CSE P573: Artificial Intelligence Spring 2014

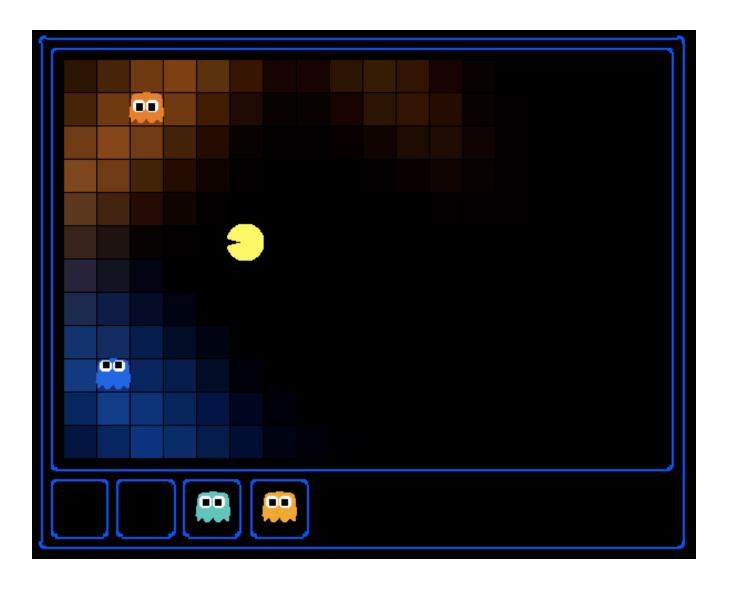
Hidden Markov Models

Ali Farhadi

Outline

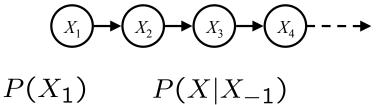
- Probabilistic sequence models (and inference)
 - Probability and Uncertainty Preview
 - Markov Chains
 - Hidden Markov Models
 - Exact Inference
 - Particle Filters

Going Hunting

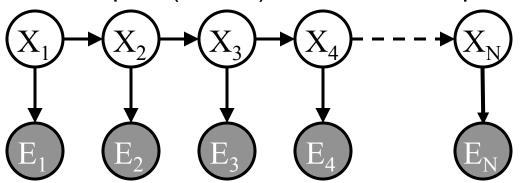


Hidden Markov Models

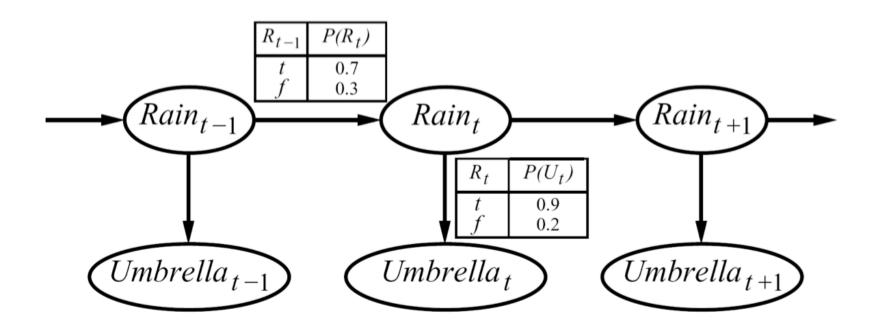
- Markov chains not so useful for most agents
 - Eventually you don't know anything anymore
 - Need observations to update your beliefs



- Hidden Markov models (HMMs)
 - Underlying Markov chain over states S
 - You observe outputs (effects) at each time step



Example: Weather HMM



An HMM is defined by:

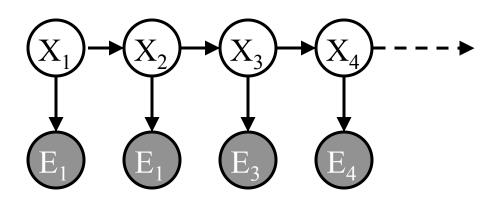
• Initial distribution: $P(X_1)$

■ Transitions: $P(X_t|X_{t-1})$

• Emissions: P(E|X)

Ghostbusters HMM

- $P(X_1)$ = uniform
- P(X'|X) = usually move clockwise, but sometimes move in a random direction or stay in place
- P(E|X) = same sensor model as before:
 red means close, green means far away.



1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

 $P(X_1)$

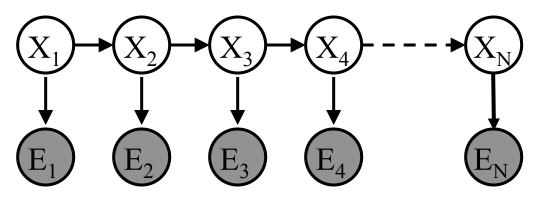
1/6	1/6_	1/2
0	1/6	0
0	0	0

P(X'|X=<1,2>)

P(E X)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Hidden Markov Models

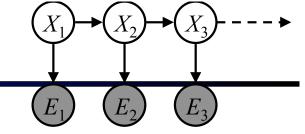


Defines a joint probability distribution:

$$P(X_1,E_1,X_2,E_2,X_3,E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$$
 $P(X_1,\ldots,X_n,E_1,\ldots,E_n) = P(X_{1:n},E_{1:n}) = P(X_1)P(E_1|X_1)\prod_{t=2}^{N}P(X_t|X_{t-1})P(E_t|X_t)$ • Questions to be resolved:

- Does this indeed define a joint distribution?
- Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and HMMs



• From the chain rule, every joint distribution over $X_1, E_1, X_2, E_2, X_3, E_3$ can be written as:

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1, E_1)P(E_2|X_1, E_1, X_2)$$
$$P(X_3|X_1, E_1, X_2, E_2)P(E_3|X_1, E_1, X_2, E_2, X_3)$$

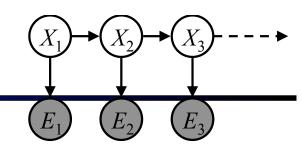
Assuming that

$$X_2 \perp\!\!\!\perp E_1 \mid X_1, \quad E_2 \perp\!\!\!\perp X_1, E_1 \mid X_2, \quad X_3 \perp\!\!\!\perp X_1, E_1, E_2 \mid X_2, \quad E_3 \perp\!\!\!\perp X_1, E_1, X_2, E_2 \mid X_3$$

gives us the expression posited on the previous slide:

$$P(X_1, E_1, X_2, E_2, X_3, E_3) = P(X_1)P(E_1|X_1)P(X_2|X_1)P(E_2|X_2)P(X_3|X_2)P(E_3|X_3)$$

Chain Rule and HMMs



• From the chain rule, *every* joint distribution over $X_1, E_1, \ldots, X_T, E_T$ can be written as:

$$P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1) \prod_{t=0}^{T} P(X_t|X_1, E_1, \dots, X_{t-1}, E_{t-1})P(E_t|X_1, E_1, \dots, X_{t-1}, E_{t-1}, X_t)$$

- Assuming that for all t:
 - State independent of all past states and all past evidence given the previous state, i.e.:

$$X_t \perp \!\!\! \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, E_{t-1} \mid X_{t-1}$$

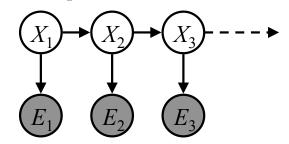
Evidence is independent of all past states and all past evidence given the current state, i.e.:

$$E_t \perp \!\!\! \perp X_1, E_1, \ldots, X_{t-2}, E_{t-2}, X_{t-1}, E_{t-1} \mid X_t$$

gives us the expression posited on the earlier slide:

$$P(X_1, E_1, \dots, X_T, E_T) = P(X_1)P(E_1|X_1)\prod_{t=2}^{T} P(X_t|X_{t-1})P(E_t|X_t)$$

Implied Conditional Independencies



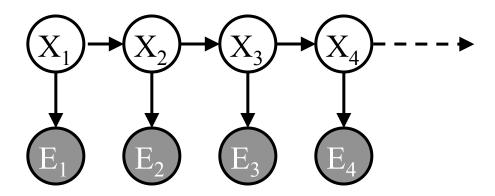
Many implied conditional independencies, e.g.,

$$E_1 \perp \!\!\! \perp X_2, E_2, X_3, E_3 \mid X_1$$

- To prove them
 - Approach 1: follow similar (algebraic) approach to what we did in the Markov models lecture
 - Approach 2: directly from the graph structure (3 lectures from now)
 - ullet Intuition: If path between U and V goes through W, then $U \perp\!\!\!\!\perp V \mid W$ [Some fineprint later]

Conditional Independence

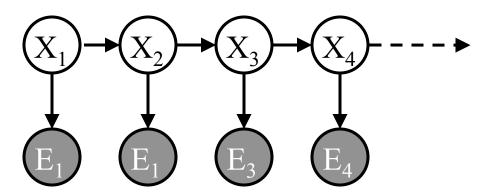
- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state



- Quiz: Are observations E1, E2 independent?
 - [No, correlated by the hidden state]

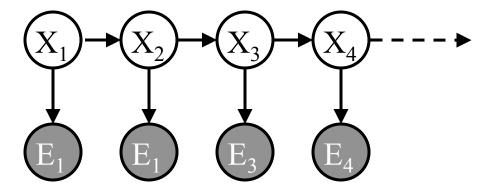
Real HMM Examples

- Speech recognition HMMs:
 - Observations are acoustic signals (continuous valued)
 - States are specific positions in specific words (so, tens of thousands)



Real HMM Examples

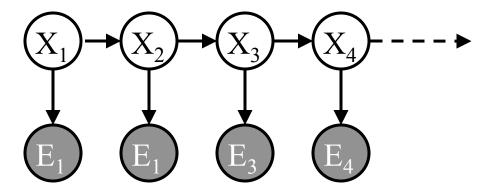
- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options



Real HMM Examples

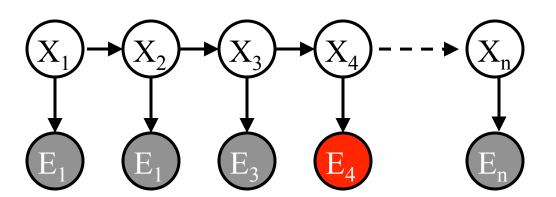
Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)



HMM Computations

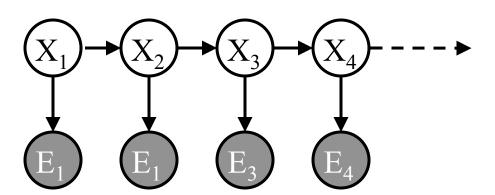
- Given
 - joint $P(X_{1:n}, E_{1:n})$
 - evidence $E_{1:n} = e_{1:n}$



- Inference problems include:
 - Filtering, find $P(X_t|e_{1:t})$ for current t
 - Smoothing, find $P(X_t|e_{1:n})$ for past t

HMM Computations

- Given
 - joint $P(X_{1:n}, E_{1:n})$
 - evidence E_{1:n}=e_{1:n}



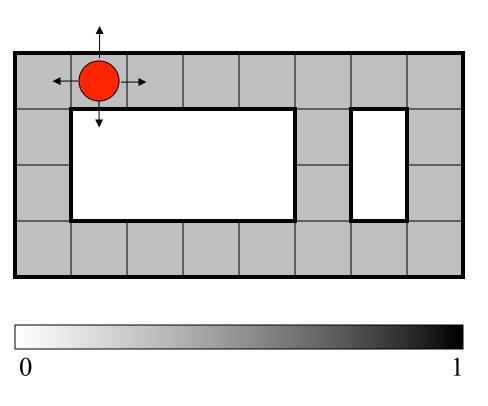
- Inference problems include:
 - Filtering, find $P(X_t|e_{1:t})$ for current t
 - Smoothing, find $P(X_t|e_{1:n})$ for past t
 - Most probable explanation, find

$$x^*_{1:n} = \operatorname{argmax}_{x_{1:n}} P(x_{1:n} | e_{1:n})$$

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution $B(X)=P(X_t|e_{1:t})$ (the belief state) over time
- We start with B(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)
- The Kalman filter was invented in the 60's and first implemented as a method of trajectory estimation for the Apollo program

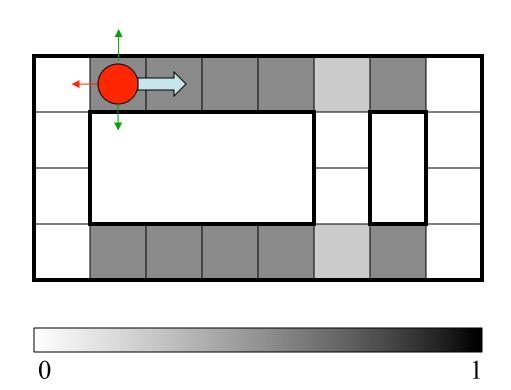
Example from Michael Pfeiffer

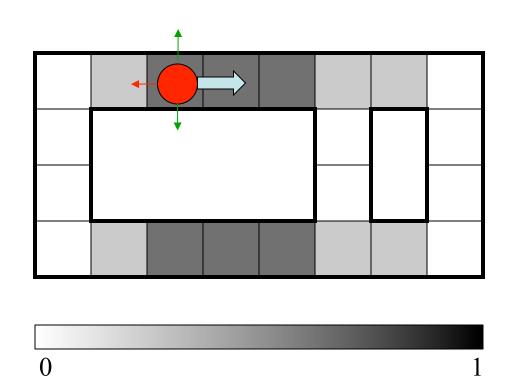


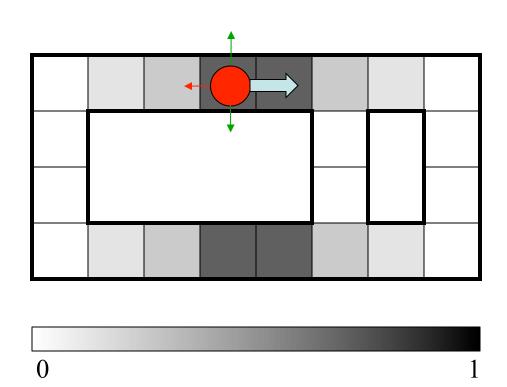
t=0

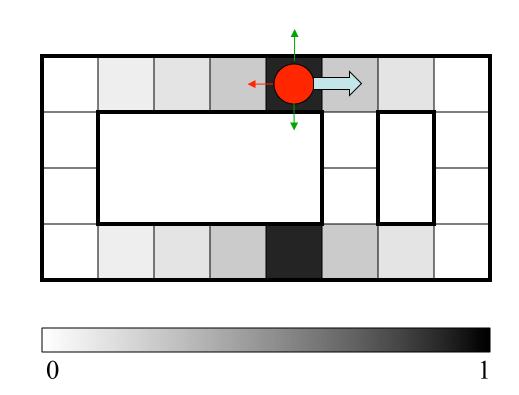
Prob

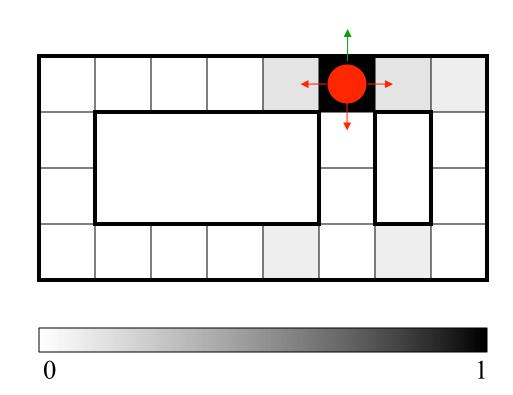
Sensor model: never more than 1 mistake Motion model: may not execute action with small prob.











Inference: Simple Cases

$$P(X_1) \quad P(X_t|X_{t-1})$$

$$P(E|X)$$

$$P(X_1|e_1)$$

$$P(x_1|e_1)$$

$$P(x_1|e_1) = P(x_1, e_1)/P(e_1)$$

$$\propto_{X_1} P(x_1, e_1)$$

 $= P(x_1)P(e_1|x_1)$

