines a joint probability distribution:
P(X1, E1, Xo, B2, X3, E3) = P(X1)P(F1|X1)P(Xa|X1)P(E2| X2)P(X3] X2) P(E3| X5)
P(X1,...,Xn,E1,...,Ep) =
P(Xl naEl n) — N

P(X1)P(E1|X1) | [ P(Xe| Xi-1) P(El| X:)

= Questions to be resolved: T =2
= Does this indeed define a joint distribution?

= Can every joint distribution be factored this way, or are we making some assumptions about the
joint distribution by using this factorization?




Chain Rule and HMMs

= From the chain rule, every joint distribution over X, F1, X5, F, X3, F/3 can be written as:

P(X17E17X27E27X37E3) :P(X1>P(E1|X1)P(X2|X17E1>P(E2|X17E17X2)
P(X?)’Xl)E17X27EZ)P(E3|X17E17X27E27X3)

= Assuming that

Xo LBy | Xy, Eoll X4,F | Xe, X3l Xq,E1,Es| Xy, Es 1l Xy,F,Xo, FEs | X3

gives us the expression posited on the previous slide:

P(X1,Er, Xo, B2, X3, E3) = P(X1)P(E1|X1)P(X2| X1)P(E2| X2)P(X5|X2)P(Es| X3)



Chain Rule and HMMs

= From the chain rule, every joint distribution over X, FE;.... Xy, Er can be written as:

T
P<X17E17'°'7XT7ET) = P<X1)P<E1|X1>HP(Xt’XhEh'"7Xt—17Et—1>P(Et|X17E17'"7Xt—17Et—17Xt)

= Assuming that for all t:
= State independent of all past states and all past evidence given the previous state, i.e.:

Xt AL X17 Ela oo 7Xt—27 Et—27 Et—l | Xt—l
= Evidence is independent of all past states and all past evidence given the current state, i.e.:
By L X1,Ey,..., X 2, Ep 9, Xy 1, B 1 | Xy

gives us the expression posited on the earlier slide:

T
P(Xy,Er, ..., X7, Er) = P(Xl)P(Elel)HP(Xt|Xt—1)P(Et’Xt)
t=2



Implied Conditional

Independencies
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= Many implied conditional independencies, e.g.,
El AL X27 E27X37 E3 ‘ Xl
= To prove them

= Approach 1: follow similar (algebraic) approach to what we did in the
Markov models lecture

= Approach 2: directly from the graph structure (3 lectures from now)
" |ntuition: If path between U and V goes through W, then U 1l V | W [Some fineprint later]
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Conditional Independence

* HMMs have two important independence properties:
= Markov hidden process, future depends on past via the present
= Current observation independent of all else given current state

OO+

= Quiz: Are observations E1, E2 independent?
» [No, correlated by the hidden state]



Real HMM Examples

= Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)

» States are specific positions in specific words (so, tens of
thousands)

OO+



Real HMM Examples

= Machine translation HMMs:
»= Observations are words (tens of thousands)
» States are translation options

OO+



Real HMM Examples

= Robot tracking:
= Observations are range readings (continuous)
» States are positions on a map (continuous)

OO+



HMM Computations

= Given
. jOint P(XlznaElzn)
= evidence E,. =¢,.,

= Inference problems include:
= Filtering, find P(X{e,.,) for current t
= Smoothing, find P(Xe,.,) for past t



HMM Computations

= Given
- jOint P(XlznaElzn) @ @ @ >
»= evidence E,.,=¢,.,
o OO0

= Inference problems include:
= Filtering, find P(X{e,.,) for current t
= Smoothing, find P(Xe,.,) for past t
= Most probable explanation, find
X* .= argmaxx,,, P(x,/e;.,)



Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the
distribution B(X)=P(X{e,.,) (the belief state) over time

We start with B(X) in an initial setting, usually uniform
As time passes, or we get observations, we update B(X)

The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program



Example: Robot Localization

Example from
Michael Pfeiffer

B 00
Prob 0 1

t=0
Sensor model: never more than 1 mistake
Motion model: may not execute action with small prob.




Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Inference : Simple Cases

P(X1) P(X¢Xi-1)

P(E|X)
That's my rule!
P(X1le1) N .
P(x1le1) = P(x1,1)/P(e1)

xx, P(z1,e1)

= P(x1)P(e1|z1)



