
Reinforcement Learning
&

Monte Carlo Planning

(Slides by Alan Fern, Dan Klein,
Subbarao Kambhampati, Raj Rao,

Lisa Torrey, Dan Weld)

Learning/Planning/Acting

Main Dimensions

Model-based vs. Model-free

• Model-based vs. Model-free
– Model-based  Have/learn

action models (i.e. transition
probabilities)

• Eg. Approximate DP

– Model-free  Skip them and
directly learn what action to
do when (without necessarily
finding out the exact model of
the action)

• E.g. Q-learning

Passive vs. Active

• Passive vs. Active
– Passive: Assume the agent is

already following a policy (so
there is no action choice to be
made; you just need to learn
the state values and may be
action model)

– Active: Need to learn both
the optimal policy and the
state values (and may be
action model)

Main Dimensions (contd)

Extent of Backup

• Full DP
– Adjust value based on values

of all the neighbors (as
predicted by the transition
model)

– Can only be done when
transition model is present

• Temporal difference
– Adjust value based only on

the actual transitions
observed

Strong or Weak Simulator

• Strong
– I can jump to any part of the

state space and start
simulation there.

• Weak
– Simulator is the real world

and I can teleport to a new
state.

Does self learning through simulator.
[Infants don’t get to “simulate” the
 world since they neither have
 T(.) nor R(.) of their world]

We are basically doing EMPIRICAL Policy Evaluation!

But we know this will be wasteful
(since it misses the correlation between values of neibhoring states!)

Do DP-based policy
 evaluation!

updated estimate learning rate

17

Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the
mean of a sequence of numbers (x1, x2, x3, ….)

– E.g. to estimate the expected value of a random variable from a
sequence of samples.

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1


































 

average of n+1 samples

18

Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the
mean of a sequence of numbers (x1, x2, x3, ….)

– E.g. to estimate the expected value of a random variable from a
sequence of samples.

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1


































 

average of n+1 samples

19

Aside: Online Mean Estimation

• Suppose that we want to incrementally compute the
mean of a sequence of numbers (x1, x2, x3, ….)

– E.g. to estimate the expected value of a random variable from a
sequence of samples.

• Given a new sample xn+1, the new mean is the old
estimate (for n samples) plus the weighted difference
between the new sample and old estimate

 nnn

n

i

in

n

i

i

n

i

in

Xx
n

X

x
n

x
n

x
n

x
n

X

ˆ
1

1ˆ

1

1

11

1

1ˆ

1

1

1

1

1

1

1


































 

average of n+1 samples sample n+1
learning rate

20

Temporal Difference Learning

• TD update for transition from s to s’:

• So the update is maintaining a “mean” of the (noisy)
value samples

• If the learning rate decreases appropriately with the
number of samples (e.g. 1/n) then the value
estimates will converge to true values! (non-trivial)

))()'()(()()(sVsVsRsVsV   

)'()',,()()(
'

sVsasTsRsV
s

  

learning rate (noisy) sample of value at s
based on next state s’

updated estimate

Early Results: Pavlov and his Dog

• Classical (Pavlovian)
conditioning
experiments

• Training: Bell Food

• After: Bell  Salivate

• Conditioned stimulus
(bell) predicts future
reward (food)

(http://employees.csbsju.edu/tcreed/pb/pdoganim.html)

Predicting Delayed Rewards

• Reward is typically delivered at the end (when
you know whether you succeeded or not)

• Time: 0  t  T with stimulus u(t) and reward
r(t) at each time step t (Note: r(t) can be zero
at some time points)

• Key Idea: Make the output v(t) predict total
expected future reward starting from time t







tT

trtv
0

)()(




Predicting Delayed Reward: TD Learning

Stimulus at t = 100 and reward at t = 200

Prediction error  for each time step

(over many trials)

Prediction Error in the Primate Brain?

Dopaminergic cells in Ventral Tegmental Area (VTA)

Before Training

After Training

Reward Prediction error?

No error

)]()1()([tvtvtr 

)1()()( tvtrtv)]()1(0[tvtv 

More Evidence for Prediction Error Signals

Dopaminergic cells in VTA

Negative error

)()]()1()([

0)1(,0)(

tvtvtvtr

tvtr





• Under certain conditions:
– The environment model doesn’t change

– States and actions are finite

– Rewards are bounded

– Learning rate decays with visits to state-action pairs

• but not too fast decay. (∑i(s,a,i) = ∞, ∑i
2(s,a,i) < ∞)

– Exploration method would guarantee infinite visits to
every state-action pair over an infinite training period

36

Explore/Exploit Policies

• GLIE Policy 2: Boltzmann Exploration
– Select action a with probability,

– T is the temperature. Large T means that each action has
about the same probability. Small T leads to more
greedy behavior.

– Typically start with large T and decrease with time

 
 





Aa

TasQ

TasQ
sa

'

/)',(exp

/),(exp
)|Pr(

Model based vs. Model Free RL

• Model based

– estimate O(|S|2|A|) parameters

– requires relatively larger data for learning

– can make use of background knowledge easily

• Model free

– estimate O(|S||A|) parameters

– requires relatively less data for learning

• Games
– Backgammon, Solitaire, Real-time strategy games

• Elevator Scheduling
• Stock investment decisions
• Chemotherapy treatment decisions
• Robotics

– Navigation, Robocup
– http://www.youtube.com/watch?v=CIF2SBVY-J0
– http://www.youtube.com/watch?v=5FGVgMsiv1s
– http://www.youtube.com/watch?v=W_gxLKSsSIE

• Helicopter maneuvering

Applications of RL

http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=W_gxLKSsSIE
http://www.youtube.com/watch?v=W_gxLKSsSIE

Learning/Planning/Acting

Planning Monte-Carlo Planning Reinforcement Learning

41

Monte-Carlo Planning

• Often a simulator of a planning domain is available

or can be learned from data

– Even when domain can’t be expressed via MDP language

41

Klondike Solitaire

Fire & Emergency Response

42

• Traffic simulators

• Robotics simulators

• Military campaign simulators

• Computer network simulators

• Emergency planning simulators

– large-scale disaster and municipal

• Sports domains (Madden Football)

• Board games / Video games

– Go / RTS

In many cases Monte-Carlo techniques yield state-of-the-art
performance. Even in domains where model-based planner
is applicable.

Example Domains with Simulators

Slot Machines as MDP?

43

…

????

Outline

• Uniform Sampling

– PAC Bound for Single State MDPs

– Policy Rollouts for full MDPs

• Adaptive Sampling

– UCB for Single State MDPs

– UCT for full MDPs

45

Single State Monte-Carlo Planning

• Suppose MDP has a single state and k actions
– Figure out which action has best expected reward
– Can sample rewards of actions using calls to simulator
– Sampling a is like pulling slot machine arm with random

payoff function R(s,a)

s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

Multi-Armed Bandit Problem

…

…

46

PAC Bandit Objective

Probably Approximately Correct (PAC)
• Select an arm that probably (w/ high probability, 1-) has

approximately (i.e., within ) the best expected reward

• Use as few simulator calls (or pulls) as possible

 s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

Multi-Armed Bandit Problem

…

…

47

UniformBandit Algorithm
NaiveBandit from [Even-Dar et. al., 2002]

1. Pull each arm w times (uniform pulling).
2. Return arm with best average reward.

How large must w be to provide a PAC guarantee?

s

a1 a2 ak

…

… r11 r12 … r1w r21 r22 … r2w rk1 rk2 … rkw

48

Aside: Additive Chernoff Bound

• Let R be a random variable with maximum absolute value Z.
 An let ri (for i=1,…,w) be i.i.d. samples of R
• The Chernoff bound gives a bound on the probability that the
 average of the ri are far from E[R]


11

1

1 ln][
w

w

i

iw
ZrRE  



With probability at least we have that, 1

































 



w
Z

rRE
w

i

iw

2

1

1 exp][Pr



Chernoff
Bound

Equivalently:

49

UniformBandit PAC Bound

If for all arms simultaneously

with probability at least 1




k
R

w ln

2

max










With a bit of algebra and Chernoff bound we get:

That is, estimates of all actions are ε–accurate with
probability at least 1-

Thus selecting estimate with highest value is
approximately optimal with high probability, or PAC



 


w

j

ijwi rasRE
1

1)],([

50

Simulator Calls for UniformBandit
s

a1 a2 ak

R(s,a1) R(s,a2) R(s,ak)

…

…

Total simulator calls for PAC:

Can get rid of ln(k) term with more complex
algorithm [Even-Dar et. al., 2002].














k
k

Owk ln
2

Outline

• Uniform Sampling

– PAC Bound for Single State MDPs

– Policy Rollouts for full MDPs

• Adaptive Sampling

– UCB for Single State MDPs

– UCT for full MDPs

Policy Improvement via Monte-Carlo

• Now consider a multi-state MDP.

• Suppose we have a simulator and a non-optimal policy
– E.g. policy could be a standard heuristic or based on intuition

• Can we somehow compute an improved policy?

52

World

Simulator

+

Base Policy Real
World

action

State + reward

53

Policy Rollout Algorithm

1. For each ai, run SimQ(s,ai,π,h) w times
2. Return action with best average of SimQ results

s

a1 a2
ak

…

q11 q12 … q1w q21 q22 … q2w qk1 qk2 … qkw

…

…

…

…

…

…

…

…

…

SimQ(s,ai,π,h) trajectories
Each simulates taking
action ai then following
π for h-1 steps.

Samples of SimQ(s,ai,π,h)

54

Policy Rollout: # of Simulator Calls

• For each action, w calls to SimQ, each using h sim calls
• Total of khw calls to the simulator

a1 a2
ak

…

…

…

…

…

…

…

…

…

…

SimQ(s,ai,π,h) trajectories
Each simulates taking
action ai then following
π for h-1 steps.

s

55

Multi-Stage Rollout

a1 a2
ak

…

…

…

…

…

…

…

…

…

…

Trajectories of
SimQ(s,ai,Rollout(π),h)

Each step requires
khw simulator calls

• Two stage: compute rollout policy of rollout policy of π
• Requires (khw)2 calls to the simulator for 2 stages
• In general exponential in the number of stages

s

56

Rollout Summary

We often are able to write simple, mediocre policies
 Network routing policy

 Compiler instruction scheduling

 Policy for card game of Hearts

 Policy for game of Backgammon

 Solitaire playing policy

 Game of GO

 Combinatorial optimization

Policy rollout is a general and easy way to improve upon
such policies

Often observe substantial improvement!

57

Example: Rollout for Thoughtful Solitaire
[Yan et al. NIPS’04]

Player Success Rate Time/Game

Human Expert 36.6% 20 min

(naïve) Base

Policy

13.05% 0.021 sec

1 rollout 31.20% 0.67 sec

2 rollout 47.6% 7.13 sec

3 rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

58

Example: Rollout for Thoughtful Solitaire
[Yan et al. NIPS’04]

Player Success Rate Time/Game

Human Expert 36.6% 20 min

(naïve) Base

Policy

13.05% 0.021 sec

1 rollout 31.20% 0.67 sec

2 rollout 47.6% 7.13 sec

3 rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

59

Example: Rollout for Thoughtful Solitaire
[Yan et al. NIPS’04]

Player Success Rate Time/Game

Human Expert 36.6% 20 min

(naïve) Base

Policy

13.05% 0.021 sec

1 rollout 31.20% 0.67 sec

2 rollout 47.6% 7.13 sec

3 rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

60

Example: Rollout for Thoughtful Solitaire
[Yan et al. NIPS’04]

Deeper rollout can pay off, but is expensive

Player Success Rate Time/Game

Human Expert 36.6% 20 min

(naïve) Base

Policy

13.05% 0.021 sec

1 rollout 31.20% 0.67 sec

2 rollout 47.6% 7.13 sec

3 rollout 56.83% 1.5 min

4 rollout 60.51% 18 min

5 rollout 70.20% 1 hour 45 min

Outline

• Uniform Sampling

– PAC Bound for Single State MDPs

– Policy Rollouts for full MDPs

• Adaptive Sampling

– UCB for Single State MDPs

– UCT for full MDPs

Non-Adaptive Monte-Carlo

What is an issue with Uniform sampling?

 time wasted equally on all actions!

no early learning about suboptimal actions

Policy rollouts

 Devotes equal resources to each state encountered in the tree
 Would like to focus on most promising parts of tree

But how to control exploration of new parts of tree??

63

Regret Minimization Bandit Objective

s

a1 a2 ak

…

Problem: find arm-pulling strategy such that the
expected total reward at time n is close to the best
possible (i.e. pulling the best arm always)

UniformBandit is poor choice --- waste time on bad arms

Must balance exploring machines to find good payoffs and
exploiting current knowledge

64

UCB Adaptive Bandit Algorithm
[Auer, Cesa-Bianchi, & Fischer, 2002]

• Q(a) : average payoff for action a based on
current experience

• n(a) : number of pulls of arm a

• Action choice by UCB after n pulls:

)(

ln2
)(maxarg*

an

n
aQa a 

Assumes payoffs
in [0,1]

Value Term:
favors actions that looked
good historically

Exploration Term:
actions get an exploration
bonus that grows with ln(n)

Doesn’t waste much time on sub-optimal arms unlike uniform!

65

UCB Algorithm [Auer, Cesa-Bianchi, & Fischer, 2002]

)(

ln2
)(maxarg*

an

n
aQa a 

Theorem: expected number of pulls of sub-optimal arm a is bounded by:

where is regret of arm a

n
a

ln
8
2

a

 Hence, the expected regret after n arm pulls compared to
optimal behavior is bounded by O(log n)

 No algorithm can achieve a better loss rate

Outline

• Uniform Sampling

– PAC Bound for Single State MDPs

– Policy Rollouts for full MDPs

• Adaptive Sampling

– UCB for Single State MDPs

– UCT for full MDPs

UCB Based Policy Rollout

• Allocate samples non-uniformly

– based on UCB action selection

– More sample efficient than uniform policy rollout

– Still suboptimal.

• Instance of Monte-Carlo Tree Search
– Applies principle of UCB

– Some nice theoretical properties

– Better than policy rollouts – asymptotically optimal

– Major advance in computer Go

• Monte-Carlo Tree Search
– Repeated Monte Carlo simulation of a rollout policy

– Each rollout adds one or more nodes to search tree

• Rollout policy depends on nodes already in tree

UCT Algorithm [Kocsis & Szepesvari, 2006]

Current World State

At a leaf node perform a random rollout

Initially tree is single leaf

Current World State

Rollout
Policy

Terminal
(reward = 1)

1

At a leaf node perform a random rollout

Initially tree is single leaf

a1

Current World State

Rollout
Policy

Terminal
(reward = 1)

1

1

1

1

1

At a leaf node perform a random rollout

Initially tree is single leaf

a1

Current World State

1

1

1

1

1

Must select each action at a node at least once

0

Rollout
Policy

Terminal
(reward = 0)

a2

Current World State

1

1

1

1

1/2

Must select each action at a node at least once

0

0

0

0

Current World State

1

1

1

1

1/2

0

0

0

0

When all node actions tried once, select action according to tree policy

Tree Policy

Current World State

1

1

1

1

1/2

When all node actions tried once, select action according to tree policy

0

0

0

0

Tree Policy

0

Rollout
Policy

Current World State

1

1

1

1/2

1/3

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree
Policy

0

0

0

0

What is an appropriate tree policy?
Rollout policy?

77

• Basic UCT uses random rollout policy

• Tree policy is based on UCB:
– Q(s,a) : average reward received in current

trajectories after taking action a in state s

– n(s,a) : number of times action a taken in s

– n(s) : number of times state s encountered

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Theoretical constant that must
be selected empirically in practice

UCT Algorithm [Kocsis & Szepesvari, 2006]

Current World State

1

1

1

1/2

1/3

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree
Policy

0

0

0

0

a1 a2
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Current World State

1

1

1

1/2

1/3

When all node actions tried once, select action according to tree policy

0

0

0

0
Tree
Policy

0

0

0

0

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

80

UCT Recap

• To select an action at a state s
– Build a tree using N iterations of monte-carlo tree

search
• Default policy is uniform random

• Tree policy is based on UCB rule

– Select action that maximizes Q(s,a)
(note that this final action selection does not take
the exploration term into account, just the Q-value
estimate)

• The more simulations the more accurate

Computer Go

“Task Par Excellence for AI” (Hans Berliner)

“New Drosophila of AI” (John McCarthy)

“Grand Challenge Task” (David Mechner)

9x9 (smallest board) 19x19 (largest board)

Game of Go

human champions refuse to compete
against computers, because software is
too bad.

Chess Go
Size of board 8 x 8 19 x 19

Average no. of

moves per game
100 300

Avg branching

factor per turn
35 235

Additional

complexity

Players can

pass

82

A Brief History of Computer Go

2005: Computer Go is impossible!

2006: UCT invented and applied to 9x9 Go (Kocsis, Szepesvari; Gelly et al.)

2007: Human master level achieved at 9x9 Go (Gelly, Silver; Coulom)

2008: Human grandmaster level achieved at 9x9 Go (Teytaud et al.)

ELO rating 1800  2600

Other Successes

Klondike Solitaire (wins 40% of games)

General Game Playing Competition

Real-Time Strategy Games

Combinatorial Optimization

Probabilistic Planning (MDPs)

Usually extend UCT is some ways

Improvements/Issues

• Use domain knowledge to improve the base
policies

– E.g.: don’t choose obvious stupid actions

– better policy does not imply better UCT performance

• Learn a heuristic function to evaluate positions

– Use heuristic to initialize leaves

• Interesting question: UCT versus minimax

Generalization in Learning

Task Hierarchy: MAXQ Decomposition [Dietterich’00]

Root

Take Give Navigate(loc)

Deliver Fetch

Extend-arm Extend-arm Grab Release

Movee Movew Moves Moven

Children of a task
are unordered

Summary

• Multi-armed Bandits
– Principles of both RL and Monte-Carlo

• Reinforcement Learning
– Exploration/Exploitation tradeoff

– Passive/Active RL

– Model free/Model based

• Monte-Carlo Planning
– Exploration/Exploitation tradeoff

– Uniform/Adaptive Sampling

