Approximate Inference in Bayes Nets Sampling based methods

Mausam
(Based on slides by Jack Breese and Daphne Koller)

Intuition

- Suppose I have a coin whose p(heads) is unknown
- How could I estimate it?
- When will I get the correct probability?
- Bayes Net inference is not a learning problem
- But similar intuitions apply
- In particular, generate samples from a Bayes net
- But the samples should be unbiased!

Sampling

- Samples should be representative of the world
- Samples: P(people > 60 yrs age in Seattle)
- Computer Science class
- Call on landline
- Call on cellphone
- Check facebook...
- Count at election booth

Bayes Nets is a generative model

- We can easily generate samples from the distribution represented by the Bayes net
- Generate one variable at a time in topological order

Use the samples to compute marginal probabilities, say $\mathrm{P}(\mathrm{c})$

Stochastic simulation $P(B \mid C)$

Samples:

Stochastic simulation $P(B \mid C)$

Samples:

\boldsymbol{B}	\boldsymbol{E}	\boldsymbol{A}	\boldsymbol{C}	\boldsymbol{N}
\bar{b}	e	a	c	\bar{n}
b	\bar{e}	a	\bar{c}	n

Stochastic simulation $P(B \mid C)$

Stochastic simulation $P(B \mid C)$

Stochastic simulation $P(B \mid C)$

Rejection Sampling

- Sample from the prior
- reject if do not match the evidence
- Returns consistent posterior estimates
- Hopelessly expensive if $\mathrm{P}(\mathrm{e})$ is small
$-P(e)$ drops off exponentially with no. of evidence vars

Likelihood Weighting

- Idea
- each sample agrees with evidence
- pays some price for the agreement (weight)
- Algorithm
- fix evidence variables
- sample only non-evidence variables
- weight each sample by the likelihood of evidence

Likelihood weighting $P(B \mid C)$

Likelihood Weighting

- Sampling probability: $\mathrm{S}(\mathrm{z}, \mathrm{e})=\prod_{i} \mathrm{P}\left(\mathrm{z}_{\mathrm{i}} \mid \operatorname{Parents}(\mathrm{Z})\right)$
- Neither prior nor posterior
- Wt for a sample <z,e>: $\mathrm{w}(\mathrm{z}, \mathrm{e})=\prod_{\mathrm{i}} \mathrm{P}\left(\mathrm{e}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{E}_{\mathrm{i}}\right)\right.$
- Weighted Sampling probability S(z,e)w(z,e)

$$
\begin{aligned}
& =\prod_{i} \mathrm{P}\left(\mathrm{z}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{Z}_{\mathrm{i}}\right)\right) \prod_{\mathrm{i}} \mathrm{P}\left(\mathrm{e}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{E}_{\mathrm{i}}\right)\right. \\
& =\mathrm{P}(\mathrm{z}, \mathrm{e})
\end{aligned}
$$

- \rightarrow returns consistent estimates
- performance degrades w/ many evidence vars
- but a few samples have nearly all the total weight
- late occuring evidence vars do not guide sample generation

MCMC with Gibbs Sampling

- Fix the values of observed variables
- Set the values of all non-observed variables randomly
- Perform a random walk through the space of complete variable assignments. On each move:

1. Pick a variable X
2. Calculate $\operatorname{Pr}(X=$ true \mid all other variables $)$
3. Set X to true with that probability

- Repeat many times. Frequency with which any variable X is true is it's posterior probability.
- Converges to true posterior when frequencies stop changing significantly
- stationary distribution, mixing

Markov Blanket Sampling

- How to calculate $\operatorname{Pr}(\mathrm{X}=$ true | all other variables) ?
- Recall: a variable is independent of all others given it's Markov Blanket
- parents
- children
- other parents of children
- So problem becomes calculating $\operatorname{Pr}(X=t r u e \mid M B(X))$
- We solve this sub-problem exactly
- Fortunately, it is easy to solve

$$
P(X)=\alpha P(X \mid \operatorname{Parents}(X)) \prod_{Y \in \operatorname{Children}(X)} P(Y \mid \operatorname{Parents}(Y))
$$

Example

$$
P(X)=\alpha P(X \mid \operatorname{Parents}(X)) \prod_{Y \in C \operatorname{Chidren}(X)} P(Y \mid \operatorname{Parents}(Y))
$$

$$
\begin{aligned}
& P(X \mid A, B, C)=\frac{P(X, A, B, C)}{P(A, B, C)} \\
& =\frac{P(A) P(X \mid A) P(C) P(B \mid X, C)}{P(A, B, C)} \\
& =\left[\frac{P(A) P(C)}{P(A, B, C)}\right] P(X \mid A) P(B \mid X, C) \\
& =\alpha P(X \mid A) P(B \mid X, C)
\end{aligned}
$$

Example

Gibbs MCMC Summary

$$
P(X \mid E)=\frac{\text { number of samples with } X=x}{\text { total number of samples }}
$$

- Advantages:

- No samples are discarded
- No problem with samples of low weight
- Can be implemented very efficiently
- 10K samples @ second
- Disadvantages:
- Can get stuck if relationship between two variables is deterministic
- Many variations have been devised to make MCMC more robust

Other inference methods

- Exact inference
- Junction tree
- Approximate inference
- Belief Propagation
- Variational Methods
- Metropolis-Hastings

Programming Assignment 4

Fig. 1 The ALARM network representing causal relationshtps is shown with diagnostic (θ). intermediate (O) and measurement (0) nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular enddilastolic volume, LV fallure: left ventricular fallure, MV: minute ventlation, PA Sat: pulmonary artery axjgen saturatton, PAP: pulmonary artery pressure, PCWP: pulmonary capllary wedge pressure. Pres: breathing pressure, RR: resptratory rate, TPR: total pertpheral reststance. TV: tidal vohume

