Classical Planning
Chapter 10

Mausam / Andrey Kolobov

(Based on slides of Dan Weld,
Marie desJardins)

Planning

* Given
— a logical description of the world states,
— a logical description of a set of possible actions,
— a logical description of the initial situation, and
— a logical description of the goal conditions,

* Find
— a sequence of actions (a plan of actions) that brings us

from the initial situation to a situation in which the goal
conditions hold.

© D. Weld, D. Fox 2

>0

Example: BlocksWorld

© Daniel S. Weld

O| @ >

Planning Input:

State Variables/Propositions

(on-table a) (on-table b) (on-table c¢)

(cleara) (clearb) (clear c)

(arm-empty)

(holding a) (holding b) (holding c)
(onab)(onac)(onba)(onbc)(onca)(onchbh)

Typed constants:
yp No. of state variables =16

« blocka, b,c

. — 216
Typed predicates: No. of states =2
- (on-table ?b); (clear ?b) No. of reachable states = ?

« (arm-empty); (holding ?b)
 (on?bl?b2)

Planning Input: Actions
pickup a b, pickup ac, ... * pickup ?bl ?b2

place ab, placeac,... « place ?bl ?b2
pickup-table a, pickup-table b, ... <+ pickup-table 7b

place-table a, place-table b, ... « place-table ?b

Total: 6+ 6 + 3 + 3 =18 “ground” actions

Total: 4 action schemata

Planning Input: Actions (contd)
e :action pickup ?b1 ?b2 - :action pickup-table ?b

precondition :precondition
(on ?b1 ?b?2) (on-table ?b)
(clear ?b1) (clear ?b)
(arm-empty) (arm-empty)
effect effect
(holding ?b1) (holding ?b)
(not (on ?b1 ?b2)) (not (on-table ?b))
(clear ?b2) (not (arm-empty))

(not (arm-empty))

Planning Input: Initial State

C
A

B

N

(on-table a) (on-table b)
(arm-empty)

(clearc) (clear b)

(on c a)

All other propositions false

* not mentioned = false

Planning Input: Goal
0
:

* (on-table c) AND (onbc) AND (on ab)

e Is this a state?

* In planning a goal is a set of states

Planning Input Representation

Description of world states

Description of initial state of world

— Set of propositions

Description of goal: i.e. set of worlds
— E.g., Logical conjunction

— Any world satisfying conjunction is a goal

Description of available actions

Classical Planning

* Simplifying assumptions
— Atomic time
— Agent is omniscient (no sensing necessary).
— Agent is sole cause of change
— Actions have deterministic effects

* STRIPS representation
— World = set of true propositions (conjunction)

— Actions:
* Precondition: (conjunction of positive literals, no functions)
» Effects (conjunction of literals, no functions)

— Goal = conjunction of positive literals (e.g., Rich » Famous)

Planning vs. General Search

Basic difference: Explicit, logic-based representation

e States/Situations: descriptions of the world by logical
formulae

— agent can explicitly reason about and communicate with
the world.

e Operators/Actions: Axioms or transformation on formulae in
a logical form

— agent can gain information about the effects of actions by
inspecting the operators.

* Goal conditions as logical formulae vs. goal test (black box)
— agent can reflect on its goals.

© D. Weld, D. Fox

11

Planning as Search

 Forward Search in ? Space

— World State Space

— start from start state; look for a state with goal property
o dfs/bfs
° A*

* Backward Search in ? Space

— Subgoal Space

— start from goal conjunction; look for subgoal that holds in
initial state

o dfs/bfs/A*
* Local Search in ? Space

— Plan Space

© D. Weld, D. Fox

12

Forward World-Space Search

q

Initial / N cont
State
Al B State
N S

(hed :
Al |B —) B
_/ \ C

@\

© Daniel S. Weld 13

o
=

Heuristics for State-Space Search

e Count number of false goal propositions in current state
Admissible?
NO

* Subgoal independence assumption:

— Cost of solving conjunction is sum of cost of solving each subgoal
independently

— Optimistic: ignores negative interactions
— Pessimistic: ignores redundancy

— Admissible? No

© D. Weld, D. Fox 15

Heuristics for State Space Search
(contd)

Delete all preconditions from actions, solve
easy relaxed problem, use length
Admissible?
YES

Delete negative effects from actions, solve
easier relaxed problem, use length
Admissible?

YES (if Goal has only positive literals, true in
STRIPS)

16
CSE 573

Backward Subgoal-Space Search

Regression planning

\ A
Problem: Need to find predecessors of

state

B
CIDE
N S
Problem: Many possible goal states F
are equally acceptable. :@
' e C E
From which one does one search: N
A
Bl DD
c E
N S

Initial State i1s

completely defined
(B
D
E

C
A B
\/ ©D. Weld, D. Fox

Regression

* Regressing a goal, G, thru an action, A
vields the weakest precondition G’

— Such that: if G’ is true before A is executed
— G is guaranteed to be true afterwards

~
Represents a Represents a

set of world set of world
states states
J N

© D. Weld, D. Fox

Regression Example

'] G

A

[¢
@ » :action pickup-table ?b g
Ny :precondition N4
(

puosaud
122}}2

~ (on-table ?b)

(and (clear C) (clear ?b) (and (holding C)
(on-table C) (arm-empty) (on A B))
(arm-empty) effect
(on A B)) (holding ?b)

(not (on-table ?b))
(not (arm-empty))

Remove positive effects
Add preconditions for A

© D. Weld, D. Fox 19

Complexity of Planning
* Size of Search Space

— Forward: size of world state space
— Backward: size of subsets of partial state space!

* Size of World state space

— exponential in problem representation

e What to do?

— Informative heuristic that can be computed in
polynomial time!

Planning Graph: Basic idea

* Construct a planning graph: encodes
constraints on possible plans

* Use this planning graph to compute an
informative heuristic (Forward A*)

* Planning graph can be built for each problem
in polynomial time

The Planning Gr

C—

X/

X/

22

Note: a few noops missing.for-clarity

Graph Expansion

Proposition level O

Initial conditions

Action level |

no-op for each proposition at level i-1

action for each operator instance whose

preconditions exist at level i-1

WA
A

Proposition level |

effects of each no-op and action at level i

-\

© D. Weld, D. Fox 3

Mutual Exclusion

Two actions are mutex if
» one clobbers the other’s effects or preconditions
* they have mutex preconditions

Two proposition are mutex if
one is the negation of the other
«all ways of achieving them are mutex

© D. - p 24

Observation 1

Propositions monotonically increase
(always carried forward by no-ops)

© D. Weld, D. Fox

28

Observation 2

Actions monotonically increase

© D. Weld, D. Fox

29

Observation 3

P P P

)) q .
Al—

r/ r r

Proposition mutex relationships monotonically decrease

© D. Weld, D. Fox 30

Observation 4

TN NN,

NI N N
N N N\ |
) N . e

Action mutex relationships monotonically decrease

© D. Weld, D. Fox 31

Observation 5

Planning Graph ‘levels off’.
e After some time k all levels are identical

* Because it’s a finite space, the set of literals
never decreases and mutexes don’t reappear.

Properties of Planning Graph

* If goal is absent from last level

— Goal cannot be achieved!

* If there exists a path to goal
— Goal is present in the last level

e If goalis present in last level
— There may not exist any path still

Heuristics based on Planning Graph

e Construct planning graph starting from s

* h(s) =level at which goal appears non-mutex
— Admissible?
— YES

* Relaxed Planning Graph Heuristic
— Remove negative preconditions build plan. graph
— Use heuristic as above
— Admissible? YES
— More informative? NO
— Speed: FASTER

FF

* Topmost classical planner until 2009

e State space local search
— Guided by relaxed planning graph
— Full bfs to escape plateaus — enforced hill climbing
— A few other bells and whistles...

SATPlan: Planning as SAT

Formulate the planning problem as a CSP

Assume that the plan has k actions

Create a binary variable for each possible action a:
— Action(a,i) (TRUE if action a is used at step i)

Create variables for each proposition that can hold at
different points in time:

— Proposition(p,i) (TRUE if proposition p holds at step i)

Constraints

XOR: Only one action can be executed at each time step
At least one action must be executed at each time step
Constraints describing effects of actions

— Action(a,i) =2 prec(a,i-1); Action(a,i) = eff(a,i)

Maintain action: if an action does not change a prop p,

then maintain action for proposition p is true

— Action(maint_p,i) = Action(al,i) v Action(a2,i)... [for all a, that
don’t effect p]

A proposition is true at step i only if some action
(possibly a maintain action) made it true

Constraints for initial state and goal state

Aplicain: Mars Rover

. ,—;' R:»_"cr_r o P Pancam
Auipmen Rt g Calibration

Deck (RED) Antenna Target——

e " onE
" - [~
Paeent Mast Antenna

Assembly (PVIA)
: - »“ ‘"- -

Capture/l mcr

~Arrays

S
: MWarm =
Instrament Electronics
Deéployment Box (WEB)

, : Rocker-Bogic
Device (IDD) \obility Systen

Hazcom -
(pair)

fasSftwinstruments (APXS, VB, MI, RAT) ”"r &

38
© Mausam

Network Security

Analysis

Application

' VU0
2010011

(4
b
¢
5

110

00

3

-

vk
0

’g

00nN1Co
3100110”’

10

39

© Mausam

Planning Summary

Problem solving algorithms that operate on explicit
propositional representations of states and actions.

Make use of specific heuristics.
STRIPS: restrictive propositional language

State-space search: forward (progression) / backward
(regression) search

Local search FF; using compilation into SAT

Partial order planners search space of plans from goal to
start, adding actions to achieve goals (did not cover)

© D. Weld, D. Fox 40

