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Bayes Nets 
• In general, joint distribution P over set of 

variables (X1 x ... x Xn) requires exponential 

space for representation & inference 

•BNs provide a graphical representation of 

conditional independence relations in P 

–usually quite compact 

–requires assessment of fewer parameters, those 
being quite natural (e.g., causal) 

–efficient (usually) inference: query answering and 
belief update 
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Back at the dentist’s 
 

Topology of network encodes  
conditional independence assertions: 

 
Weather is independent of the other variables 
 
Toothache and Catch are conditionally independent of each 
other given Cavity •3 •© D. Weld and D. Fox 



Syntax 

• a set of nodes, one per random variable 

• a directed, acyclic graph (link ≈"directly influences") 

• a conditional distribution for each node given its 
parents: P (Xi | Parents (Xi)) 

– For discrete variables, conditional probability table (CPT)= 
distribution over Xi for each combination of parent values 
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Burglars and Earthquakes 

• You are at a “Done with the AI class” party. 

• Neighbor John calls to say your home alarm has gone off (but 
neighbor Mary doesn't).  

• Sometimes your alarm is set off by minor earthquakes. 

• Question: Is your home being burglarized? 

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls 

• Network topology reflects "causal" knowledge: 
– A burglar can set the alarm off 

– An earthquake can set the alarm off 

– The alarm can cause Mary to call 

– The alarm can cause John to call 
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Burglars and Earthquakes 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 



Burglars and Earthquakes 

© D. Weld and D. Fox •7 

Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 

Pr(B=t) Pr(B=f) 
   0.001   0.999 

Pr(E=t) Pr(E=f) 
  0.002   0.998 



Burglars and Earthquakes 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 

Pr(B=t) Pr(B=f) 
   0.001   0.999 

       Pr(A|E,B) 

e,b    0.95 (0.05) 

e,b    0.29 (0.71) 

e,b    0.94 (0.06) 

e,b    0.001 (0.999)                  

Pr(E=t) Pr(E=f) 
  0.002   0.998 



Burglars and Earthquakes 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 

Pr(B=t) Pr(B=f) 
   0.001   0.999 

       Pr(A|E,B) 

e,b    0.95 (0.05) 

e,b    0.29 (0.71) 

e,b    0.94 (0.06) 

e,b    0.001 (0.999)                  

       Pr(JC|A) 

   a   0.9 (0.1) 

   a  0.05 (0.95) 

       Pr(MC|A) 

   a   0.7 (0.3) 

   a  0.01 (0.99) 

Pr(E=t) Pr(E=f) 
  0.002   0.998 



Earthquake Example  
(cont’d) 

• If we know Alarm, no other evidence influences our 
degree of belief in JohnCalls 

– P(JC|MC,A,E,B) = P(JC|A) 

– also: P(MC|JC,A,E,B) = P(MC|A) and P(E|B) = P(E) 

•By the chain rule we have 

P(JC,MC,A,E,B) = P(JC|MC,A,E,B) ·P(MC|A,E,B)· 

                             P(A|E,B) ·P(E|B) ·P(B) 

       = P(JC|A) ·P(MC|A) ·P(A|B,E) ·P(E) ·P(B) 

• Full joint requires only 10 parameters (cf. 32) 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 



Earthquake Example  
(Global Semantics) 

•We just proved 

P(JC,MC,A,E,B) = P(JC|A) ·P(MC|A) ·P(A|B,E) ·P(E) ·P(B) 

• In general full joint distribution of a Bayes net is defined as 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 
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BNs: Qualitative Structure 
•Graphical structure of BN reflects conditional 

independence among variables 

•Each variable X is a node in the DAG 

•Edges denote direct probabilistic influence 
– usually interpreted causally 

– parents of X are denoted Par(X) 

• Local semantics: X is conditionally independent of all 

nondescendents given its parents 

– Graphical test exists for more general independence 

– “Markov Blanket” 

•© D. Weld and D. Fox •12 



Given Parents, X is Independent of  
Non-Descendants 

•© D. Weld and D. Fox •13 



Examples 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 



For Example 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 



For Example 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 

Radio 



For Example 
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Earthquake Burglary 
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For Example 
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Earthquake Burglary 
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For Example 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 

Radio 



Given Markov Blanket, X is Independent of 
All Other Nodes 

•© D. Weld and D. Fox •20 

MB(X) = Par(X)  Childs(X)  Par(Childs(X)) 



For Example 
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For Example 
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For Example 

•© D. Weld and D. Fox •23 

Earthquake Burglary 

Alarm 

MaryCalls 

Radio 

JohnCalls 



d-Separation 

• An undirected path between two nodes is “cut 
off” if information cannot flow across one of 
the nodes in the path 

• Two nodes are d-separated if every undirected 
path between them is cut off 

• Two sets of nodes are d-separated if every pair 
of nodes, one from each set, is d-separated 

 



d-Separation 

A B C 

Linear connection: Information can flow between A and C 
if and only if we do not have evidence at B 



For Example 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 



d-Separation (continued) 

A B C 

Diverging connection: Information can flow between A 
and C if and only if we do not have evidence at B 



For Example 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 



d-Separation (continued) 

A B C 

Converging connection: Information can flow between A 
and C if and only if we do have evidence at B or any 
descendent of B (such as D or E) 

D E 



For Example 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 



For Example 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 



Bayes Net Construction Example 

Suppose we choose the ordering M, J, A, B, E 

 

 

 

P(J | M) = P(J)? 
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Example 

Suppose we choose the ordering M, J, A, B, E 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)?  P(A | M)? P(A)? 
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Example 

Suppose we choose the ordering M, J, A, B, E 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)?  

P(B | A, J, M) = P(B)? 
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Example 

Suppose we choose the ordering M, J, A, B, E 

 

 

 

P(J | M) = P(J)? 

No 

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)? Yes 

P(B | A, J, M) = P(B)? No 

P(E | B, A ,J, M) = P(E | A)? 

P(E | B, A, J, M) = P(E | A, B)? 
•© D. Weld and D. Fox •37 



Example 

Suppose we choose the ordering M, J, A, B, E 

 

 

 

P(J | M) = P(J)? 

No  

P(A | J, M) = P(A | J)? P(A | J, M) = P(A)? No 

P(B | A, J, M) = P(B | A)? Yes 

P(B | A, J, M) = P(B)? No 

P(E | B, A ,J, M) = P(E | A)? No 

P(E | B, A, J, M) = P(E | A, B)? Yes 
•© D. Weld and D. Fox •38 



Example contd. 

 

 

 

 

 

 

• Deciding conditional independence is hard in noncausal directions 

• (Causal models and conditional independence seem hardwired for humans!) 

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed 

•© D. Weld and D. Fox •39 



Example: Car Diagnosis 
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Example: Car Insurance 
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Other Applications 

• Medical Diagnosis 

• Computational Biology and Bioinformatics 

• Natural Language Processing 

• Document classification 

• Image processing 

• Traffic Monitoring 

• Ecology & natural resource management 

• Robotics 

• Forensic science… 
•42 •© D. Weld and D. Fox 



Compact Conditionals 
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Compact Conditionals 
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Hybrid (discrete+cont) Networks 
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#1: Continuous Child Variables 
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#2 Discrete child – cont. parents 

•47 •© D. Weld and D. Fox 



Why probit? 

•48 •© D. Weld and D. Fox 



Sigmoid Function 

•49 •© D. Weld and D. Fox 



Inference in BNs 
•The graphical independence representation 

–yields efficient inference schemes 

•We generally want to compute  

–Marginal probability: Pr(Z),   

–Pr(Z|E) where E is (conjunctive) evidence 

• Z: query variable(s),  

• E: evidence variable(s) 

• everything else: hidden variable 

•Computations organized by network topology 
•© D. Weld and D. Fox •50 



Causal Reasoning: P(j|e) 
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Burglary 

Alarm 

MaryCalls JohnCalls 

Earthquake 



Evidential Reasoning: P(b|j) 
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Burglary 

Alarm 

MaryCalls JohnCalls 

Earthquake 



Intercausal Reasoning: P(e|a) vs P(b|a) 
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Burglary 

Alarm 

MaryCalls JohnCalls 

Earthquake 



Intercausal Reasoning: P(b|a,e) 
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Burglary 

Alarm 

MaryCalls JohnCalls 

Earthquake 



Inference Example: P(b|j,m) 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 

P(b|j,m) =   P(b,j,m,e,a) 
           e,a 



P(B | J=true, M=true) 
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Earthquake Burglary 

Alarm 

MaryCalls JohnCalls 

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m|a) 
e              a 



Variable Elimination 
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P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a) 
e              a 



Variable Elimination 
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P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a) 
e              a 



Variable Elimination 

•© D. Weld and D. Fox •59 

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a) 
e              a 

Repeated computations  Dynamic Programming 



Variable Elimination 
•A factor is a function from some set of variables 
into a specific value: e.g., f(E,A,N1) 

–CPTs are factors, e.g., P(A|E,B) function of A,E,B 

•VE works by eliminating all variables in turn until 

there is a factor with only query variable 

•To eliminate a variable: 

– join all factors containing that variable (like DB) 

–sum out the influence of the variable on new factor 

–exploits product form of joint distribution 

•© D. Weld and D. Fox •60 



Example of VE: P(JC) 
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Example of VE: P(JC) 
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Earthqk Burgl 

Alarm 

MC JC 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

                                          

                                           

                                    

                           

                  

         



Example of VE: P(JC) 

 

 

•© D. Weld and D. Fox •63 

Earthqk Burgl 

Alarm 

MC JC 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E) 

                                           

                                    

                           

                  

         



Example of VE: P(JC) 
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Earthqk Burgl 

Alarm 

MC JC 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E) 

                                    

                           

                  

         



Example of VE: P(JC) 
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Earthqk Burgl 

Alarm 

MC JC 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) f1(A,B) 

                           

                  

         



Example of VE: P(JC) 
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Earthqk Burgl 

Alarm 

MC JC 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) f1(A,B) 

= AP(J|A) MP(M|A) f2(A) 

                  

         



Example of VE: P(JC) 
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Earthqk Burgl 

Alarm 

MC JC 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) f1(A,B) 

= AP(J|A) MP(M|A) f2(A) 

= AP(J|A) f3(A) 

         



Example of VE: P(JC) 
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Earthqk Burgl 

Alarm 

MC JC 

P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(M|A) P(B)P(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) EP(A|B,E)P(E) 

= AP(J|A) MP(M|A) BP(B) f1(A,B) 

= AP(J|A) MP(M|A) f2(A) 

= AP(J|A) f3(A) 

= f4(J) 

 



Notes on VE 

•Each operation is a simple multiplication of factors 
and summing out a variable 

•Complexity determined by size of largest factor 

– in our example, 3 vars (not 5) 

– linear in number of vars,  

–exponential in largest factor elimination ordering greatly 
impacts factor size 

–optimal elimination orderings: NP-hard 

–heuristics, special structure (e.g., polytrees)  

•Practically, inference is much more tractable using 
structure of this sort •© D. Weld and D. Fox •69 



Irrelevant variables 
Earthquake Burglary 

Alarm 

MaryCalls JohnCalls P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(B)P(A|B,E)P(E)P(M|A) 

= AP(J|A) BP(B) EP(A|B,E)P(E) MP(M|A)  

= AP(J|A) BP(B) EP(A|B,E)P(E) 

= AP(J|A) BP(B) f1(A,B) 

= AP(J|A) f2(A) 

= f3(J) 
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Irrelevant variables 
Earthquake Burglary 

Alarm 

MaryCalls JohnCalls P(J) 

= M,A,B,E P(J,M,A,B,E)  

= M,A,B,E P(J|A)P(B)P(A|B,E)P(E)P(M|A) 

= AP(J|A) BP(B) EP(A|B,E)P(E) MP(M|A)  

= AP(J|A) BP(B) EP(A|B,E)P(E) 

= AP(J|A) BP(B) f1(A,B) 

= AP(J|A) f2(A) 

= f3(J) M is irrelevant to the computation 
Thm: Y is irrelevant unless Y ϵ Ancestors(Z U E) •71 •© D. Weld and D. Fox 



Reducing 3-SAT to Bayes Nets 
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Complexity of Exact Inference 

• Exact inference is NP hard 

– 3-SAT to Bayes Net Inference 

– It can count no. of assignments for 3-SAT: #P complete 
 

• Inference in tree-structured Bayesian network  

– Polynomial time 

– compare with inference in CSPs 
 

• Approximate Inference 

– Sampling based techniques 
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