Markov Decision Processes Chapter 17

Mausam

Planning Agent

Classical Planning

Stochastic Planning: MDPs

MDP vs. Decision Theory

- Decision theory episodic
- MDP -- sequential

S: A set of states

- S: A set of states
- A: A set of actions

- S: A set of states
- A: A set of actions
- T(s,a,s'): transition model

- S: A set of states
- A: A set of actions
- 7(s,a,s'): transition model
- C(s,a,s'): cost model

- S: A set of states
- A: A set of actions
- $\mathcal{T}(s,a,s')$: transition model $\mathcal{C}(s,a,s')$: cost model

- S: A set of states
- A: A set of actions
- T(s,a,s'): transition model
- C(s,a,s'): cost model
- G: set of goals

- S: A set of states
- A: A set of actions
- \(\mathcal{T}(\mathcal{s}, \mathcal{a}, \mathcal{s}')\): transition model
- C(s,a,s'): cost model
- G: set of goals
- s₀: start state

- S: A set of states
- A: A set of actions
- T(s,a,s'): transition model
- C(s,a,s'): cost model
- G: set of goals
- s₀: start state
- γ: discount factor

- S: A set of states
- A: A set of actions
- T(s,a,s'): transition model
- C(s,a,s'): cost model
- G: set of goals
- s₀: start state
- γ: discount factor
- $\mathcal{R}(s,a,s')$: reward model

- S: A set of states
- A: A set of actions
- 7(s,a,s'): transition model

- s₀: start state
- γ: discount factor
- R(s,a,s'): reward model

- S: A set of states
- A: A set of actions
- T(s,a,s'): transition model

- γ: discount factor
- R(s,a,s'): reward model

- S: A set of states
- A: A set of actions
- T(s,a,s'): transition model
- C(s,a,s'): cost model
- G: set of goals
- s₀: start state

Objective of an MDP

- Find a policy $\pi: \mathcal{S} \to \mathcal{A}$
- which optimizes
 - minimizes discounted or expected cost to reach a goal expected reward
 - maximizes undiscount. expected (reward-cost)
- given a ____ horizon
 - finite
 - infinite
 - indefinite
- assuming full observability

Role of Discount Factor (γ)

- Keep the total reward/total cost finite
 - useful for infinite horizon problems
- Intuition (economics):
 - Money today is worth more than money tomorrow.
- Total reward: $r_1 + \gamma r_2 + \gamma^2 r_3 + \dots$
- Total cost: $c_1 + \gamma c_2 + \gamma^2 c_3 + ...$

Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimization MDP
 - $\langle S, A, T, C, G, S_0 \rangle$
 - Most often studied in planning, graph theory communities
- Infinite Horizon, Discounted Reward Maximization MDP
 - $\langle S, A, T, R, \gamma \rangle$
 - Most often studied in machine learning, economics, operations research communities
- Oversubscription Planning: Non absorbing goals, Reward Max. MDP
 - $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{G}, \mathcal{R}, s_0 \rangle$
 - Relatively recent model

Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimization MDP
 - $\langle S, A, T, C, G, S_0 \rangle$
 - Most often studied in planning, graph theory communities
- Infinite Horizon, Discounted Reward Maximization MDP
 - <S, A, T, R, γ> most popular
 - Most often studied in machine learning, economics, operations research communities
- Oversubscription Planning: Non absorbing goals, Reward Max. MDP
 - $\langle S, A, T, G, R, s_0 \rangle$
 - Relatively recent model

$$C(a) = 5$$
, $C(b) = 10$, $C(c) = 1$

$$C(a) = 5$$
, $C(b) = 10$, $C(c) = 1$

Expectimin works

- V(Q/R/S/T) = 1
- V(P) = 6 action a

$$C(a) = 5$$
, $C(b) = 10$, $C(c) = 1$

Expectimin works

- V(Q/R/S/T) = 1
- V(P) = 6 action a

$$C(a) = 5$$
, $C(b) = 10$, $C(c) = 1$

Expectimin works

- V(Q/R/S/T) = 1
- V(P) = 6 action a

Expectimin doesn't work •infinite loop

$$C(a) = 5$$
, $C(b) = 10$, $C(c) = 1$

Expectimin works

- V(Q/R/S/T) = 1
- V(P) = 6 action a

Expectimin doesn't work •infinite loop

- V(R/S/T) = 1
- Q(P,b) = 11
- Q(P,a) = ????

$$C(a) = 5$$
, $C(b) = 10$, $C(c) = 1$

Expectimin works

- V(Q/R/S/T) = 1
- V(P) = 6 action a

Expectimin doesn't work •infinite loop

- V(R/S/T) = 1
- Q(P,b) = 11
- Q(P,a) = ????
- suppose I decide to take a in P

$$C(a) = 5$$
, $C(b) = 10$, $C(c) = 1$

Expectimin works

- V(Q/R/S/T) = 1
- V(P) = 6 action a

Expectimin doesn't work •infinite loop

- V(R/S/T) = 1
- Q(P,b) = 11
- Q(P,a) = ????
- suppose I decide to take a in P
- Q(P,a) = 5 + 0.4*1 + 0.6Q(P,a)

Policy Evaluation

- Given a policy π : compute V^{π}
 - V^{π} : cost of reaching goal while following π

Deterministic MDPs

• Policy Graph for π

$$\pi(s_0) = a_0; \pi(s_1) = a_1$$

- $V^{\pi}(s_1) = 1$ $V^{\pi}(s_0) = 6$

Acyclic MDPs

• Policy Graph for π

- $V^{\pi}(s_0) = 0.6(5+1) + 0.4(2+4) = 6$

General MDPs can be cyclic!

- $V^{\pi}(s_1) = 1$
- $V^{\pi}(s_2) = ??$ (depends on $V^{\pi}(s_0)$)
- $V^{\pi}(s_0) = ??$ (depends on $V^{\pi}(s_2)$)

General SSPs can be cyclic!

•
$$V^{\pi}(g) = 0$$

•
$$V^{\pi}(s_1) = 1 + V^{\pi}(s_q) = 1$$

•
$$V^{\pi}(s_2) = 0.7(4 + V^{\pi}(s_q)) + 0.3(3 + V^{\pi}(s_0))$$

$$V^{\pi}(s_0) = 0.6(5 + V^{\pi}(s_1)) + 0.4(2 + V^{\pi}(s_2))$$

Policy Evaluation (Approach 1)

Solving the System of Linear Equations

$$V^{\pi}(s) = 0$$
 if $s \in \mathcal{G}$ $=$

- |S| variables.
- $O(|S|^3)$ running time

Policy Evaluation (Approach 1)

Solving the System of Linear Equations

$$V^{\pi}(s) = 0$$
 if $s \in \mathcal{G}$
$$= [\mathcal{C}(s, \pi(s), s')]$$

- |S| variables.
- $O(|S|^3)$ running time

Policy Evaluation (Approach 1)

Solving the System of Linear Equations

$$V^{\pi}(s) = 0$$
 if $s \in \mathcal{G}$
$$= [\mathcal{C}(s, \pi(s), s') + V^{\pi}(s')]$$

- |S| variables.
- $O(|S|^3)$ running time

Solving the System of Linear Equations

$$V^{\pi}(s) = 0 \quad \text{if } s \in \mathcal{G}$$

$$= \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V^{\pi}(s') \right]$$

- |S| variables.
- $O(|S|^3)$ running time

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V^{\pi}(s') \right]$$

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V^{\pi}(s') \right]$$

$$V_n^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V_{n-1}^{\pi}(s') \right]$$

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V^{\pi}(s') \right]$$

$$V_n^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V_{n-1}^{\pi}(s') \right]$$

$$V^{\pi}(s) = \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V^{\pi}(s') \right]$$

$$(V_n^{\pi}(s)) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + (V_{n-1}^{\pi}(s')) \right]$$

```
1 //Assumption: \pi is proper
 2 initialize V_0^{\pi} arbitrarily for each state
 \mathbf{3}
10
11
```

```
1 //Assumption: \pi is proper
 2 initialize V_0^{\pi} arbitrarily for each state
 \mathbf{3}
10
11
```

11

```
1 //Assumption: \pi is proper
2 initialize V_0^{\pi} arbitrarily for each state
3 n \leftarrow 0
4 repeat
5 | n \leftarrow n+1
6 | foreach s \in \mathcal{S} do
7 | compute V_n^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V_{n-1}^{\pi}(s')\right]
9 | end
```

```
1 //Assumption: \pi is proper
                                                                                               iteration n
 2 initialize V_0^{\pi} arbitrarily for each state
 n \leftarrow 0
 4 repeat
           n \leftarrow n+1
         foreach s \in \mathcal{S} do
                 compute V_n^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[ \mathcal{C}(s, \pi(s), s') + V_{n-1}^{\pi}(s') \right]
           end
10
11
```

11

```
1 //Assumption: \pi is proper
2 initialize V_0^{\pi} arbitrarily for each state
3 n \leftarrow 0
4 repeat
5 | n \leftarrow n+1
6 | foreach s \in \mathcal{S} do
7 | | compute V_n^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[ \mathcal{C}(s, \pi(s), s') + V_{n-1}^{\pi}(s') \right]
8 | compute residual<sub>n</sub>(s) \leftarrow |V_n^{\pi}(s) - V_{n-1}^{\pi}(s)|
9 | end
10
```

```
1 //Assumption: \pi is proper
 2 initialize V_0^{\pi} arbitrarily for each state
 n \leftarrow 0
 4 repeat
 5 \mid n \leftarrow n+1
      for each s \in \mathcal{S} do
                  compute V_n^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[ \mathcal{C}(s, \pi(s), s') + V_{n-1}^{\pi}(s') \right]
                 compute residual<sub>n</sub>(s) \leftarrow |V_n^{\pi}(s) - V_{n-1}^{\pi}(s)|
            end
 9
10 until \max_{s \in \mathcal{S}} \operatorname{residual}_n(s) < \epsilon;
11 return V_n^{\pi}
```

11 return V_n^{π}

```
1 //Assumption: \pi is proper
2 initialize V_0^{\pi} arbitrarily for each state
3 n \leftarrow 0
4 repeat
5 | n \leftarrow n+1
6 | foreach s \in \mathcal{S} do
7 | compute V_n^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[\mathcal{C}(s, \pi(s), s') + V_{n-1}^{\pi}(s')\right]
8 | compute residual_n(s) \leftarrow |V_n^{\pi}(s) - V_{n-1}^{\pi}(s)|
9 | end
10 until \max_{s \in \mathcal{S}} \operatorname{residual}_n(s) < \epsilon;
```

```
1 //Assumption: \pi is proper
 2 initialize V_0^{\pi} arbitrarily for each state
 n \leftarrow 0
 4 repeat
       n \leftarrow n+1
       for each s \in \mathcal{S} do
                  compute V_n^{\pi}(s) \leftarrow \sum_{s' \in \mathcal{S}} \mathcal{T}(s, \pi(s), s') \left[ \mathcal{C}(s, \pi(s), s') + V_{n-1}^{\pi}(s') \right]
                compute residual<sub>n</sub>(s) \leftarrow |V_n^{\pi}(s) - V_{n-1}^{\pi}(s)|
           end
 9
                                                                                                  \epsilon-consistency
10 until \max_{s \in \mathcal{S}} \operatorname{residual}_n(s) < \epsilon;
11 return V_n^{\pi}
```

termination condition

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{C} , \mathcal{G} , $s_0>$
- Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- V* should satisfy the following equation:

```
V^*(s) = 0 if s \in \mathcal{G}
=
```

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{C} , \mathcal{G} , $s_0>$
- Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- V* should satisfy the following equation:

$$V^*(s) = 0$$
 if $s \in \mathcal{G}$
$$= [\mathcal{C}(s, a, s')]$$

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{C} , \mathcal{G} , $s_0>$
- Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- V* should satisfy the following equation:

$$V^*(s) = 0$$
 if $s \in \mathcal{G}$
$$= [\mathcal{C}(s, a, s') + V^*(s')]$$

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{C} , \mathcal{G} , $s_0>$
- Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- V* should satisfy the following equation:

$$V^*(s) = 0$$
 if $s \in \mathcal{G}$
= $\sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^*(s') \right]$

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{C} , \mathcal{G} , $s_0>$
- Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- V* should satisfy the following equation:

$$V^*(s) = 0$$
 if $s \in \mathcal{G}$
= $\min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^*(s') \right]$

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{C} , \mathcal{G} , $s_0>$
- Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- V* should satisfy the following equation:

$$V^*(s) = 0$$
 if $s \in \mathcal{G}$
= $\min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^*(s') \right]$

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{C} , \mathcal{G} , $s_0>$
- Define V*(s) {optimal cost} as the minimum expected cost to reach a goal from this state.
- V* should satisfy the following equation:

$$V^*(s) = 0$$
 if $s \in \mathcal{G}$

$$= \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^*(s') \right]$$
 $O^*(s, a)$

 $V^*(s) = \min_a Q^*(s,a)$

Bellman Equations for MDP₂

- $<\mathcal{S}$, \mathcal{A} , \mathcal{T} , \mathcal{R} , s_0 , $\gamma>$
- Define V*(s) {optimal value} as the maximum expected discounted reward from this state.
- V* should satisfy the following equation:

$$V^*(s) = \max_{a \in Ap(s)} \sum_{s' \in \mathcal{S}} \mathcal{P}r(s'|s, a) \left[\mathcal{R}(s, a, s') + \gamma V^*(s') \right]$$

Fixed Point Computation in VI

$$V^*(s) = \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^*(s') \right]$$

$$V_n(s) \leftarrow \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V_{n-1}(s') \right]$$

Fixed Point Computation in VI

$$V^*(s) = \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^*(s') \right]$$

$$V_n(s) \leftarrow \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V_{n-1}(s') \right]$$

Fixed Point Computation in VI

$$V^*(s) = \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^*(s') \right]$$

$$V_n(s) \leftarrow \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V_{n-1}(s') \right]$$

Fixed Point Computation in VI

$$V^*(s) = \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V^*(s') \right]$$

iterative refinement

$$V_n(s) \leftarrow \min_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V_{n-1}(s') \right]$$

non-linear

Example

$$Q_1(s_4,a_{40}) = 5 + 0$$

$$Q_1(s_4, a_{40}) = 5 + 0$$

 $Q_1(s_4, a_{41}) = 2 + 0.6 \times 0$
 $+ 0.4 \times 2$
 $= 2.8$


```
1 initialize V_0 arbitrarily for each state
2 n \leftarrow 0
3 repeat
4 | n \leftarrow n+1
5 | foreach s \in \mathcal{S} do
6 | compute V_n(s) using Bellman backup at s
7 | compute residual<sub>n</sub>(s) = |V_n(s) - V_{n-1}(s)|
8 | end
9 until \max_{s \in \mathcal{S}} \operatorname{residual}_n(s) < \epsilon;
10 return greedy policy: \pi^{V_n}(s) = \operatorname{argmin}_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[ \mathcal{C}(s, a, s') + V_n(s') \right]
```

No restriction on initial value function

```
initialize V_0 arbitrarily for each state

n \leftarrow 0

repeat

n \leftarrow n + 1

foreach n \in S do

n \leftarrow n + 1

compute V_n(s) using Bellman backup at n \leftarrow n

compute residual n(s) = |V_n(s) - V_{n-1}(s)|

end

until \max_{s \in S} \operatorname{residual}_n(s) < \epsilon;

return greedy policy: \pi^{V_n}(s) = \operatorname{argmin}_{a \in A} \sum_{s' \in S} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V_n(s')\right]
```

```
initialize V_0 arbitrarily for each state n \leftarrow 0 iteration n repeat

n \leftarrow 0

repeat

n \leftarrow n+1

for each s \in \mathcal{S} do

n \leftarrow n+1

compute V_n(s) using Bellman backup at s \leftarrow 1

compute residual n(s) = |V_n(s) - V_{n-1}(s)|

end

until \max_{s \in \mathcal{S}} \operatorname{residual}_n(s) < \epsilon;

return greedy policy: \pi^{V_n}(s) = \operatorname{argmin}_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[\mathcal{C}(s, a, s') + V_n(s')\right]
```

```
1 initialize V_0 arbitrarily for each state
2 n \leftarrow 0
3 repeat
4 | n \leftarrow n+1
5 | for each s \in \mathcal{S} do
6 | compute V_n(s) using Bellman backup at s
7 | compute residual s \in S residual
```

```
1 initialize V_0 arbitrarily for each state
 n \leftarrow 0
 3 repeat
 4 n \leftarrow n+1
 5 | foreach s \in \mathcal{S} do
 compute V_n(s) using Bellman backup at s compute residual<sub>n</sub>(s) = |V_n(s) - V_{n-1}(s)|
                  compute V_n(s) using Bellman backup at s
            end
                                                                                                            €-consistency
 9 until \max_{s \in \mathcal{S}} \operatorname{residual}_n(s) < \epsilon;
9 until \max_{s \in \mathcal{S}} \operatorname{residual}_n(s) < \epsilon;
10 return greedy policy: \pi^{V_n}(s) = \operatorname{argmin}_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} \mathcal{T}(s, a, s') \left[ \mathcal{C}(s, a, s') + V_n(s') \right]
                                                                                                         termination
                                                                                                            condition
```

Example

(all actions cost 1 unless otherwise stated)

n	$V_n(s_0)$	$V_n(s_1)$	$V_n(s_2)$	$V_n(s_3)$	$V_n(s_4)$
0	3	3	2	2	1
1	3	3	2	2	2.8
2	3	3	3.8	3.8	2.8
3	4	4.8	3.8	3.8	3.52
4	4.8	4.8	4.52	4.52	3.52
5	5.52	5.52	4.52	4.52	3.808
20	5.99921	5.99921	4.99969	4.99969	3.99969

Comments

- Decision-theoretic Algorithm
- Dynamic Programming
- Fixed Point Computation
- Probabilistic version of Bellman-Ford Algorithm
 - for shortest path computation
 - MDP₁: Stochastic Shortest Path Problem
- Time Complexity
 - one iteration: $O(|S|^2|A|)$
 - number of iterations: poly(|S|, |A|, $1/(1-\gamma)$)
- Space Complexity: O(|S|)

Monotonicity

For all n>k

$$V_k \leq_p V^* \Rightarrow V_n \leq_p V^*$$
 (V_n monotonic from below)

$$V_k \ge_p V^* \Rightarrow V_n \ge_p V^* (V_n \text{ monotonic from above})$$

Extensions

- Heuristic Search + Dynamic Programming
 - AO*, LAO*, RTDP, ...
- Factored MDPs
 - add planning graph style heuristics
 - use goal regression to generalize better
- Hierarchical MDPs
 - hierarchy of sub-tasks, actions to scale better
- Reinforcement Learning
 - learning the probability and rewards
 - acting while learning connections to psychology
- Partially Observable Markov Decision Processes
 - noisy sensors; partially observable environment
 - popular in robotics

Partially Observable MDPs

Stochastic, Fully Observable

Stochastic, Partially Observable

Stochastic, Partially Observable

POMDPs

In POMDPs we apply the very same idea as in MDPs.

Since the state is not observable,
 the agent has to make its decisions based on the belief state which is a posterior distribution over states.

- Let b be the belief of the agent about the current state
- POMDPs compute a value function over belief space:

$$V_T(b) = \max_{a} \left[r(b,a) + \gamma \int V_{T-1}(b') p(b' | b, a) db' \right]$$

POMDPs

- Each belief is a probability distribution,
 - value fn is a function of an entire probability distribution.
- Problematic, since probability distributions are continuous.
- Also, we have to deal with huge complexity of belief spaces.

- For finite worlds with finite state, action, and observation spaces and finite horizons,
 - we can represent the value functions by piecewise linear functions.

Applications

- Robotic control
 - helicopter maneuvering, autonomous vehicles
 - Mars rover path planning, oversubscription planning
 - elevator planning
- Game playing backgammon, tetris, checkers
- Neuroscience
- Computational Finance, Sequential Auctions
- Assisting elderly in simple tasks
- Spoken dialog management
- Communication Networks switching, routing, flow control
- War planning, evacuation planning