
Uncertainty 
Chapter 13 

Mausam 

(Based on slides by UW-AI faculty, 
Stuart Russell and Subbarao 

Kambhampati) 



Knowledge Representation 

KR Language Ontological Commitment Epistemological Commitment 

Propositional Logic facts true, false, unknown 

First Order Logic facts, objects, relations true, false, unknown 

Temporal Logic facts, objects, relations, times true, false, unknown 

Probability Theory facts degree of belief 

Fuzzy Logic facts, degree of truth known interval values 

Probabilistic Relational Models 
- combine probability and first order logic 



Propositional Logic Problem Solving 

• Need to write what you know as propositional formulas 
• Theorem proving will then tell you whether a given new 

sentence will hold given what you know 
 

• Three kinds of queries 
– Is my knowledgebase consistent? (i.e. is there at least one world 

where everything I know is true?) Satisfiability 
– Is the sentence S entailed by my knowledge base? (i.e., is it true in 

every world where my knowledge base is true?) 
– Is the sentence S consistent/possibly true with my knowledge 

base? (i.e., is S true in at least one of the worlds where my 
knowledge base holds?) 
• S is consistent if ~S is not entailed 

 
• But cannot differentiate between degrees of likelihood 

among possible sentences 
 



Example 

• Pearl lives in Los Angeles. It is a 
high-crime area. Pearl installed a 
burglar alarm. He asked his 
neighbors John & Mary to call 
him if they hear the alarm. This 
way he can come home if there is 
a burglary. Los Angeles is also 
earth-quake prone. Alarm goes 
off when there is an earth-quake. 

Burglary => Alarm 
Earth-Quake => Alarm 
Alarm => John-calls 
Alarm => Mary-calls 
 
 
If there is a burglary, will Mary call? 
      Check KB & E |= M 
If Mary didn’t call, is it possible that 

Burglary occurred? 
     Check KB & ~M  doesn’t entail ~B 
 
 
 
 



Example (Real) 

• Pearl lives in Los Angeles. It is a high-
crime area. Pearl installed a burglar 
alarm. He asked his neighbors John & 
Mary to call him if they hear the alarm. 
This way he can come home if there is a 
burglary. Los Angeles is also earth-
quake prone. Alarm goes off when 
there is an earth-quake. 

• Pearl lives in real world where (1) 
burglars can sometimes disable alarms 
(2) some earthquakes may be too slight 
to cause alarm (3) Even in Los Angeles, 
Burglaries are more likely than Earth 
Quakes (4) John and Mary both have 
their own lives and may not always call 
when the alarm goes off (5) Between 
John and Mary, John is more of a 
slacker than Mary.(6) John and Mary 
may call even without alarm going off  

Burglary => Alarm    
Earth-Quake => Alarm  
Alarm => John-calls 
Alarm => Mary-calls 
 
 
If there is a burglary, will Mary call? 
      Check KB & E |= M 
If Mary didn’t call, is it possible that Burglary 

occurred? 
     Check KB & ~M  doesn’t entail ~B 
John already called. If Mary also calls, is it 

more likely that Burglary occurred? 
You now also hear on the TV that there was an 

earthquake. Is Burglary more or less likely 
now?  

 
 
 



How do we handle Real Pearl? 

• Omniscient & Eager way: 
–  Model everything! 

– E.g. Model exactly the 
conditions under which John 
will call 
• He shouldn’t be listening to 

loud music, he hasn’t gone 
on an errand, he didn’t 
recently have a tiff with 
Pearl etc etc.  

A & c1 & c2 & c3 &..cn => J 

  (also  the exceptions may have 
interactions 

            c1&c5 => ~c9 ) 

• Ignorant (non-omniscient) 
and Lazy (non-omnipotent) 
way: 
– Model the likelihood  

– In 85% of the worlds where 
there was an alarm, John will 
actually call 

– How do we do this? 
• Non-monotonic logics 

• “certainty factors” 

• “fuzzy logic” 

• “probability” theory? 

Qualification and Ramification problems 
make this an infeasible enterprise 

•Potato in the tail-pipe  



Logic     vs.     Probability 
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Symbol: Q, R … Random variable: Q … 

Boolean values: T, F Domain: you specify 
e.g. {heads, tails} [1, 6] 

State of the world:  
Assignment to Q, R … Z 

Atomic event: complete 
specification of world: Q… Z 
• Mutually exclusive 
• Exhaustive 

Prior probability (aka 
Unconditional prob: P(Q) 

Joint distribution: Prob. 
of every atomic event 



Probability Basics 

• Begin with a set S: the sample space 

– e.g., 6 possible rolls of a die. 

• x ϵ S is a sample point/possible world/atomic event 

• A probability space or probability model is a sample 
space with an assignment P(x) for every x s.t. 
0≤P(x)≤1 and ∑P(x) = 1 

• An event A is any subset of S 

– e.g. A= ‘die roll < 4’ 

• A random variable is a function from sample points 
to some range, e.g., the reals or Booleans 



Types of Probability Spaces 
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Axioms of Probability Theory 

• All probabilities between 0 and 1 

– 0 ≤ P(A) ≤ 1 

– P(true) = 1         

– P(false) = 0. 

• The probability of  disjunction is: 
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Prior Probability 
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Joint distribution can answer any question 



Conditional probability 
• Conditional or posterior probabilities 

e.g., P(cavity | toothache) = 0.8 
i.e., given that toothache is all I know there is 80% chance of cavity 
 

 

• Notation for conditional distributions: 
P(Cavity | Toothache) = 2-element vector of 2-element vectors) 
 
 

• If we know more, e.g., cavity is also given, then we have 
P(cavity |  toothache, cavity) = 1 

 
• New evidence may be irrelevant, allowing simplification: 

P(cavity |  toothache, sunny) = P(cavity | toothache) = 0.8 
 

• This kind of inference, sanctioned by domain knowledge, is crucial 
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Conditional Probability  

• P(A | B) is the probability of A given B 

• Assumes that B is the only info known. 

• Defined by: 
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Chain Rule/Product Rule 

• P(X1, …, Xn) = P(Xn|X1..Xn-1)P(Xn-1|X1..Xn-2)… P(X1) 

        = ПP(Xi|X1,..Xi-1) 



Dilemma at the Dentist’s 
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What is the probability of a cavity given a toothache? 
What is the probability of a cavity given the probe catches? 
 



Inference by Enumeration 
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P(toothache)=.108+.012+.016+.064 
                    = .20  or 20% 



Inference by Enumeration 
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P(toothachecavity) =  .20 + ?? .072 + .008 

.28 



Inference by Enumeration 

•© UW CSE AI Faculty •19 



Complexity of Enumeration 

• Worst case time: O(dn) 

– Where d = max arity 

– And n = number of random variables 

• Space complexity also O(dn)   

– Size of joint distribution 

 

• Prohibitive! 
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Independence 

• A and B are independent iff: 
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These two constraints are  
logically equivalent 

• Therefore, if A and B are independent: 



Independence 
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Complete independence is powerful but rare 
What to do if it doesn’t hold? 



Conditional Independence 
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Instead of 7 entries, only need 5 



Conditional Independence II 
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P(catch | toothache,  cavity) = P(catch |  cavity) 
P(catch | toothache,cavity) = P(catch |cavity) 

Why only 5 entries in table? 



Power of Cond. Independence 

• Often, using conditional independence 
reduces the storage complexity of the joint 
distribution from exponential to linear!! 

 

• Conditional independence is the most basic & 
robust form of knowledge about uncertain 
environments. 
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Bayes Rule 
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E.g. let M be meningitis, S be stiff neck 
 P(M) = 0.0001,  
 P(S) = 0.1,  
 P(S|M)= 0.8 
 

P(M|S)  

Computing Diagnostic Prob. from Causal Prob. 



  
 
 
 

Other forms of Bayes Rule 

prior likelihoodposterior

)()|()(

)()|(

)()|(
)(

evidence

prior likelihood

)(

)()|(
)(












xPxyPyxP

xPxyP

xPxyP
yxP

yP

xPxyP
yxP

x





Conditional Bayes Rule 
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Bayes’ Rule & Cond. Independence 
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Simple Example of State Estimation 

• Suppose a robot obtains measurement z 

• What is P(doorOpen|z)? 
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Causal vs. Diagnostic Reasoning 

• P(open|z) is diagnostic. 

• P(z|open) is causal. 

• Often causal knowledge is easier to obtain. 

• Bayes rule allows us to use causal knowledge: 
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Example 
• P(z|open) = 0.6  P(z|open) = 0.3 

• P(open) = P(open) = 0.5 

•© UW CSE AI Faculty •33 

67.0
3

2

5.03.05.06.0

5.06.0
)|(

)()|()()|(

)()|(
)|(










zopenP

openpopenzPopenpopenzP

openPopenzP
zopenP

• z raises the probability that the door is open. 



These calculations seem 
laborious to do for each 
problem domain – 

is there a general 
representation scheme for 
probabilistic inference? 

Yes – Bayesian Networks 


