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Knowledge Representation

KR Language Ontological Commitment Epistemological Commitment

Propositional Logic facts true, false, unknown
First Order Logic facts, objects, relations true, false, unknown
Temporal Logic facts, objects, relations, times true, false, unknown

Probability Theory facts degree of belief

Fuzzy Logic facts, degree of truth known interval values

Probabilistic Relational Models
- combine probability and first order logic



Propositional Logic Problem Solving

* Need to write what you know as propositional formulas

 Theorem proving will then tell you whether a given new
sentence will hold given what you know

* Three kinds of queries

— Is my knowledgebase consistent? (i.e. is there at least one world
where everything | know is true?) Satisfiability

— Is the sentence S entailed by my knowledge base? (i.e., is it true in
every world where my knowledge base is true?)

— Is the sentence S consistent/possibly true with my knowledge
base? (i.e., is S true in at least one of the worlds where my
knowledge base holds?)

e Sis consistent if ~S is not entailed

e But cannot differentiate between degrees of likelihood
among possible sentences



Example

e Pearl livesin Los Angeles. It is a Burglary => Alarm
high-crime area. Pearl installed a Earth-Quake => Alarm
burglar alarm. He asked his B
neighbors John & Mary to call Alarm => John-calls
him if they hear the alarm. This Alarm => Mary-calls
way he can come home if there is
a burglary. Los Angeles is also
earth-quake prone. Alarm goes

: _ R
off when there is an earth-quake. If there is a burglary, will Mary call:

Check KB&E |=M

If Mary didn’t call, is it possible that
Burglary occurred?

Check KB & ~“M doesn’t entail ~B



Example (Real)

Pearl lives in Los Angeles. It is a high-
crime area. Pearl installed a burglar
alarm. He asked his neighbors John &
Mary to call him if they hear the alarm.
This way he can come home if there is a
burglary. Los Angeles is also earth-
guake prone. Alarm goes off when
there is an earth-quake.

Burglary => Alarm
Earth-Quake => Alarm
Alarm => John-calls
Alarm => Mary-calls

If there is a burglary, will Mary call?
Check KB & E [=M

If Mary didn’t call, is it possible that Burglary
occurred?

Check KB & “M doesn’t entail ~B



*Potato in the tail-pipe

~ 1iscient & Eager way: .
— wlodel everything!

— E.g. Model exactly the
conditions under which John
will call

* He shouldn’t be listening to
loud music, he hasn’t gone
on an errand, he didn’t
recently have a tiff with
Pearl etc etc.

A&cl&c2&c3&..cn=>J

(also the exceptions may have
interactions

c1&c5 =>"~c9)

Qualification and Ramification problems

How do we handle Real Pearl?

lgnorant (non-omniscient)
and Lazy (non-omnipotent)
way:

— Model the likelihood

— In 85% of the worlds where
there was an alarm, John will
actually call

— How do we do this?
* Non-monotonic logics
e “certainty factors”

* “fuzzy logic”
* “probability” theory?-

make this an infeasible enterprise



Logic

VS.

Probability

Symbol: Q, R ...

Random variable: Q ..

Boolean values: T, F

Domain: you specify
e.g. {heads, tails} [1, 6]

State of the world:

Assignment to Q, R .

4

Atomic event: complete
specification of world: Q.. Z
* Mutually exclusive

- Exhaustive

Prior probability (aka
Unconditional prob: P(Q)

<@ (VW

Joint distribution: Prob.
of every atomic event
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Probability Basics

Begin with a set S: the sample space
— e.g., 6 possible rolls of a die.

X € S is a sample point/possible world/atomic event
A probability space or probability model is a sample

space with an assignment P(x) for every x s.t.
0<P(x)<1 and >P(x) =1

An event A is any subset of S

— e.g. A="‘dieroll < 4’

A random variable is a function from sample points
to some range, e.g., the reals or Booleans



Types of Probability Spaces

Propositional or Boolean random variables
e.g., Cavily (do | have a cavity?)

Discrete random variables (finite or infinite)
e.g., Weather is one of {sunny, rain, cloudy, snow)
Weather =rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables ( bounded or unbounded)
e.g., Temp=21.6; also allow, e.g., Temp < 22.0.

Arbitrary Boolean combinations of basic propositions
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Axioms of Probability Theory

* All probabilities between 0 and 1
— 0<P(A) <1
— P(true) =1
— P(false) = 0.

* The probability of disjunction is:

P(Av B) = P(A)+ P(B)— P(AA B)

AAB

True

<11



Prior Probability

Prior or unconditional probabilities of propositions
e.g., P(Cavity =true) = 0.1 and P(Weather = sunny) = 0.72
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = {0.72,0.1,0.08,0.1) (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.c
P(Weather, Cavily) = a 4 x 2 matrix of values:

Joint distribution can answer any question
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Conditional probability

Conditional or posterior probabilities
e.g., P(cavity | toothache) = 0.8
i.e., given that toothache is all | know there is 80% chance of cavity

Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity | toothache, cavity) =1

New evidence may be irrelevant, allowing simplification:
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial
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Conditional Probability

* P(A | B)is the probability of A given B
* Assumes that B is the only info known.

* Defined by: P(AAB)

P(A|B) = P(B)

A AAB B

True




Chain Rule/Product Rule

* P(Xy, oo X ) = POX | X0 X )P(X 4 [ Xpo X ) P(X,)
= MP(X,| X,,..X:.,)



Dilemma at the Dentist’s

What is the probability of a cavity given a toothache?
What is the probability of a cavity given the probe catches?
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Inference by Enumeration

Start with the joint distribution:

toothache = toothache

catch| = catch Y catch| 4 catch

cavity | .108 | .012 .072] .008
= cavity | .016 | .064 144 .576

For any proposition ¢, sum the atomic events where it is true:

P{ti}} — Eu‘.ml:-{;':P{M)

P(tfoothache)=.108+.012+.016+.064
=.20 or 20°/o
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Inference by Enumeration

Start with the joint distribution:

toothache

= toothache

cavity

catch | 7 catch | catch

108 | .012

072

= catch

.008

= cavity

.016| .064

144

276

For any proposition ¢, sum the atomic events where it is true:

P{ti}} — Eu‘.ml:-{;':P{M)

P(toothachevcavity) = .20 + .072 + .008

.28
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Inference by Enumeration

Start with the joint distribution:

toothache = toothache

catch| = catch catch| = catch
.008
576

cavity

= cavity

Can also compute conditional probabilities:

P(—cavity N toothache)

P(toothache)
0.016 4+ 0.064

= 0.4
0.108 + 0.012 +- 0.016 + 0.064 <<

P(—cavity|toothache) =
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Complexity of Enumeration

* Worst case time: O(d")

— Where d = max arity

— And n = number of random variables
* Space complexity also O(d")

— Size of joint distribution

 Prohibitive!



Independence

* A and B are independent iff:

P(A|B) =
P(B] A) =

D(A) These two constraints are

logically equivalent

°(B)

* Therefore, if Aand Bare independent:

P(A|B) =

P(AAB)

) W

P(AAB)=P(A)P(B)
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Independence

A and B are independent iff
P(A|B)=P(A) or P(B|A)=P(B) or P(A B)=P(A)P(B)

Cavity
decomposes into  \J 00thache Catch

P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity)P(W eather)

Cavity
Toothache Catch

Weather

32 entries reduced to 12; for n independent biased coins, 2" — n

Complete independence is powerful but rare
What to do if it doesn't hold?
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Conditional Independence

P(Toothache, Cavity, Catch) has 2* — 1 = 7 independent entries

If | have a cavity, the probability that the probe catches in it doesn't depend
on whether | have a toothache:

(1) P(catch|toothache, cavity) = P(catch|ecavity)

The same independence holds if | haven't got a cavity:
(2) Pl(catchltoothache, ~cavity) = P(catch|—~cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Instead of 7 entries, only need 5
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Conditional Independence |

P(catch | toothache, cavity) = P(catch | cavity)
P(catch | toothache,—cavity) = P(catch |—cavity)

Equivalent statements:

P (T oothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)

Why only 5 entries in table?

Write out full joint distribution using chain rule:
P(Toothache, Catch, Cavity)

= P(Toothache
= P(Toothache
= P(Toothache

Catch, Cavity)P(Catch, Cavity)
Catch, Cavity)P(Catch|Cavity)P(Cavity)
Cavity)P(Catch|Cavity)P(Cavity)

l.e., 2 + 2 + 1 = 5 independent numbers (equations 1 and 2 remove 2)
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Power of Cond. Independence

e Often, using conditional independence
reduces the storage complexity of the joint
distribution from exponential to linear!!

* Conditional independence is the most basic &
robust form of knowledge about uncertain
environments.



Bayes Ru Ie Bayes rules!

posterior
\P(X, y) =P(x]y)P(y) =P(y|x)P(x)
},(X‘ J_ P(y[X) P00 _ likelinood -prior
- P(y) ~ evidence

Useful for assessing diagnostic probability from causal probability:

Ef fect|Cause) P(Cause)

P(Causel Ef fect) = = P(Ef fect)
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Computing Diagnostic Prob. from Causal Prob.

P(Ef fect|Cause)P(Cause)

P(Cause|Ef fect) = P(Ef fect)

E.g. let M be meningitis, S be stiff neck
P(M) = 0.0001,
P(S) = 0.1,
P(SIM)= 0.8

P(M|S) = P(s|m)P(m) _ 0.8 x 0.0001

— (.0008
P(s) 0.1

Note: posterior probability of meningitis still very small!
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Other forms of Bayes Rule

P(y|x) P(x) likelihood -prior
P(y) ~ evidence
P(y|x) P(x)
2 P(y1x) P(x)

P(x|y) =

P(x|y) =

P(x|y)=aP(y|X)P(x)
posterioroc likelinood - prior




Conditional Bayes Rule

P(y[x,2) P(x]2)

P(y|z)
P(y|x,z) P(x,2)

P(x] y,z)=

PO D= S50 v 7) Pixl )

P(x|y,z) =aP(y|x,z)P(x]| z)



Bayes’ Rule & Cond. Independence

P(Cavity|toothache A catch)
= a P(toothache A catch|Cavity)P(Cavity)
= a P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

P(Cause, Ef fecty,...,Effect,) = P(Cause)ll;P(Ef fect;|Cause)
‘j !‘ i.--"" F Y AN ‘H]
Total number of parameters is linearin n
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Simple Example of State Estimation

e Suppose a robot obtains measurement z
 What is P(doorOpen|z)?

.
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Causal vs. Diaghostic Reasoning

P(open|z) is diagnostic.

P(z|open) isssausal.
Often causal knowle o mncinw b ~bhdain

count frequencies!

Bayes rule allows us to use causajknowledge:

P(z | open)P(open)

P(open|z) =
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Example

N P(zlgpen) =0.0 P(z|ﬁopen) = 0.3
* P(open) = P(—open) = 0.5

P(z | open)P(open)

P(open|z) =
(open | 2) P(z|open) p(open)+ P(z | —open) p(—open)

0.6-0.5 2

=—=0.67
0.6-0.5+0.3-0.5 3

P(open|z) =

* zraises the probability that the door is open.



These calculations seem
laborious to do for each
problem domain —

is there a general
representation scheme for

probabilistic inference?

Yes - Bayesian Networks



