Reinforcement Learning
&
Monte Carlo Planning
(Slides by Alan Fern, Dan Klein,

Subbarao Kambhampati, Raj Rao,
Lisa Torrey, Dan Weld)

WATCH WHAT |
CAN MAKE PAVLOV DO.
PG SOON As | PROOL,
HE'LL SMILE AND WRITE
IN HIS LITTLE Book.

Learning/Planning/Acting

value/policy

nnnnn (T

model experlence

rm::del
learning

Reinforcement Learning

= Reinforcement learning:
» Still have an MDP:

= Asetofstatess € S

= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

» Still looking for a policy ni(s)

= New twist: don't know T or R

= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Main Dimensions

Model-based vs. Model-free

* Model-based vs. Model-free

— Model-based = Have/learn
action models (i.e. transition
probabilities)

* Eg. Approximate DP

— Model-free - Skip them and
directly learn what action to
do when (without necessarily
finding out the exact model of
the action)

* E.g. Q-learning

Passive vs. Active

e Passive vs. Active

— Passive: Assume the agent is
already following a policy (so
there is no action choice to be
made; you just need to learn
the state values and may be
action model)

— Active: Need to learn both
the optimal policy and the
state values (and may be
action model)

Main Dimensions (contd)

Extent of Backup
 Full DP

— Adjust value based on values
of all the neighbors (as
predicted by the transition
model)

— Can only be done when
transition model is present
 Temporal difference

— Adjust value based only on
the actual transitions
observed

Strong or Weak Simulator

* Strong

— | can jump to any part of the
state space and start
simulation there.

e Weak

— Simulator is the real world
and | can teleport to a new
state.

Example: Animal Learning

= RL studied experimentally for more than 60
years in psychology
» Rewards: food, pain, hunger, drugs, etc.
* Mechanisms and sophistication debated

= Example: foraging
* Bees learn near-optimal foraging plan in field of
artificial flowers with controlled nectar supplies

s Bees have a direct neural connection from nectar
iIntake measurement to motor planning area

Example: Backgammon

= Reward only for win / loss in
terminal states, zero 0 123456 78910112
otherwise | |

» TD-Gammon learns a

function approximation to AL
V(s) using a neural network EIE

= Combined with depth 3 FAAAAM A AN A
search, one of the top 3 | il
players in the world

| | | | |
L i 1 1

25 24 232221 20 19 18 17 16 15 14 13

Does self learning through simulator.
[Infants don’t get to “simulate” the
world since they neither have
T(.) nor R(.) of their world]

Passive Learning

* You don’t know the transitions T(s,a,s’)

= Simplified task i

* You don’t know the rewards R(s,a,s’) L

* You are given a policy ri(s) o
» Goal: learn the state values (and maybe the model)

= |n this case:
= No choice about what actions to take

» Just execute the policy and learn from experience
» We'll get to the general case soon

We are basically doing EMPIRICAL Policy Evaluation!
Example: Direct Estimation
= Episodes:
(1,1) up -1 (1,1) up -1
(1,2) up -1 (1,2) up -1
(1,2) up -1 (1,3) right -1
(1,3) right -1 (2,3) right -1
(2.3) right -1 (3.3) right -1 1 ? ’ R
(3,3) right -1 (3,2) up -1 y=1,R=-1
(3,2) up -1 (4,2) exit-100
(3,3) right -1 (done)
(4.3) exit +100 U(1,1) ~ (92 +-106)/ 2 = -7
(done) U(3.3) ~ (99 + 97 +-102)/ 3 = 313

But we know this will be wasteful
(since it misses the correlation between values of neibhoring states!)

Model-Based Learning

= |dea:

» | earn the model empirically (rather than values)
» Solve the MDP as if the learned model were correct

* Empirical model learning

» Simplest case:
= Count outcomes for each s,a
= Normalize to give estimate of T(s,a,s’)
= Discover R(s,a,s’) the first time we experience (s,a,s’)
* More complex learners are possible (e.g. if we know
that all squares have related action outcomes, e.g.
“stationary noise”)

Example: Model-Based Learning

= Episodes:

(1,1) up -1
(1,2) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(3,3) right -1
(
(

done)

4,3) exit +100

(1,1) up -1
(1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(
(

done)

4,2) exit -100

T(<3,3>, right, <4,3>)=1/3

T(<2,3>,right, <3,3>)=2/2

Model-Based Learning

* |n general, want to learn the optimal policy, not
evaluate a fixed policy

» |dea: adaptive dynamic programming
» [earn an initial model of the environment:
= Solve for the optimal policy for this model (value or
policy iteration)
» Refine model through experience and repeat

* Crucial: we have to make sure we actually learn
about all of the model

Example: Greedy ADP

* |magine we find the lower
path to the good exit first

= Some states will never be s | 2 ? —| =
visited following this policy
from (1,1) , 4 -
= We'll keep re-using this
policy because following it 1+

never collects the regions l

of the model we need to
learn the optimal policy

= Problem with following optimal

What Went Wrong?

policy for current model.

= Never learn about better regions
of the space if current policy
neglects them

Fundamental tradeoff:
exploration vs. exploitation

= Exploration: must take actions
with suboptimal estimates to
discover new rewards and
increase eventual utility

= Exploitation: once the true
optimal policy is learned,
exploration reduces utility

= Systems must explore in the
beginning and exploit in the limit

3

2

1

+1

Model-Free Learning

= Big idea: why bother learning T?
» Update each time we experience a transition

» Frequent outcomes will contribute more updates
(over time)

= Temporal difference learning (TD) ’
= Policy still fixed! o

» Move values toward value of whatever
SUCCEeSSOor occurs

VT(s) — 3 T(s,m(s),)R (s, a,') + 1V ()
s’

sample = R(s,a,s’) +~V™(s")

V() «— V" (s) + al(sample — V" (s))

AN \

updated estimate Iearning rate

Aside: Online Mean Estimation

e Suppose that we want to incrementally compute the
mean of a sequence of numbers (x; x, X5)

— E.g. to estimate the expected value of a random variable from a
sequence of samples.

R 1 n+1
X n+1 — Z Xi
1;

average of n+1 samples

Aside: Online Mean Estimation

e Suppose that we want to incrementally compute the
mean of a sequence of numbers (x; x, X5)

— E.g. to estimate the expected value of a random variable from a
sequence of samples.

n+1

EOINEE R CWEE)

><>

n+1

average of n+1 samples

Aside: Online Mean Estimation

e Suppose that we want to incrementally compute the
mean of a sequence of numbers (x; x, X5)

— E.g. to estimate the expected value of a random variable from a
sequence of samples.

A n+1 1 n
X X; X, Xy —— > X
b n+1z Z n+1\ " nizzll !
R 1 .
:Xn | n_I_:L(Xn+1_><n)
average of n+1 samples \ sample n+1

learning rate

* Given a new sample x.,,, the new mean is the old
estimate (for n samples) plus the weighted difference
between the new sample and old estimate

Temporal Difference Learning

* TD update for transition from sto s’:

upd:’:;d\eE::at(e_V (S)/_I_'a(R(S)_I_W (S) -V~ (S))

learning rate (noisy) sample of value at s
based on next state s’

e So the update is maintaining a “mean” of the (noisy)
value samples

* If the learning rate decreases appropriately with the
number of samples (e.g. 1/n) then the value
estimates will converge to true values! (non-trivial)

V7(s)=R(s)+y> T(s,a,s'V”"(s')

Early Results: Pavlov and his Dog

e (Classical (Pavlovian)
conditioning
experiments

* Training: Bell 2Food

 After: Bell = Salivate
e Conditioned stimulus E &

ol
| T

(be | I) p rEd iCtS fUtU re (http //employees CSiju edu/tcreed/pb/pdoganlm html)
reward (food)

=] TR ok o o]
o

Predicting Delayed Rewards

 Reward is typically delivered at the end (when
you know whether you succeeded or not)

e Time: 0 <t <T with stimulus u(t) and reward
r(t) at each time step t (Note: r(t) can be zero
at some time points)

* Key Idea: Make the output v(t) predict total
expected future reward starting from time t

v(t) ~ <T2t r(t+ T)>

7=0

Predicting Delayed Reward: TD Learning

o 1-

0
0

Prediction error 6 for each time step
(over many trials)

Stimulus at t = 100 and reward at t = 200

100

t

200

before
o—h
2: _______________
0 A ~—
21 _______________
_1f
2: _______________
_1f
oL i
—_—

0 100 200

t

after
\
_

_ _________
.
A

0 100 200

t

Prediction Error in the P_rimate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Reward Prediction error? [r(t) +v(t+1) —v(t)]

50 / ..
Hzlearly L ‘I Before Training

late ‘

ggg,ﬂggahumn.u Modaw iz dwhea After Training
-0.5 0 t(s) 0 t(s) 0.8

stimulus J / reward J \

No error
[0+v(t+1)—v(t)] v(t) = r(t) +v(t+1)

More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

reward
p.lml.mmw
' no reward

-1 0 t(s) 1 ’\ 2

Negative error

r(t)=0,v(t+1) =0
[r(t)+v(t+1)—v(t)]=-v(t)

Problems with TD Value Learning

TD value leaning is model-free for
policy evaluation

However, if we want to turn our value e
estimates into a policy, we're sunk:

w(8) = argmax Q”*(s,a)
{1

Q*(s,a) =Y T(s,a,s") {R(s, a,s) + fﬂf’*(s’r)]

|dea: learn Q-values directly
Makes action selection model-free too!

Q-Learning

» Learn Q*(s,a) values
* Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
» Consider your new sample estimate:

Q*(s,a) = Z T(s,a,s) _!'i’.(,&;? a,s’) +~V* (Jﬂ

sample = R(s.a,s’) +~ max Q(s',d")
L

* Nudge the old estimate towards the new sample:

Q(s,a) — Q(s,a) + o[sample — Q(s,a)]

Q-Learning

Q-Learning Properties

= Will converge to optimal policy

* |f you explore enough
* |f you make the learning rate small enough

e Under certain conditions:

— The environment model doesn’t change

— States and actions are finite

— Rewards are bounded

— Learning rate decays with visits to state-action pairs

* but not too fast decay. (3,a(s,a,i) = 00, 3.a%(s,a,i) <)

— Exploration method would guarantee infinite visits to
every state-action pair over an infinite training period

Exploration / Exploitation

= Several schemes for forcing exploration

= Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

=» Problems with random actions?

" You do explore the space, but keep thrashing
around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

Explore/Exploit Policies

* GLIE Policy 2: Boltzmann Exploration
— Select action a with probability,

 exp(Q(s,a)/T)
A9 =S Qe a)/T)

a'eA

— T is the temperature. Large T means that each action has
about the same probability. Small T leads to more
greedy behavior.

— Typically start with large T and decrease with time

Model based vs. Model Free RL

* Model based
— estimate O(|S|?|A|) parameters
— requires relatively larger data for learning
— can make use of background knowledge easily

* Model free
— estimate O(|S| | A|) parameters
— requires relatively less data for learning

Applications of RL

Games
— Backgammon, Solitaire, Real-time strategy games

Elevator Scheduling
Stock investment decisions
Chemotherapy treatment decisions

Robotics

— Navigation, Robocup

— http://www.youtube.com/watch?v=CIF2SBVY-J0

— http://www.youtube.com/watch?v=5FGVgMsiv1s
— http://www.youtube.com/watch?v=W gxLKSsSIE

Helicopter maneuvering

http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=W_gxLKSsSIE
http://www.youtube.com/watch?v=W_gxLKSsSIE

Learning/Planning/Acting

[\

s N,
Pfuhcy!value funct\mns

value/policy
planning update
acting . -
direct RL simulated
planning direct update experience
experience

search
: |
model experlence leaming contro

Model

rm::dlel .
learning [Enwron ment]

Planning Monte-Carlo Planning Reinforcement Learning

Monte-Carlo Planning

e Often a simulator of a planning domain is available
or can be learned from data

— Even when domain can’t be expressed via MDP language

Fire & Emergency Response

Klondike Solitaire

41

Example Domains with Simulators

Traffic simulators

Robotics simulators

Military campaign simulators
Computer network simulators

Emergency planning simulators

— large-scale disaster and municipal

Sports domains (Madden Football)

Board games / Video games
— Go/RTS

?

Slot Machines as MDP

FIAT TO wyrii
’

FRAT TO s

FLAT TO wyi
]

ol

=

—
VU R AARYIAANSYARANN:

43

Outline

* Uniform Sampling
— PAC Bound for Single State MDPs
— Policy Rollouts for full MDPs

* Adaptive Sampling
— UCB for Single State MDPs
— UCT for full MDPs

Single State Monte-Carlo Planning

* Suppose MDP has a single state and k actions
— Figure out which action has best expected reward
— Can sample rewards of actions using calls to simulator

— Sampling a is like pulling slot machine arm with random
payoff function R(s,a)

R(s,a,) R(s,a,)

e Multi-Armed Bandit Problem

PAC Bandit Obiective

Probably Approximately Correct (PAC)

* Select an arm that probably (w/ high probability, 1-0) has
approximately (i.e., within €) the best expected reward

e Use as few simulator calls (or pulls) as possible

R(s,a,) R(s,a,)

s Multi-Armed Bandit Problem

UniformBandit Algorithm
NaiveBandit from [Even-Dar et. al., 2002]

1. Pull each arm w times (uniform pulling).
2. Return arm with best average reward.

How large must w be to provide a PAC guarantee?

47

Aside: Additive Chernoff Bound

e Let R be a random variable with maximum absolute value Z.
Anletr, (fori=1,...,w) bei.i.d. samples of R

e The Chernoff bound gives a bound on the probability that the
average of the r, are far from E[R]

W 2
et p{ CRI-2 3 ZEJSexp (&) w
=1

Equivalently:

With probability at least 1—0 we have that,

E[R]—%Zwlri <Z/iInl
1=1

UniformBandit PAC Bound

With a bit of algebra and Chernoff bound we get:

2

R

If W= (ﬂ In % for all arms simultaneously
E

E[R(s,a)]—%i i <&

with probability at least 1— 5

° That is, estimates of all actions are E-accurate with
probability at least 1-

° Thus selecting estimate with highest value is
approximately optimal with high probability, or PAC

49

Simulator Calls for UniformBandit

R(s,a,) R(s,a,) R(s,a,)

k
* Total simulator calls for PAC: K-w= O(—Z In %j
&

° Can get rid of In(k) term with more complex
algorithm [Even-Dar et. al., 2002].

50

Outline

* Uniform Sampling
— PAC Bound for Single State MDPs
— Policy Rollouts for full MDPs

* Adaptive Sampling
— UCB for Single State MDPs
— UCT for full MDPs

Policy Improvement via Monte-Carlo

e Now consider a multi-state MDP.

* Suppose we have a simulator and a non-optimal policy
— E.g. policy could be a standard heuristic or based on intuition

 Can we somehow compute an improved policy?

World

Simulator

=+

Base Policy f Re d I
id = Al World

State + reward

52

Policy Rollout Algorithm

1. Foreach a, run SimQ(s,a; ,h) w times
2. Return action with best average of SimQ results

SimQ(s,a, i, h) trajectories
Each simulates taking

action a; then following —
nt for h-1 steps.

Samples of SimQ(s,a,,m,h)

53

Policvy Rollout: # of Simulator Calls

SimQ(s,a, i, h) trajectories
Each simulates taking

action a, then following —
1t for h-1 steps.

e For each action, w calls to SimQ, each using h sim calls
e Total of khw calls to the simulator

54

Multi-Stage Rollout

Each step requires
khw simulator calls

¢

Trajectories of
SimQ(s,a,,Rollout(r),h)

3
3

¥s‘>s.>s‘> sjps)

e Two stage: compute rollout policy of rollout policy of it
e Requires (khw)? calls to the simulator for 2 stages

* In general exponential in the

55

number of stages

Rollout Summary

° We often are able to write simple, mediocre policies

“~ Network routing policy

“ Compiler instruction scheduling
“ Policy for card game of Hearts
“ Policy for game of Backgammon
“ Solitaire playing policy

“ Game of GO

“ Combinatorial optimization

° Policy rollout is a general and easy way to improve upon
such policies
° Often observe substantial improvement!

56

57

Example: Rollout for Thoughtful Solitaire

[Yan et al. NIPS’04]

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec

Policy

58

Example: Rollout for Thoughtful Solitaire

[Yan et al. NIPS’04]

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec
Policy

1 rollout 31.20% 0.67 sec

59

Example: Rollout for Thoughtful Solitaire

[Yan et al. NIPS’04]

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec
Policy

1 rollout 31.20% 0.67 sec

2 rollout 47.6% 7.13 sec

Example: Rollout for Thoughtful Solitaire
[Yan et al. NIPS’04]

Player Success Rate | Time/Game
Human Expert | 36.6% 20 min
(naive) Base 13.05% 0.021 sec
Policy

1 rollout 31.20% 0.67 sec

2 rollout 47.6% /.13 sec

3 rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

Deeper rollout can pay off, but is expensive

60

Outline

* Uniform Sampling
— PAC Bound for Single State MDPs
— Policy Rollouts for full MDPs

* Adaptive Sampling
— UCB for Single State MDPs
— UCT for full MDPs

Non-Adaptive Monte-Carlo

°* What is an issue with Uniform sampling?
° time wasted equally on all actions!
° no early learning about suboptimal actions

° Policy rollouts

° Devotes equal resources to each state encountered in the tree
°* Would like to focus on most promising parts of tree

But how to control exploration of new parts of tree??

Regret Minimization Bandit Objective

° Problem: find arm-pulling strategy such that the
expected total reward at time n is close to the best
possible (i.e. pulling the best arm always)

“ UniformBandit is poor choice --- waste time on bad arms

“ Must balance exploring machines to find good payoffs and
exploiting current knowledge

63

UCB Adaptive Bandit Algorithm
[Auer, Cesa-Bianchi, & Fischer, 2002]

* Q(a) : average payoff for action a based on
current experience

* n(a) : number of pulls of arm a Assumes pavoffs
* Action choice by UCB after n pulls: in[01]
a" =argmax, Q(a) + 2lnn —

"

Value Term:
favors actions that looked Exploration Term:
good historically actions get an exploration

bonus that grows with In(n)

Doesn’t waste much time on sub-optimal arms unlike uniform!

U C B A|g0 rlth m [Auer, Cesa-Bianchi, & Fischer, 2002]

a =argmax, Q(a)+ 2inn

n(a)

° Hence, the expected regret after n arm pulls compared to
optimal behavior is bounded by O(log n)

° No algorithm can achieve a better loss rate

65

Outline

* Uniform Sampling
— PAC Bound for Single State MDPs
— Policy Rollouts for full MDPs

* Adaptive Sampling
— UCB for Single State MDPs
— UCT for full MDPs

UCB Based Policy Rollout

* Allocate samples non-uniformly
— based on UCB action selection
— More sample efficient than uniform policy rollout

— Still suboptimal.

U CT A|g0 ”th m [Kocsis & Szepesvari, 2006]

* |nstance of Monte-Carlo Tree Search
— Applies principle of UCB
— Some nice theoretical properties
— Better than policy rollouts — asymptotically optimal
— Major advance in computer Go

e Monte-Carlo Tree Search

— Repeated Monte Carlo simulation of a rollout policy
— Each rollout adds one or more nodes to search tree

* Rollout policy depends on nodes already in tree

At a leaf node perform a random rollout

Current World State

O } Initially tree is single leaf

At a leaf node perform a random rollout

Current World State

} Initially tree is single leaf

Rollout
Policy

Terminal
(reward = 1)

At a leaf node perform a random rollout

Current World State

} Initially tree is single leaf

Rollout
Policy

Terminal
(reward = 1)

Must select each action at a node at least once

Current World State

Rollout
Policy

Terminal
(reward = 0)

Must select each action at a node at least once

Current World State

When all node actions tried once, select action according to tree policy

Current World State

@ Tree Policy
(U

o)1

When all node actions tried once, select action according to tree policy

Current World State

@ Tree Policy

Rollout
Policy

o)1

When all node actions tried once, select action according to tree policy

Current World State

O
O
O
0

)0

What is an appropriate tree policy?
Rollout policy?

U CT A|g0 ”th m [Kocsis & Szepesvari, 2006]

e Basic UCT uses random rollout policy

* Tree policy is based on UCB:

— Q(s,a) : average reward received in current
trajectories after taking action a in state s

— n(s,a) : number of times action a takenin s
— n(s) : number of times state s encountered

TTuer () =argmax, Q(s, a) + C\/'” n(s)

/ n(s,a)

Theoretical constant that must
be selected empirically in practice

When all node actions tried once, select action according to tree policy

Current World State

B 7. (9)=argmax, Qs,a) +c MO
n(s,a)

O
O
O
0)

When all node actions tried once, select action according to tree policy

Current World State

In n(s)

Zuer (S) =argmax, Q(s,a)+cC
n(s,a)

LT T

UCT Recap

* To select an action at a state s

— Build a tree using N iterations of monte-carlo tree
search
e Default policy is uniform random
* Tree policy is based on UCB rule

— Select action that maximizes Q(s,a)
(note that this final action selection does not take
the exploration term into account, just the Q-value
estimate)

e The more simulations the more accurate

Computer Go

® O O |+ Brilliant.sgf - Gennan Inseki vs Honinbo Shusaku =

o IE e

| e
» W ,I e
== ‘]/’ | "" P
| | “ » a&rr e
- 8 ;o vt ¢ ‘
g: e %58
) 2 ¢
= B s
ot -’ %
9x9 (smallest board) 19x19 (largest board)

“Task Par Excellence for Al” (Hans Berliner)
“New Drosophila of Al” (John McCarthy)
“Grand Challenge Task” (David Mechner)

Game of Go

human champions refuse to compete
against computers, because software is
too bad.

Chess Go
Size of board 8 x 8 19 x 19
Average no. of 100 300
moves per game

Avg branching 35 235
factor per turn

Additional Players can

complexity pass

A Brief History of Computer Go

2005: Computer Go is impossible!

2006: UCT invented and applied to 9x9 Go (Kocsis, Szepesvari; Gelly et al.)
2007: Human master level achieved at 9x9 Go (Gelly, Silver; Coulom)
2008: Human grandmaster level achieved at 9x9 Go (Teytaud et al.)

ELO rating 1800 2 2600

Other Successes

Klondike Solitaire (wins 40% of games)
General Game Playing Competition
Real-Time Strategy Games
Combinatorial Optimization

Probabilistic Planning (MDPs)

Usually extend UCT is some ways

Improvements/Issues

 Use domain knowledge to improve the base
policies
— E.g.: don’t choose obvious stupid actions
— better policy does not imply better UCT performance

* Learn a heuristic function to evaluate positions

— Use heuristic to initialize leaves

* Interesting question: UCT versus minimax

Generalization in Learning

* |n realistic situations, we cannot possibly learn
about every single state!
* Too many states to visit them all in training
* Too many states to even hold the g-tables in memory

* |nstead, we want to generalize:

» | earn about some small number of training states
from experience

* Generalize that experience to new, similar states

* This is a fundamental idea in machine learning, and
we’ll see it over and over again

Task Hierarchy: MAXQ Decomposition [Dietterich’00]

Summary

 Multi-armed Bandits
— Principles of both RL and Monte-Carlo

* Reinforcement Learning

— Exploration/Exploitation tradeoff
— Passive/Active RL
— Model free/Model based

* Monte-Carlo Planning
— Exploration/Exploitation tradeoff
— Uniform/Adaptive Sampling

