Approximate Inference in Bayes Nets Sampling based methods

Mausam

(Based on slides by Jack Breese and Daphne Koller)

Intuition

- Suppose I have a coin whose p(heads) is unknown
- How could I estimate it?
- When will I get the correct probability?
- Bayes Net inference is not a learning problem
 - But similar intuitions apply
 - In particular, generate samples from a Bayes net
 - But the samples should be unbiased!

Sampling

Samples should be representative of the world

- Samples: P(people > 60 yrs age in Seattle)
 - Computer Science class
 - Call on landline
 - Call on cellphone
 - Check facebook...
 - Count at election booth

Bayes Nets is a generative model

- We can easily generate samples from the distribution represented by the Bayes net
 - Generate one variable at a time in topological order

Rejection Sampling

- Sample from the prior
 - reject if do not match the evidence

Returns consistent posterior estimates

- Hopelessly expensive if P(e) is small
 - P(e) drops off exponentially with no. of evidence vars

Likelihood Weighting

Idea

- each sample agrees with evidence
- pays some price for the agreement (weight)

Algorithm

- fix evidence variables
- sample only non-evidence variables
- weight each sample by the likelihood of evidence

Likelihood Weighting

- Sampling probability: $S(z,e) = \prod_{i} P(z_i | Parents(Z_i))$
 - Neither prior nor posterior
- Wt for a sample $\langle z,e \rangle$: $w(z,e) = \prod_{i} P(e_i \mid Parents(E_i))$
- Weighted Sampling probability S(z,e)w(z,e)

$$= \prod_{i} P(z_i | Parents(Z_i)) \prod_{i} P(e_i | Parents(E_i))$$

$$= P(z,e)$$

- returns consistent estimates
- performance degrades w/ many evidence vars
 - but a few samples have nearly all the total weight
 - late occuring evidence vars do not guide sample generation

MCMC with Gibbs Sampling

- Fix the values of observed variables
- Set the values of all non-observed variables randomly
- Perform a random walk through the space of complete variable assignments. On each move:
 - 1. Pick a variable X
 - 2. Calculate Pr(X=true | all other variables)
 - 3. Set X to true with that probability
- Repeat many times. Frequency with which any variable X is true is it's posterior probability.
- Converges to true posterior when frequencies stop changing significantly
 - stationary distribution, mixing

Markov Blanket Sampling

- How to calculate Pr(X=true | all other variables) ?
- Recall: a variable is independent of all others given it's Markov Blanket
 - parents
 - children
 - other parents of children
- So problem becomes calculating Pr(X=true | MB(X))
 - We solve this sub-problem exactly
 - Fortunately, it is easy to solve

$$P(X) = \alpha P(X \mid Parents(X)) \prod_{Y \in Children(X)} P(Y \mid Parents(Y))$$

Example

$$P(X) = \alpha P(X \mid Parents(X)) \prod_{Y \in Children(X)} P(Y \mid Parents(Y))$$

$$P(X \mid A, B, C) = \frac{P(X, A, B, C)}{P(A, B, C)}$$

$$= \frac{P(A)P(X \mid A)P(C)P(B \mid X, C)}{P(A, B, C)}$$

$$= \left[\frac{P(A)P(C)}{P(A, B, C)}\right]P(X \mid A)P(B \mid X, C)$$

$$= \alpha P(X \mid A)P(B \mid X, C)$$

Gibbs MCMC Summary

$$P(X/E) = \frac{number\ of\ samples\ with\ X=x}{total\ number\ of\ samples}$$

Advantages:

- No samples are discarded
- No problem with samples of low weight
- Can be implemented very efficiently
 - 10K samples @ second

Disadvantages:

- Can get stuck if relationship between two variables is deterministic
- Many variations have been devised to make MCMC more robust

Other inference methods

- Exact inference
 - Junction tree

- Approximate inference
 - Belief Propagation
 - Variational Methods
 - Metropolis-Hastings

Programming Assignment 4

Fig. 1 The ALARM network representing causal relationships is shown with diagnostic (♠), intermediate (O) and measurement (♠) nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular end-diastolic volume, LV failure: left ventricular failure, MV: minute ventilation, PA Sat: pulmonary artery oxygen saturation, PAP: pulmonary artery pressure, PCWP: pulmonary capillary wedge pressure, Pres: breathing pressure, RR: respiratory rate, TPR: total peripheral resistance, TV: tidal volume