Bayesian Networks Inference Chapter 14

Mausam

(Slides by UW-AI faculty, Stuart Russell \& David Page)

Bayesian Nets: Executive Summary

- Representing full joint distribution is untractable
- Factor using a directed graphical model
- $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Par}\left(X_{i}\right)\right)$
- X is conditionally independent of all non-descendents given its parents
- X is cond. independent of all nodes given Markov Blanket
- MB: parents, children, parents of children
- D-separation: general conditional independence
- Exact Inference: Variable Elimination

Inference in BNs

-The graphical independence representation
-yields efficient inference schemes
-We generally want to compute
-Marginal probability: $\operatorname{Pr}(Z)$,
$-\operatorname{Pr}(Z \mid E)$ where \boldsymbol{E} is (conjunctive) evidence

- Z: query variable(s),
- E: evidence variable(s)
- everything else: hidden variable
- Computations organized by network topology

Causal Reasoning: P(j|e)

Evidential Reasoning: P(b|j)

Intercausal Reasoning: $\mathrm{P}(\mathrm{e} \mid \mathrm{a})$ vs $\mathrm{P}(\mathrm{b} \mid \mathrm{a})$

Intercausal Reasoning: $\mathrm{P}(\mathrm{b} \mid \mathrm{a}, \mathrm{e})$

Variable Elimination

- A factor is a function from some set of variables into a specific value: e.g., $f(E, A, N 1)$
-CPTs are factors, e.g., $P(A \mid E, B)$ function of A, E, B
-VE works by eliminating all variables in turn until there is a factor with only query variable
-To eliminate a variable:
-join all factors containing that variable (like DB)
-sum out the influence of the variable on new factor
-exploits product form of joint distribution

Inference Step 1: Marginal Probability

Rewrite in terms of joint distribution

- Fix the query variables
- Sum over unknown variables

Examples

$$
\begin{aligned}
& P(j)=\Sigma_{M, A, B, E} P(j, M, A, B, E) \\
& P(j, \sim m)=\Sigma_{A, B, E} P(j, \sim m, A, B, E)
\end{aligned}
$$

Inference Step 1: Conditional Probability

Rewrite in terms of joint distribution

- Fix the query variables
- Fix the evidence variables
- Sum over unknown variables
- Add a normalization constant

Example:

$$
\begin{aligned}
P(b \mid j, m) & =P(b, j, m) / P(j, m)=\alpha P(b, j, m) \\
& =\alpha \Sigma_{A, E} P(b, j, m, A, E)
\end{aligned}
$$

Compute α s.t.

$$
P(b \mid j, m)+P(\sim b \mid j, m)=1
$$

Inference Step 2

- Rewrite joint probability using Bayes Net factors
- Examples

$$
\begin{aligned}
& -\Sigma_{M, A, B, E} P(j, M, A, B, E)=\Sigma_{M, A, B, E} P(B) P(E) P(A \mid B, E) P(j \mid A) P(M \mid A) \\
& -\Sigma_{A, E} P(b, j, m, A, E)=\Sigma_{A, E} P(b) P(E) P(A \mid b, E) P(j \mid A) P(m \mid A)
\end{aligned}
$$

Inference Step 3

- Choose variable order
- Take summations inside
- Examples
$-\Sigma_{\mathrm{M}, \mathrm{A}, \mathrm{B}, \mathrm{E}} \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{j} \mid \mathrm{A}) \mathrm{P}(\mathrm{M} \mid \mathrm{A})$
- Order: M, A, E, B
$-\Sigma_{B} P(B) \Sigma_{E} P(E) \Sigma_{A} P(A \mid B, E) P(j \mid A) \Sigma_{M} P(M \mid A)$

Inference Step 3 contd

- Example

$$
-\Sigma_{A, E} P(b) P(E) P(A \mid b, E) P(j \mid A) P(m \mid A)
$$

- Choose order A, E
$-\mathrm{P}(\mathrm{b}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{E}) \Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{A} \mid \mathrm{b}, \mathrm{E}) \mathrm{P}(\mathrm{j} \mid \mathrm{A}) \mathrm{P}(\mathrm{m} \mid \mathrm{A})$
- Choose order E, A
$-P(b) \Sigma_{A} P(j \mid A) P(m \mid A) \Sigma_{E} P(E) P(A \mid b, E)$

Burglars and Earthquakes

Detailed Computation

Detailed Computation

- $\Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{E}) \frac{\Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{j} \mid \mathrm{A})}{f_{2}(B, E)}$

	$\operatorname{Pr}(A \mid E, B)$
$\overline{\text { e, }}$	0.95 (0.05)
e, 5	0.29 (0.71)
$\overline{\text { e, }}$,	0.94 (0.06)
е, $¢$	0.001 (0.999)

Detailed Computation

- $\Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{E}) \frac{\Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{j} \mid \mathrm{A})}{f_{2}(B, E)}$

	$\operatorname{Pr}(\mathrm{J} \mid \mathrm{A})$
$\frac{\mathrm{a}}{2}$	$0.9(0.1)$
a	$0.05(0.95)$

	$\operatorname{Pr}(A \mid E, B)$
$\overline{\text { e, }}$	0.95 (0.05)
e, 5	0.29 (0.71)
$\overline{\text { e, }}$,	0.94 (0.06)
厄, $\square^{\text {er }}$	0.001 (0.999)

Detailed Computation

- $\Sigma_{B} \mathrm{P}(\mathrm{B}) \frac{\Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{E}) \mathrm{f}_{2}(\mathrm{~B}, \mathrm{E})}{f_{3}(B)}$

Detailed Computation

- $\Sigma_{B} \mathrm{P}(\mathrm{B}) \frac{\Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{E}) \mathrm{f}_{2}(\mathrm{~B}, \mathrm{E})}{f_{3}(B)}$

Detailed Computation

- $\Sigma_{B} P(B) f_{3}(B)$

$0.8517644^{*} 0.001$
 $+0.1006653312 * 0.999$
 = 0.10...

Notes on VE

-Each operation is a simple multiplication of factors and summing out a variable

- Complexity determined by size of largest factor
-in our example, 3 vars (not 5)
-linear in number of vars,
-exponential in largest factor elimination ordering greatly impacts factor size
-optimal elimination orderings: NP-hard
-heuristics, special structure (e.g., polytrees)
- Practically, inference is much more tractable using structure of this sort

Variable Elimination Heuristic

- Min-factor
- Select var that results in smallest factor
- Other better heuristics exist...

Caution

- Multiplying too many probabilities in practice
- Underflow
- Take logs and add

> P(J)
> $=\Sigma_{M, A, B, E} P(J, M, A, B, E)$
> $=\Sigma_{M, A, B, E} P(J \mid A) P(B) P(A \mid B, E) P(E) P(M \mid A)$
> $=\Sigma_{A} P(J \mid A) \Sigma_{B} P(B) \Sigma_{E} P(A \mid B, E) P(E)=\begin{array}{ll}\Sigma_{M} P(M \mid A) \\ \Sigma_{M}\end{array}$
> $=\Sigma_{A} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{E})$
> $=\Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{B}) \mathrm{f} 1(\mathrm{~A}, \mathrm{~B})$
> $=\Sigma_{A} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \mathrm{f} 2(\mathrm{~A})$
> $=\mathrm{f} 3(\mathrm{~J})$
> M is irrelevant to the computation
> Thm: Y is irrelevant unless $Y \in$ Ancestors $(Z, U E)$

Reducing 3-SAT to Bayes Nets

- Theorem: Inference in a multi-connected Bayesian network is NP-hard.

Boolean 3CNF formula $\phi=(u \vee \bar{v} \vee w) \wedge(\bar{u} \vee \bar{w} \vee y)$

Probability $\left(^{i}\right)=1 / 2^{n} \cdot \#^{\text {satisfying assignments of } \phi}{ }_{\cdot 2670}$

Complexity of Exact Inference

- Exact inference is NP hard
- 3-SAT to Bayes Net Inference
- It can count no. of assignments for 3-SAT: \#P complete
- Inference in tree-structured Bayesian network
- Polynomial time
- compare with inference in CSPs
- Approximate Inference
- Sampling based techniques

