Bayesian Networks
 Chapter 14

Mausam
(Slides by UW-AI faculty, Stuart Russell \& David Page)

Bayes Nets

- In general, joint distribution P over set of variables ($X_{1} \times \ldots \times X_{n}$) requires exponential space for representation \& inference
-BNs provide a graphical representation of conditional independence relations in P
-usually quite compact
-requires assessment of fewer parameters, those being quite natural (e.g., causal)
-efficient (usually) inference: query answering and belief update

Back at the dentist's

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent of each other given Cavity

Syntax

- a set of nodes, one per random variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents: $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid\right.$ Parents $\left.\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- For discrete variables, conditional probability table (CPT)= distribution over X_{i} for each combination of parent values

Burglars and Earthquakes

- You are at a "Done with the AI class" party.
- Neighbor John calls to say your home alarm has gone off (but neighbor Mary doesn't).
- Sometimes your alarm is set off by minor earthquakes.
- Question: Is your home being burglarized?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Burglars and Earthquakes

Burglars and Earthquakes

Burglars and Earthquakes

Burglars and Earthquakes

Earthquake Example

 (cont’d)

- If we know Alarm, no other evidence influences our degree of belief in JohnCalls

$$
\begin{aligned}
& -P(J C \mid M C, A, E, B)=P(J C \mid A) \\
& - \text { also: } P(M C \mid J C, A, E, B)=P(M C \mid A) \text { and } P(E \mid B)=P(E)
\end{aligned}
$$

- By the chain rule we have

$$
\begin{gathered}
P(J C, M C, A, E, B)=P(J C \mid M C, A, E, B) \cdot P(M C \mid A, E, B) \cdot \\
P(A \mid E, B) \cdot P(E \mid B) \cdot P(B) \\
=P(J C \mid A) \cdot P(M C \mid A) \cdot P(A \mid B, E) \cdot P(E) \cdot P(B)
\end{gathered}
$$

- Full joint requires only 10 parameters (cf. 32)

Earthquake Example (Global Semantics)

- We just proved

$$
P(J C, M C, A, E, B)=P(J C \mid A) \cdot P(M C \mid A) \cdot P(A \mid B, E) \cdot P(E) \cdot P(B)
$$

- In general full joint distribution of a Bayes net is defined as

$$
P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Par}\left(X_{i}\right)\right)
$$

BNs: Qualitative Structure

- Graphical structure of BN reflects conditional independence among variables
- Each variable X is a node in the DAG
- Edges denote direct probabilistic influence
- usually interpreted causally
- parents of X are denoted $\operatorname{Par}(X)$
- Local semantics: X is conditionally independent of all nondescendents given its parents
- Graphical test exists for more general independence
- "Markov Blanket"

Given Parents, X is Independent of Non-Descendants

Examples

For Example

Given Markov Blanket, X is Independent of

 All Other Nodes

$\operatorname{MB}(X)=\operatorname{Par}(X) \cup \operatorname{Childs}(X) \cup \operatorname{Par}(\operatorname{Childs}(X))$

For Example

For Example

d-Separation

- An undirected path between two nodes is "cut off" if information cannot flow across one of the nodes in the path
- Two nodes are d-separated if every undirected path between them is cut off
- Two sets of nodes are d-separated if every pair of nodes, one from each set, is d-separated

d-Separation

Linear connection: Information can flow between A and C if and only if we do not have evidence at B

For Example

d-Separation (continued)

Diverging connection: Information can flow between A and C if and only if we do not have evidence at B

For Example

d-Separation (continued)

Converging connection: Information can flow between A and C if and only if we do have evidence at B or any descendent of B (such as D or E)

For Example

For Example

Bayes Net Construction Example

Suppose we choose the ordering M, J, A, B, E

JohnCalls
$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J) ?$

Example

Suppose we choose the ordering M, J, A, B, E

$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$?
No
$\boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) ? \boldsymbol{P}(A \mid M) ? \boldsymbol{P}(A)$?

Example

Suppose we choose the ordering M, J, A, B, E

$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$?

```
Burglary
```

No
$\boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A) ?$
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$?

Example

Suppose we choose the ordering M, J, A, B, E
$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$?
No

$\boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A)$? Yes
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A) ?$
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A, B) ?$

Example

Suppose we choose the ordering M, J, A, B, E
$\boldsymbol{P}(J \mid M)=\boldsymbol{P}(J)$?
No

$\boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A \mid J) \boldsymbol{P}(A \mid J, M)=\boldsymbol{P}(A)$? No
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B \mid A)$? Yes
$\boldsymbol{P}(B \mid A, J, M)=\boldsymbol{P}(B)$? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A)$? No
$\boldsymbol{P}(E \mid B, A, J, M)=\boldsymbol{P}(E \mid A, B)$? Yes

Example contd.

- Deciding conditional independence is hard in noncausal directions
- (Causal models and conditional independence seem hardwired for humans!)
- Network is less compact: $1+2+4+2+4=13$ numbers needed

Example: Car Diagnosis

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

Example: Car Insurance

Other Applications

- Medical Diagnosis
- Computational Biology and Bioinformatics
- Natural Language Processing
- Document classification
- Image processing
- Traffic Monitoring
- Ecology \& natural resource management
- Robotics
- Forensic science... o. weld and d. Fox

Compact Conditionals

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child
Solution: canonical distributions that are defined compactly
Deterministic nodes are the simplest case:
$X=f(\operatorname{Parents}(X))$ for some function f
E.g., Boolean functions

NorthAmerican \Leftrightarrow Canadian $\vee U S \vee$ Mexican
E.g., numerical relationships among continuous variables

$$
\frac{\partial \text { Level }}{\partial t}=\text { inflow }+ \text { precipitation - outflow - evaporation }
$$

Compact Conditionals

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Rightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Hybrid (discrete+cont) Networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization-possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)

\#1: Continuous Child Variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$
\begin{aligned}
& P(\text { Cost }=c \mid \text { Harvest }=h, \text { Subsidy } ?=\text { true }) \\
& =N\left(a_{t} h+b_{t}, \sigma_{t}\right)(c) \\
& =\frac{1}{\sigma_{t} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}\right)
\end{aligned}
$$

\#2 Discrete child - cont. parents

Probability of Buys? given Cost should be a "soft" threshold:

Probit distribution uses integral of Gaussian:

$$
\begin{aligned}
& \Phi(x)=\int_{-\infty}^{x} N(0,1)(x) d x \\
& P(\text { Buys? }=\text { true } \mid \text { Cost }=c)=\Phi((-c+\mu) / \sigma) \\
& . \Theta D . \text { Weld and } D . \text { Fox }
\end{aligned}
$$

Why probit?

1. It's sort of the right shape
2. Can view as hard threshold whose location is subject to noise

Sigmoid Function

Sigmoid (or logit) distribution also used in neural networks:

$$
P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\frac{1}{1+\exp \left(-2 \frac{-c+\mu}{\sigma}\right)}
$$

Sigmoid has similar shape to probit but much longer tails:

Inference in BNs

-The graphical independence representation
-yields efficient inference schemes
-We generally want to compute
-Marginal probability: $\operatorname{Pr}(Z)$,
$-\operatorname{Pr}(Z \mid E)$ where \boldsymbol{E} is (conjunctive) evidence

- Z: query variable(s),
- E: evidence variable(s)
- everything else: hidden variable
- Computations organized by network topology

Causal Reasoning: P(j|e)

Evidential Reasoning: P(b|j)

Intercausal Reasoning: $\mathrm{P}(\mathrm{e} \mid \mathrm{a})$ vs $\mathrm{P}(\mathrm{b} \mid \mathrm{a})$

Intercausal Reasoning: $\mathrm{P}(\mathrm{b} \mid \mathrm{a}, \mathrm{e})$

Inference Example: P(b|j,m)

$$
\begin{aligned}
& P(B \mid J=t r u e, M=t r u e) \\
& P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

Variable Elimination

$P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m, a)$

Variable Elimination

$P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m, a)$

Variable Elimination

$$
P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m, a)
$$

Repeated computations \rightarrow Dynamic Programming

- © D. Weld and D. Fox

Variable Elimination

- A factor is a function from some set of variables into a specific value: e.g., $f(E, A, N 1)$
- CPTs are factors, e.g., $P(A \mid E, B)$ function of A, E, B
-VE works by eliminating all variables in turn until there is a factor with only query variable
-To eliminate a variable:
-join all factors containing that variable (like DB)
-sum out the influence of the variable on new factor
-exploits product form of joint distribution

Example of VE: P(JC)

P(J)

Example of VE: P(JC)

$$
\begin{aligned}
& P(J) \\
& =\Sigma_{M, A, B, E} P(J, M, A, B, E)
\end{aligned}
$$

Example of VE: P(JC)

P(J)
$=\Sigma_{M, A, B, E} P(J, M, A, B, E)$
$=\Sigma_{M, A, B, E} P(J \mid A) P(M \mid A) P(B) P(A \mid B, E) P(E)$

Example of VE: P(JC)

P(J)
$=\Sigma_{M, A, B, E} P(J, M, A, B, E)$
$=\Sigma_{M, A, B, E} P(J \mid A) P(M \mid A) P(B) P(A \mid B, E) P(E)$
$=\Sigma_{A} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{E})$

Example of VE: P(JC)

P(J)
$=\Sigma_{M, A, B, E} P(J, M, A, B, E)$
$=\Sigma_{M, A, B, E} P(J \mid A) P(M \mid A) P(B) P(A \mid B, E) P(E)$
$=\Sigma_{A} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{E})$
$=\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) f 1(A, B)$

Example of VE: P(JC)

P(J)
$=\Sigma_{M, A, B, E} P(J, M, A, B, E)$
$=\Sigma_{M, A, B, E} P(J \mid A) P(M \mid A) P(B) P(A \mid B, E) P(E)$
$=\Sigma_{A} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{E})$
$=\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) f 1(A, B)$
$=\Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A})$ f2(A)

Example of VE: P(JC)

P(J)
$=\Sigma_{\mathrm{M}, \mathrm{A}, \mathrm{B}, \mathrm{E}} \mathrm{P}(\mathrm{J}, \mathrm{M}, \mathrm{A}, \mathrm{B}, \mathrm{E})$
$=\Sigma_{M, A, B, E} P(J \mid A) P(M \mid A) P(B) P(A \mid B, E) P(E)$
$=\Sigma_{A} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{E})$
$=\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) f(A, B)$
$=\Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A})$ f2(A)
$=\Sigma_{A} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \mathrm{f} 3(\mathrm{~A})$

Example of VE: P(JC)

P(J)
$=\Sigma_{\mathrm{M}, \mathrm{A}, \mathrm{B}, \mathrm{E}} \mathrm{P}(\mathrm{J}, \mathrm{M}, \mathrm{A}, \mathrm{B}, \mathrm{E})$
$=\Sigma_{M, A, B, E} P(J \mid A) P(M \mid A) P(B) P(A \mid B, E) P(E)$
$=\Sigma_{A} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{E})$
$=\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) f 1(A, B)$
$=\Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \Sigma_{\mathrm{M}} \mathrm{P}(\mathrm{M} \mid \mathrm{A})$ f2(A)
$=\Sigma_{A} \mathrm{P}(\mathrm{J} \mid \mathrm{A}) \mathrm{f} 3(\mathrm{~A})$
$=\mathrm{f} 4(\mathrm{~J})$

Notes on VE

-Each operation is a simple multiplication of factors and summing out a variable

- Complexity determined by size of largest factor
-in our example, 3 vars (not 5)
-linear in number of vars,
-exponential in largest factor elimination ordering greatly impacts factor size
-optimal elimination orderings: NP-hard
-heuristics, special structure (e.g., polytrees)
- Practically, inference is much more tractable using structure of this sort . oo. weld ando. Fox

$$
\begin{aligned}
& =\Sigma_{M, A, B, E} P(J, M, A, B, E) \\
& =\Sigma_{M, A, B, E} P(J \mid A) P(B) P(A \mid B, E) P(E) P(M \mid A) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{B} P(B) \Sigma_{E} P(A \mid B, E) P(E): \begin{array}{l}
\Sigma_{M} P(M \mid A) \\
\end{array} \\
& =\Sigma_{A} \mathrm{P}(\mathrm{~J} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{~B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{E}) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{B} P(B) f 1(A, B) \\
& =\Sigma_{\mathrm{A}} \mathrm{P}(\mathrm{~J} \mid \mathrm{A}) \mathrm{f} 2(\mathrm{~A}) \\
& \text { = f3(J) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { P(J) } \\
& \text { Irrelevant variables } \\
& =\Sigma_{M, A, B, E} P(J, M, A, B, E) \\
& =\Sigma_{M, A, B, E} P(J \mid A) P(B) P(A \mid B, E) P(E) P(M \mid A) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{B} P(B) \Sigma_{E} P(A \mid B, E) P(E)=\begin{array}{ll}
\Sigma_{M} P(M \mid A) \\
\Sigma_{M}
\end{array} \\
& =\Sigma_{A} \mathrm{P}(\mathrm{~J} \mid \mathrm{A}) \Sigma_{\mathrm{B}} \mathrm{P}(\mathrm{~B}) \Sigma_{\mathrm{E}} \mathrm{P}(\mathrm{~A} \mid \mathrm{B}, \mathrm{E}) \mathrm{P}(\mathrm{E}) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{B} P(B) f 1(A, B) \\
& =\Sigma_{A} \mathrm{P}(\mathrm{~J} \mid \mathrm{A}) \mathrm{f} 2(\mathrm{~A}) \\
& =\mathrm{f} 3(\mathrm{~J}) \\
& M \text { is irrelevant to the computation } \\
& \text { Thm: } Y \text { is irgeleyanto undess } Y \in \text { Ancestors }(Z . Y E)
\end{aligned}
$$

Reducing 3-SAT to Bayes Nets

- Theorem: Inference in a multi-connected Bayesian network is NP-hard.

Boolean 3CNF formula $\phi=(u \vee \bar{v} \vee w) \wedge(\bar{u} \vee \bar{w} \vee y)$

Complexity of Exact Inference

- Exact inference is NP hard
- 3-SAT to Bayes Net Inference
- It can count no. of assignments for 3-SAT: \#P complete
- Inference in tree-structured Bayesian network
- Polynomial time
- compare with inference in CSPs
- Approximate Inference
- Sampling based techniques

