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Learning/Planning/Acting 





Main Dimensions 

Model-based vs. Model-free 

• Model-based vs. Model-free 
– Model-based  Have/learn 

action models (i.e. transition 
probabilities) 

• Eg. Approximate DP 

– Model-free  Skip them and 
directly learn what action to 
do when (without necessarily 
finding out the exact model of 
the action) 

• E.g. Q-learning 

Passive vs. Active 

• Passive vs. Active 
– Passive: Assume the agent is 

already following a policy (so 
there is no action choice to be 
made; you just need to learn 
the state values and may be 
action model) 

– Active: Need to learn both 
the optimal policy and the 
state values (and may be 
action model) 

 



Main Dimensions (contd) 

Extent of Backup 

• Full DP 
– Adjust value based on values 

of all the neighbors (as 
predicted by the transition 
model) 

– Can only be done when 
transition model is present 

• Temporal difference 
– Adjust value based only on 

the actual transitions 
observed 

 

Strong or Weak Simulator  

• Strong 
– I can jump to any part of the 

state space and start 
simulation there. 

 

• Weak 
– Simulator is the real world 

and I can teleport to a new 
state. 





Does self learning through simulator. 
[Infants don’t get to “simulate” the 
  world since they neither have 
  T(.) nor R(.) of their world] 





We are basically doing EMPIRICAL Policy Evaluation! 

But we know this will be wasteful  
(since it misses the correlation between values of neibhoring states!) 

Do DP-based policy 
 evaluation! 













updated estimate learning rate 
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Aside: Online Mean Estimation 

• Suppose that we want to incrementally compute the 
mean of a sequence of numbers (x1, x2, x3, ….) 

– E.g. to estimate the expected value of a random variable from a 
sequence of samples. 
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Aside: Online Mean Estimation 

• Suppose that we want to incrementally compute the 
mean of a sequence of numbers (x1, x2, x3, ….) 

– E.g. to estimate the expected value of a random variable from a 
sequence of samples. 

 

 

 

 

 

 

 

 

• Given a new sample xn+1, the new mean is the old 
estimate (for n samples) plus the weighted difference 
between the new sample and old estimate 
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Temporal Difference Learning 

• TD update for transition from s to s’: 

 

 

 

• So the update is maintaining a “mean” of the (noisy) 
value samples  

• If the learning rate decreases appropriately with the 
number of samples (e.g. 1/n) then the value 
estimates will converge to true values! (non-trivial) 
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Early Results: Pavlov and his Dog 

• Classical (Pavlovian) 
conditioning 
experiments  

• Training: Bell Food 

• After: Bell  Salivate 

• Conditioned stimulus 
(bell) predicts future 
reward (food) 

(http://employees.csbsju.edu/tcreed/pb/pdoganim.html) 



Predicting Delayed Rewards 

• Reward is typically delivered at the end (when 
you know whether you succeeded or not) 

• Time: 0  t  T with stimulus u(t) and reward 
r(t) at each time step t  (Note: r(t) can be zero 
at some time points) 

• Key Idea: Make the output v(t) predict total 
expected future reward starting from time t 
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Predicting Delayed Reward: TD Learning 

Stimulus at t = 100 and reward at t = 200 

Prediction error  for each time step 

(over many trials) 



Prediction Error in the Primate Brain? 

Dopaminergic cells in Ventral Tegmental Area (VTA) 

Before Training 

 

 

After Training 

Reward Prediction error? 

No error 
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More Evidence for Prediction Error Signals 

Dopaminergic cells in VTA 

Negative error 
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• Under certain conditions: 
– The environment model doesn’t change 

– States and actions are finite 

– Rewards are bounded 

– Learning rate decays with visits to state-action pairs 

• but not too fast decay. (∑i(s,a,i) = ∞, ∑i
2(s,a,i) < ∞) 

– Exploration method would guarantee infinite visits to 
every state-action pair over an infinite training period 





36 

Explore/Exploit Policies 

• GLIE Policy 2: Boltzmann Exploration 
– Select action a with probability, 

 

 

 

 

– T is the temperature. Large T means that each action has 
about the same probability. Small T leads to more 
greedy behavior. 

– Typically start with large T and decrease with time 
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Model based vs. Model Free RL 

• Model based 

– estimate O(|S|2|A|) parameters 

– requires relatively larger data for learning 

– can make use of background knowledge easily 

 

• Model free 

– estimate O(|S||A|) parameters 

– requires relatively less data for learning 

 



• Games 
– Backgammon, Solitaire, Real-time strategy games 

• Elevator Scheduling 
• Stock investment decisions 
• Chemotherapy treatment decisions 
• Robotics 

– Navigation, Robocup 
– http://www.youtube.com/watch?v=CIF2SBVY-J0  
– http://www.youtube.com/watch?v=5FGVgMsiv1s 
– http://www.youtube.com/watch?v=W_gxLKSsSIE  

• Helicopter maneuvering 

Applications of RL 

http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=CIF2SBVY-J0
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=5FGVgMsiv1s
http://www.youtube.com/watch?v=W_gxLKSsSIE
http://www.youtube.com/watch?v=W_gxLKSsSIE


Learning/Planning/Acting 

Planning Monte-Carlo Planning Reinforcement Learning 
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Monte-Carlo Planning 

• Often a simulator of a planning domain is available 

or can be learned from data 

– Even when domain can’t be expressed via MDP language 

41 

Klondike Solitaire 

Fire & Emergency Response 
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• Traffic simulators 

• Robotics simulators 

• Military campaign simulators 

• Computer network simulators 

• Emergency planning simulators  

– large-scale disaster and municipal 

• Sports domains (Madden Football) 

• Board games / Video games 

– Go / RTS 

In many cases Monte-Carlo techniques yield state-of-the-art 
performance. Even in domains where model-based planner 
is applicable.  

Example Domains with Simulators 



Slot Machines as MDP? 

43 

… 

????  



Outline 

• Uniform Sampling 

– PAC Bound for Single State MDPs 

– Policy Rollouts for full MDPs 

 

• Adaptive Sampling 

– UCB for Single State MDPs 

– UCT for full MDPs 
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Single State Monte-Carlo Planning 

• Suppose MDP has a single state and k actions 
– Figure out which action has best expected reward 
– Can sample rewards of actions using calls to simulator 
– Sampling a is like pulling slot machine arm with random 

payoff function R(s,a) 

s 

a1 a2 ak 

R(s,a1) R(s,a2) R(s,ak) 

Multi-Armed Bandit Problem 

… 

… 
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PAC Bandit Objective 

Probably Approximately Correct (PAC)  
• Select an arm that probably (w/ high probability, 1-) has 

approximately (i.e., within ) the best expected reward 

• Use as few simulator calls (or pulls) as possible 

 s 

a1 a2 ak 

R(s,a1) R(s,a2) R(s,ak) 

Multi-Armed Bandit Problem 

… 

… 
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UniformBandit Algorithm 
NaiveBandit from [Even-Dar et. al., 2002] 

1. Pull each arm w times (uniform pulling). 
2. Return arm with best average reward. 
 
 
 
 
 
 
 
 
 
 
How large must w be to provide a PAC guarantee? 

s 

a1 a2 ak 

… 

… r11  r12 … r1w r21  r22 … r2w rk1  rk2 … rkw 
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Aside: Additive Chernoff Bound 

• Let R be a random variable with maximum absolute value Z.  
  An let ri   (for i=1,…,w) be i.i.d. samples of R 
• The Chernoff bound gives a bound on the probability that the  
   average of the ri are far from E[R] 
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UniformBandit PAC Bound 

If                                        for all arms simultaneously 

 
 
with probability at least   1
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With a bit of algebra and Chernoff bound we get: 

That is, estimates of all actions are ε–accurate with 
probability at least 1-  

Thus selecting estimate with highest value is 
approximately optimal with high probability, or PAC 
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# Simulator Calls for UniformBandit  
s 

a1 a2 ak 

R(s,a1) R(s,a2) R(s,ak) 

… 

… 

Total simulator calls for PAC:  
 

Can get rid of ln(k) term with more complex 
algorithm [Even-Dar et. al., 2002]. 


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Outline 

• Uniform Sampling 

– PAC Bound for Single State MDPs 

– Policy Rollouts for full MDPs 

 

• Adaptive Sampling 

– UCB for Single State MDPs 

– UCT for full MDPs 



Policy Improvement via Monte-Carlo 

• Now consider a multi-state MDP. 

• Suppose we have a simulator and a non-optimal policy  
– E.g. policy could be a standard heuristic or based on intuition 

• Can we somehow compute an improved policy? 
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World  

Simulator 

+  

Base Policy Real 
World 

action 

State + reward 
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Policy Rollout Algorithm 

1. For each ai, run SimQ(s,ai,π,h) w times  
2. Return action with best average of SimQ results 

s 

a1 a2 
ak 

… 

q11  q12 … q1w q21  q22 … q2w qk1  qk2 … qkw 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

SimQ(s,ai,π,h) trajectories 
Each simulates taking  
action ai  then following  
π for h-1 steps.  
 

Samples of SimQ(s,ai,π,h)  
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Policy Rollout: # of Simulator Calls 

• For each action, w calls to SimQ, each using h sim calls 
• Total of khw calls to the simulator 

a1 a2 
ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

SimQ(s,ai,π,h) trajectories 
Each simulates taking  
action ai  then following  
π for h-1 steps.  
 

s 
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Multi-Stage Rollout 

a1 a2 
ak 

… 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

Trajectories of  
SimQ(s,ai,Rollout(π),h)  
 

Each step requires  
khw simulator calls 

• Two stage: compute rollout policy of rollout policy of π 
• Requires (khw)2 calls to the simulator for 2 stages 
• In general exponential in the number of stages 

s 
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Rollout Summary 
 

We often are able to write simple, mediocre policies 
 Network routing policy 

 Compiler instruction scheduling 

 Policy for card game of Hearts 

 Policy for game of Backgammon 

 Solitaire playing policy 

 Game of GO 

 Combinatorial optimization 

 

Policy rollout is a general and easy way to improve upon 
such policies  

Often observe substantial improvement! 
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Example: Rollout for Thoughtful Solitaire  
[Yan et al. NIPS’04] 

Player Success Rate Time/Game 

Human Expert 36.6% 20 min 

(naïve) Base 

Policy 

13.05% 0.021 sec 

1 rollout 31.20% 0.67 sec 

2 rollout 47.6% 7.13 sec 

3 rollout 56.83% 1.5 min 

4 rollout 60.51% 18 min 

5 rollout 70.20% 1 hour 45 min 
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Example: Rollout for Thoughtful Solitaire  
[Yan et al. NIPS’04] 

Deeper rollout can pay off, but is expensive 

Player Success Rate Time/Game 

Human Expert 36.6% 20 min 

(naïve) Base 

Policy 

13.05% 0.021 sec 

1 rollout 31.20% 0.67 sec 

2 rollout 47.6% 7.13 sec 

3 rollout 56.83% 1.5 min 

4 rollout 60.51% 18 min 

5 rollout 70.20% 1 hour 45 min 



Outline 

• Uniform Sampling 

– PAC Bound for Single State MDPs 

– Policy Rollouts for full MDPs 

 

• Adaptive Sampling 

– UCB for Single State MDPs 

– UCT for full MDPs 



Non-Adaptive Monte-Carlo 
 

What is an issue with Uniform sampling? 
 

 time wasted equally on all actions! 
 

no early learning about suboptimal actions 
 

Policy rollouts 
 
 Devotes equal resources to each state encountered in the tree 
 Would like to focus on most promising parts of tree 

 
But how to control exploration of new parts of tree?? 
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Regret Minimization Bandit Objective 

s 

a1 a2 ak 

… 

Problem: find arm-pulling strategy such that the 
expected total reward at time n is close to the best 
possible (i.e. pulling the best arm always) 

 

UniformBandit is poor choice --- waste time on bad arms 

Must balance exploring machines to find good payoffs and 
exploiting current knowledge 
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UCB Adaptive Bandit Algorithm  
[Auer, Cesa-Bianchi, & Fischer, 2002] 

• Q(a) : average payoff for action a based on 
current experience 

• n(a) : number of pulls of arm a  

• Action choice by UCB after n pulls: 

 

 )(

ln2
)(maxarg*

an

n
aQa a 

Assumes payoffs  
in [0,1] 

Value Term:  
favors actions that looked  
good historically 

Exploration Term: 
actions get an exploration  
bonus that grows with ln(n) 

Doesn’t waste much time on sub-optimal arms unlike uniform! 
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UCB Algorithm [Auer, Cesa-Bianchi, & Fischer, 2002] 

)(

ln2
)(maxarg*

an

n
aQa a 

Theorem:  expected number of pulls of sub-optimal arm a is bounded by: 

                          
 
 
where       is regret of arm a   

n
a

ln
8
2

a

 Hence, the expected regret after n arm pulls compared to 
optimal behavior is bounded by O(log n) 

 No algorithm can achieve a better loss rate 



Outline 

• Uniform Sampling 

– PAC Bound for Single State MDPs 

– Policy Rollouts for full MDPs 

 

• Adaptive Sampling 

– UCB for Single State MDPs 

– UCT for full MDPs 



UCB Based Policy Rollout 

• Allocate samples non-uniformly 

– based on UCB action selection 

– More sample efficient than uniform policy rollout 

 

– Still suboptimal. 

 

 



• Instance of Monte-Carlo Tree Search 
– Applies principle of UCB 

– Some nice theoretical properties 

– Better than policy rollouts – asymptotically optimal 

– Major advance in computer Go 

 

• Monte-Carlo Tree Search 
– Repeated Monte Carlo simulation of a rollout policy 

– Each rollout adds one or more nodes to search tree 

 

• Rollout policy depends on nodes already in tree 
 

 

UCT Algorithm  [Kocsis & Szepesvari, 2006] 

 



Current World State 

At a leaf node perform a random rollout 

Initially tree is single leaf 



Current World State 

Rollout 
Policy 

Terminal 
(reward = 1) 

1 

At a leaf node perform a random rollout 

Initially tree is single leaf 

a1 



Current World State 

Rollout 
Policy 

Terminal 
(reward = 1) 

1 

1 

1 

1 

1 

At a leaf node perform a random rollout 

Initially tree is single leaf 

a1 



Current World State 

1 

1 

1 

1 

1 

Must select each action at a node at least once 

0 

Rollout 
Policy 

Terminal 
(reward = 0) 

a2 



Current World State 

1 

1 

1 

1 

1/2 

Must select each action at a node at least once 

0 

0 

0 

0 



Current World State 

1 

1 

1 

1 

1/2 

0 

0 

0 

0 

When all node actions tried once, select action according to tree policy 

Tree Policy 



Current World State 

1 

1 

1 

1 

1/2 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 

Tree Policy 

0 

Rollout 
Policy 



Current World State 

1 

1 

1 

1/2 

1/3 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 
Tree  
Policy 

0 

0 

0 

0 

What is an appropriate tree policy? 
Rollout policy?  
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• Basic UCT uses random rollout policy 

 

• Tree policy is based on UCB: 
– Q(s,a) : average reward received in current 

trajectories after taking action a in state s 

– n(s,a) : number of times action a taken in s 

– n(s) : number of times state s encountered 

 
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 

Theoretical constant that must  
be selected empirically in practice 

UCT Algorithm  [Kocsis & Szepesvari, 2006] 

 



Current World State 

1 

1 

1 

1/2 

1/3 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 
Tree  
Policy 

0 

0 

0 

0 

a1 a2 
),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 



Current World State 

1 

1 

1 

1/2 

1/3 

When all node actions tried once, select action according to tree policy 

0 

0 

0 

0 
Tree  
Policy 

0 

0 

0 

0 

),(

)(ln
),(maxarg)(

asn

sn
casQs aUCT 
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UCT Recap 
 

• To select an action at a state s 
– Build a tree using N iterations of monte-carlo tree 

search 
• Default policy is uniform random 

• Tree policy is based on UCB rule 

– Select action that maximizes Q(s,a) 
(note that this final action selection does not take 
the exploration term into account, just the Q-value 
estimate) 

 

• The more simulations the more accurate 



Computer Go 

“Task Par Excellence for AI” (Hans Berliner) 

“New Drosophila of AI” (John McCarthy) 

“Grand Challenge Task” (David Mechner) 

9x9 (smallest board) 19x19 (largest board) 



Game of Go 

human champions refuse to compete 
against computers, because software is 
too bad.   

  

Chess Go  
Size of board 8 x 8 19 x 19 

Average no. of 

moves per game 
100 300 

Avg branching 

factor per turn 
35 235 

Additional 

complexity 

  

Players can 

pass 
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A Brief History of Computer Go 

2005: Computer Go is impossible! 

2006: UCT invented and applied to 9x9 Go (Kocsis, Szepesvari; Gelly et al.) 

2007: Human master level achieved at 9x9 Go (Gelly, Silver; Coulom) 

2008: Human grandmaster level achieved at 9x9 Go (Teytaud et al.) 

 

 

ELO rating 1800  2600 

 

 



Other Successes 

Klondike Solitaire (wins 40% of games) 

General Game Playing Competition 

Real-Time Strategy Games 

Combinatorial Optimization 

 

Probabilistic Planning (MDPs) 

 

Usually extend UCT is some ways 

 

 
 



Improvements/Issues 

• Use domain knowledge to improve the base 
policies 

– E.g.: don’t choose obvious stupid actions 

– better policy does not imply better UCT performance 

 

• Learn a heuristic function to evaluate positions 

– Use heuristic to initialize leaves 

 

• Interesting question: UCT versus minimax 

 



Generalization in Learning 



Task Hierarchy: MAXQ Decomposition [Dietterich’00] 

Root 

Take Give Navigate(loc) 

Deliver Fetch 

Extend-arm Extend-arm Grab Release 

Movee Movew Moves Moven 

Children of a task 
are unordered 



Summary 

• Multi-armed Bandits 
– Principles of both RL and Monte-Carlo 

• Reinforcement Learning 
– Exploration/Exploitation tradeoff 

– Passive/Active RL 

– Model free/Model based 

• Monte-Carlo Planning 
– Exploration/Exploitation tradeoff 

– Uniform/Adaptive Sampling 

 

 


