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MDP vs. Decision Theory
* Decision theory - episodic

« MDP -- sequential
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Objective of an MDP

 Findapolicyn:S— A

* which optimizes
* minimizes (discounted) €Xpected cost to reach a goal
* maximizes or expected reward
« maximizes undiscount,) expected (reward-cost)

« givena____ horizon
* finite
 infinite
* indefinite

« assuming full observability 18



Role of Discount Factor (y)

Keep the total reward/total cost finite
« useful for infinite horizon problems

* Intuition (economics):
 Money today is worth more than money tomorrow.

- 2
Total reward: ry +yr, + yer; + ...
Total cost: ¢ + yc, + y2C5 + ..

19



Examples of MDPs

« Goal-directed, Indefinite Horizon, Cost Minimization MDP
¢ <S! A! 7-; c! g! SO>
* Most often studied in planning, graph theory communities

* |nfinite Horizon, Discounted Reward Maximization MDP
* <81 A1 7: R1 Y>

* Most often studied in machine learning, economics, operations
research communities

» Oversubscription Planning: Non absorbing goals, Reward Max. MDP

* <81 A1 7: g1 R! SO>
« Relatively recent model
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Examples of MDPs

* Goal-directed, Indefinite Horizon, Cost Minimization MDP
¢ <S! A! 7-; c! g! SO>
* Most often studied in planning, graph theory communities

@finite Horizon, Discounted Reward Maximization M@‘\
* <SATRY most popular

* Most often studied in machine learning, economics, operations
research communities

« Oversubscription Planning: Non absorbing goals, Reward Max. MDP
* <S7 A7 7: g1 R! SO>
« Relatively recent model
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Acyclic vs. Cyclic MDPs

C(a) = 5, C(b) = 10, C(c) =1
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Acyclic vs. Cyclic MDPs

C(a) =5, C(b) =10, C(c) =1 Expectimin doesn’t work
*infinite loop
Expectimin works *V(R/ISIT) =1
*V(Q/R/SIT) =1 *Q(Pb) =11
*V(P) =6 —actiona * Q(P,a) = 7777

* suppose | decide to take a in P
* Q(Pa) =5+ 0.4*1 + O.6Q(P2%)
e=>» =135



Policy Evaluation

* Given a policy 7. compute I/~
« V™ : cost of reaching goal while following

29



Deterministic MDPs

= Policy Graph for 7

7(S0) =y, 7(51) = a,

. C=5 C=1
0 dog dq

. Vifsy) = 7
" V(s,) =6
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Acyclic MDPs

= Policy Graph for 7

" Vs,) =17
" V7'(s,) =4
. Vis,) = 0.6(5+1) + 0.4(2+4) = 6
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General MDPs can be cyclic!

" Vis;)=1
= |fr(s,)="?7 (depends on V7(s,))
= /7(s,)=?? (depends on V7(s,))

32



General SSPs can be cyclic!

V(ig) =0

Vi(s,)= 1+ Vi(s,) = 1

Vr(s,) = 0.7(4+ V7(s,)) + 0.3(3+ 1/1(s)))
Vi(s,)= 0.6(5+ V/(s,)) + 0.4(2+ 1/(s,))

33



Policy Evaluation (Approach 1)

= Solving the System of Linear Equations

= |S] variables.
= (J|S]3) running time
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37



Iterative Policy Evaluation

38



Iterative Policy Evaluation

4.4+O.4V7T(52) ch

3.740.3V7(s) -
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Iterative Policy Evaluation
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Iterative Policy Evaluation

4.4+0.4V7(s,) a ch
0

588
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Iterative Policy Evaluation

4.4+0.4V7(s,) a ch
0

588
6.5856

6.670272
6.68043.

37403V (s) =

3.7
5.464
5.67568
5.7010816

5.704129...



Policy Evaluation (Approach 2)
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Policy Evaluation (Approach 2)
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Policy Evaluation (Approach 2)
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Policy Evaluation (Approach 2)

iterative refinement

@) ()
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Iterative Policy Evaluation

1 //Assumption: T is proper
2 1nitialize Vy' arbitrarily for each state
. .

© W N3 e
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Iterative Policy Evaluation

1 //Assumption: T is proper
2 1nitialize Vow(a.rEitrarl!w)for each state
. .

© W N3 e
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Iterative Policy Evaluation

/| Assumption: T is proper

initialize V' arbitrarily for each state
n+— 0

repeat

n—mn-+1

foreach s € § do

end

compute V' (3) — Zs'ES T(S., TF(S)5 3’) [C(.E., ’J‘T(S)1 5') + Vﬂ“_l(gf)]
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Iterative Policy Evaluation

/| Assumption: T is proper . .
initialize V' arbitrarily for each state iteration n
n— 0

repeat
n«—mn-+1
s e S do

compute V7 (s) « >, s 7T (s,7m(s),s") [C(s,m(s),5s") + V_1(5")]

end
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Iterative Policy Evaluation

/| Assumption: T is proper

initialize V' arbitrarily for each state
n+— 0

repeat

n—mn-+1

foreach s € § do

compute residual, (s) — [V, (s) — V1 (s)
end

compute V;r (3) — Zs'ES T(S., TF(S),J 3’) [C(.E., ’J‘T(S)1 5') + Vﬂ"f_l(gf)]
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Iterative Policy Evaluation

/| Assumption: T is proper
initialize V' arbitrarily for each state
n+— 0
repeat
n—mn-+1
foreach s € § do
compute V7 (s) « >, s 7T (s,7m(s),s") [C(s,m(s),5s") + V_1(5")]

compute residual, (s) — [V, (s) — V1 (s)

end

until max,es residual, (s) < €;
return V,,
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Iterative Policy Evaluation

/| Assumption: T is proper
initialize V' arbitrarily for each state
n+— 0
repeat
n—mn-+1
foreach s € § do
compute V7 (s) « >, s 7T (s,7m(s),s") [C(s,m(s),5s") + V_1(5")]

compute residual, (s) — [V, (s) — V1 (s)

end

_ | e-consistency
until max,es residual, (s) < €;«

return V,,
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Iterative Policy Evaluation

/| Assumption: T is proper
initialize V' arbitrarily for each state
n+— 0
repeat
n—mn-+1
foreach s € § do
compute V7 (s) « >, s 7T (s,7m(s),s") [C(s,m(s),5s") + V_1(5")]

compute residual, (s) — [V, (s) — V1 (s)

end | e-consistency
until max,es residual, (s) < €;«

return V,,

termination

ndition
conditio "



Policy Evaluation > Value Iteration
(Bellman Equations for MDP,)

* <S! A! 7:6 ,g, S()>

* Define V*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

« V* should satisfy the following equation:
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Policy Evaluation > Value Iteration
(Bellman Equations for MDP,)

* <S! A! 7:6 ,g, S()>

* Define V*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

« V* should satisfy the following equation:
if seg

r%iﬂ T(s,a,s')[C(s,a,s")+ V*(s)]
a , S
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Policy Evaluation > Value Iteration
(Bellman Equations for MDP,)

* <S! A! 7:6 !Gs S()>

* Define V*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

« V* should satisfy the following equation:

Q*(s,a)

V*(s) = min, Q*(s,a) o



Bellman Equations for MDP,

* <S! A! 7: R! SO, Y>

» Define V*(s) {optimal value} as the maximum
expected discounted reward from this state.

« V* should satisfy the following equation:
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Fixed Point Computation in VI

V*(s)=min » T(s,a,s)[C(s,a,s")+V*(s')]

acA
s’'eS

iterative refinement

V,,(s) < min T(s,a,s)[C(s,a,s") + V,_1(s")]

ac A
'eS
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Fixed Point Computation in VI

V*(s)=min » T(s,a,s)[C(s,a,s")+V*(s')]

acA
s’'eS

iterative refinement

v

; , , ,
@) iy T(s,a,s)[C(s,a,s)+

s’'eS
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Fixed Point Computation in VI

V*(s)=min » T(s,a,s)[C(s,a,s")+V*(s')]

acA
s’'eS

iterative refinement

T(s,a,s)[C(s,a,s") + V,_1(s")]

72



Fixed Point Computation in VI

non-linear

73



Example

74



Bellman Backup




Bellman Backup

Q(Spa4) =0+ 0
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e W =1 & e W =
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Value Iteration [Bellman 57]

mitialize Vi arbitrarily for each state
n+— 0
repeat
n+—n-+1
foreach s € S do
compute V,(s) using Bellman backup at s
compute residual, (s) = [V (s) — Va—1(s)]
end
until max,es residual, (s) < €;

return greedy policy: 7' (s) = argminge 4 Zsfes T (s,a,s")[C(s,a,s") + Vn(s')]
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e W =1 & e W =

=
]

Value Iteration [Bellman 57]

No restriction on initial value function

initialize Vo@rbitrarilyXor each state
n+— 0
repeat
n+—mn-+1
foreach s € S do
compute V,(s) using Bellman backup at s
compute residual, (s) = [V (s) — Va—1(s)]
end
until max,es residual, (s) < €;

return greedy policy: 7" (s) = argminge 4 ZS,ES T (s,a,s")[C(s,a,s") + Vn(s')]
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T RS = R | N =N - I
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Value Iteration [Bellman 57]

mitialize Vi arbitrarily for each state . .
iteration n

_——

n+— 0
repeat
n—n-+1_
foreach s € S do
compute V,(s) using Bellman backup at s
compute residual, (s) = [V (s) — Va—1(s)]

end
until max,es residual, (s) < €;

return greedy policy: 7" (s) = argminge 4 ZS,ES T (s,a,s")[C(s,a,s") + Vn(s')]
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Value Iteration [Bellman 57]

mitialize Vi arbitrarily for each state
n+— 0
repeat
n+—mn-+1
foreach s € S do
compute V,(s) using Bellman backup at s
compute residual, (s) = [V (s) — Va—1(s)]
end
until maxges residual, (s) < €

e-consistency

return greedy policy: 7" (s) = argminge 4 ZS,ES T (s,a,s")[C(s,a,s") + Vn(s')]
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Value Iteration [Bellman 57]

mitialize Vi arbitrarily for each state
n+— 0
repeat
n+—mn-+1
foreach s € S do
compute V,(s) using Bellman backup at s
compute residual, (s) = [V (s) — Va—1(s)]
end
until maxges residual, (s) < €

e-consistency

return greedy policy: 7" (s) = argminge 4 ZS,ES T (s,a,s")[C(s,a,s]) + Va(s')]

termination
condition
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Example

(all actions cost 1 unless otherwise stated)

3 3 2 2 2.8
3 3 3.8 3.8 2.8
4 4.8 3.8 3.8 3.52
4.8 4.8 4.52 4.52 3.52

5.52 5.52 4.52 4.52 3.808
5.99921 5.99921 4.99969 4.99969 3.99969
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Comments

* Decision-theoretic Algorithm
* Dynamic Programming
* Fixed Point Computation

* Probabilistic version of Bellman-Ford Algorithm
» for shortest path computation
« MDP, : Stochastic Shortest Path Problem

= Time Complexity

« one iteration: O(|S|?|.A|)

« number of iterations: poly(|S|, A, 1/(1-y))
= Space Complexity: O(|S|)

87



Monotonicity

For all n>k
V< V' =2V, < V* (V,, monotonic from below)

V> V' = V_> V* (V, monotonic from above)

88



Extensions

Heuristic Search + Dynamic Programming
« AO* LAO*, RTDP, ..

Factored MDPs
« add planning graph style heuristics
« use goal regression to generalize better

Hierarchical MDPs
 hierarchy of sub-tasks, actions to scale better

Reinforcement Learning
 learning the probability and rewards
 acting while learning - connections to psychology

Partially Observable Markov Decision Processes
* noisy sensors; partially observable environment

e popular in robotics
89



Partially Observable MDPs
Static

Partially
Observable

Noisy

Percepts R

What action

Actions

Stochastic

Instantaneous
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Stochastic, Fully Observable
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Stochastic, Partially Observable

Pl V- ol o g o R S e e S T T e e

P
| o s o N e e e e s e e ataA TR MM A M MM MM N T Sttt NN,

—_—— ——

e e e e e e e e AN A A A T N T T T T T AT T T T T T T T T T T TV

92



Stochastic, Partially Observable
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POMDPs

= [n POMDPs we apply the very same idea as in MDPs.

= Since the state is not observable,

the agent has to make its decisions based on the belief state
which is a posterior distribution over states.

» et b be the belief of the agent about the current state

= POMDPs compute a value function over belief space:

Vr(b) = mgx

r(b:a) +v[ V1 (8’ [b,2) df
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POMDPs

Each belief is a probability distribution,

 value fn is a function of an entire probability distribution.
Problematic, since probability distributions are continuous.

Also, we have to deal with huge complexity of belief spaces.

For finite worlds with finite state, action, and observation
spaces and finite horizons,

* we can represent the value functions by piecewise linear
functions.
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Applications

Robotic control

 helicopter maneuvering, autonomous vehicles

« Mars rover - path planning, oversubscription planning

* elevator planning

Game playing - backgammon, tetris, checkers
Neuroscience

Computational Finance, Sequential Auctions
Assisting elderly in simple tasks

Spoken dialog management

Communication Networks - switching, routing, flow control
War planning, evacuation planning
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