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(Based on slides of Stuart Russell, 
Andrew Parks, Henry Kautz,         

Linda Shapiro) 
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Game Playing 
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Why do AI researchers study game playing? 

 

1. It’s a good reasoning problem, formal and nontrivial. 

 

2. Direct comparison with humans and other computer 

     programs is easy. 



What Kinds of Games? 

Mainly games of strategy with the following 
characteristics: 

 

1. Sequence of moves to play 

2. Rules that specify possible moves 

3. Rules that specify a payment for each move 

4. Objective is to maximize your payment 
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Games vs. Search Problems 

• Unpredictable opponent  specifying a move 
for every possible opponent reply 

 

• Time limits  unlikely to find goal, must 
approximate 
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Games as Adversarial Search 
• States:   

– board configurations 

• Initial state:   

– the board position and which player will move 

• Successor function:   

– returns list of (move, state) pairs, each indicating a legal 
move and the resulting state 

• Terminal test:   

– determines when the game is over 

• Utility function:  

– gives a numeric value in terminal states   

(e.g., -1, 0, +1 for loss, tie, win) 
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Game Tree (2-player, Deterministic, 
Turns) 
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The computer is Max. 

The opponent is Min. 

At the leaf nodes, the 

    utility function 
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means good, small is bad. 
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Mini-Max Terminology 

• move: a move by both players 

• ply: a half-move 

• utility function: the function applied to leaf nodes 

• backed-up value 

– of a max-position: the value of its largest successor 

– of a min-position: the value of its smallest successor 

• minimax procedure: search down several levels; at 
the bottom level apply the utility function, back-up 
values all the way up to the root node, and that node 
selects the move. 
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Minimax 

• Perfect play for deterministic games 

• Idea: choose move to position with highest minimax value  
 = best achievable payoff against best play 

• E.g., 2-ply game: 
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Minimax Strategy 

• Why do we take the min value every other 
level of the tree? 

 

• These nodes represent the opponent’s choice 
of move. 

 

• The computer assumes that the human will 
choose that move that is of least value to the 
computer. 
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Minimax algorithm 
Adversarial analogue of DFS 
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Properties of Minimax 

• Complete?  
– Yes (if tree is finite) 

• Optimal?  
– Yes (against an optimal opponent) 

– No (does not exploit opponent weakness against suboptimal opponent) 

• Time complexity?  
– O(bm) 

• Space complexity?  
– O(bm) (depth-first exploration) 
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Good Enough? 
• Chess: 

– branching factor b≈35 

– game length m≈100 

– search space bm ≈ 35100 ≈ 10154 

 

• The Universe: 

– number of atoms ≈ 1078 

– age ≈ 1018 seconds 

– 108 moves/sec x 1078 x 1018 = 10104 

 

• Exact solution completely infeasible  
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Alpha-Beta Procedure 

• The alpha-beta procedure can speed up a 
depth-first minimax search. 

• Alpha: a lower bound on the value that a max 
node may ultimately be assigned 

 

• Beta: an upper bound on the value that a 
minimizing node may ultimately be assigned 
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Alpha-Beta 
MinVal(state, alpha, beta){ 

 if (terminal(state))  

   return utility(state); 

 for (s in children(state)){ 

  child = MaxVal(s,alpha,beta); 

  beta = min(beta,child); 

  if (alpha>=beta) return child; 

 } 

 return best child (min); }  

alpha = the highest value for MAX along the path 

beta = the lowest value for MIN along the path 
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Alpha-Beta 
MaxVal(state, alpha, beta){ 

 if (terminal(state))  

   return utility(state); 

 for (s in children(state)){ 

  child = MinVal(s,alpha,beta); 

  alpha = max(alpha,child); 

  if (alpha>=beta) return child; 

 } 

 return best child (max); }  

alpha = the highest value for MAX along the path 

beta = the lowest value for MIN along the path 
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Properties of α-β 

• Pruning does not affect final result. This means that it gets the 
exact same result as does full minimax. 

 

• Good move ordering improves effectiveness of pruning 
 

• With "perfect ordering," time complexity = O(bm/2) 
 doubles depth of search 

 

• A simple example of reasoning about ‘which computations are 
relevant’ (a form of metareasoning) 
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Shallow Search Techniques 

1. limited search for a few levels 

 

2. reorder the level-1 sucessors 

 

3. proceed with - minimax search 
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Good Enough? 
• Chess: 

– branching factor b≈35 

– game length m≈100 

– search space bm/2 ≈ 3550 ≈ 1077 

• The Universe: 

– number of atoms ≈ 1078 

– age ≈ 1018 seconds 

– 108 moves/sec x 1078 x 1018 = 10104  

The universe 

can play chess 

- can we? 
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Cutting off Search 

MinimaxCutoff is identical to MinimaxValue except 
1. Terminal? is replaced by Cutoff? 
2. Utility is replaced by Eval 

 
Does it work in practice? 
 bm = 106, b=35  m=4 
 
4-ply lookahead is a hopeless chess player! 

– 4-ply ≈ human novice 
– 8-ply ≈ typical PC, human master 
– 12-ply ≈ Deep Blue, Kasparov 
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Evaluation Functions 
Tic Tac Toe 

• Let p be a position in the game 

• Define the utility function f(p) by 

– f(p) = 
• largest positive number if p is a win for computer 

• smallest negative number if p is a win for opponent 

• RCDC – RCDO  

– where RCDC is number of rows, columns and diagonals in 
which computer could still win 

– and RCDO is number of rows, columns and diagonals in 
which opponent could still win. 
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Sample Evaluations 

• X = Computer; O = Opponent 
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Evaluation functions 

• For chess/checkers, typically linear weighted sum of features 

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) 

 

e.g., w1 = 9 with  

 f1(s) = (number of white queens) –  (number of black queens), 
etc. 
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Example: Samuel’s Checker-Playing 
Program 

• It uses a linear evaluation function 

 f(n) = a1x1(n) + a2x2(n) + ... + amxm(n) 

 

 For example:  f = 6K + 4M + U 

– K = King Advantage 

– M = Man Advantage 

– U = Undenied Mobility Advantage (number of 
moves that Max where Min has no jump moves) 
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Samuel’s Checker Player 

• In learning mode 

 

– Computer acts as 2 players: A and B 

– A adjusts its coefficients after every move 

– B uses the static utility function 

– If A wins, its function is given to B 
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Samuel’s Checker Player 

• How does A change its function? 
1. Coefficent replacement 

      (node ) = backed-up value(node) – initial value(node) 

  if      > 0  then terms that contributed positively are  
 given more weight and terms that contributed  
 negatively get less weight 

  if      < 0 then terms that contributed negatively are  
 given more weight and terms that contributed  
 positively get less weight 
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Samuel’s Checker Player 

• How does A change its function? 
2. Term Replacement 
 38 terms altogether 
 16 used in the utility function at any one time 
 
 Terms that consistently correlate low with the function 

value are removed and added to the end of the term 
queue. 

 
 They are replaced by terms from the front of the term 

queue. 
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Chess: Rich history of cumulative ideas 

 Minimax search, evaluation function learning (1950). 

 

 Alpha-Beta search (1966). 

 

Transposition Tables (1967). 

 

Iterative deepening DFS (1975). 

 

End game data bases ,singular extensions(1977, 1980)  

 

Parallel search and evaluation(1983 ,1985)  

 

Circuitry (1987)  
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Chess game tree 
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Problem with fixed depth Searches 

if we only search n moves ahead, 

it may be possible that the 

catastrophy can be delayed by a 

sequence of moves that do not 

make any progress 

 

also works in other direction 

(good moves may not be found)  
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Horizon Effect 

 The problem with abruptly stopping a search at a fixed 

depth is called the 'horizon effect' 
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Quiescence Search 

 This involves searching past the terminal search nodes 

(depth of 0) and testing all the non-quiescent or 'violent' 

moves until the situation becomes calm, and only then apply 

the evaluator. 

 

 Enables programs to detect long capture sequences 

and calculate whether or not they are worth initiating. 

 

 Expand searches to avoid evaluating a position where 

tactical disruption is in progress. 
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Additional Refinements 

• Waiting for Quiescence: continue the search until no 
drastic change occurs from one level to the next. 
 

• Secondary Search: after choosing a move, search a 
few more levels beneath it to be sure it still looks 
good. 
 

• Openings/Endgames: for some parts of the game 
(especially initial and end moves), keep a catalog of 
best moves to make. 
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End-Game Databases 

• Ken Thompson - all 5 piece end-games 

• Lewis Stiller - all 6 piece end-games 

– Refuted common chess wisdom: many 
positions thought to be ties were really 
forced wins -- 90% for white 

– Is perfect chess a win for white? 
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The MONSTER 

White wins in 255 moves 
(Stiller, 1991) 
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Deterministic Games in Practice 

• Checkers: Chinook ended 40-year-reign of human world champion Marion 
Tinsley in 1994. Used a precomputed endgame database defining perfect 
play for all positions involving 8 or fewer pieces on the board, a total of 
444 billion positions. Checkers is now solved! 
 

• Chess: Deep Blue defeated human world champion Garry Kasparov in a 
six-game match in 1997. Deep Blue searches 200 million positions per 
second, uses very sophisticated evaluation, and undisclosed methods for 
extending some lines of search up to 40 ply. Current programs are even 
better, if less historic! 

 

• Othello: human champions refuse to compete against computers, who are 
too good. 

 

• Go: human champions refuse to compete against computers, who are too 
bad. In Go, b > 300, so most programs use pattern knowledge bases to 
suggest plausible moves, along with aggressive pruning. 
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Game of Go 

human champions refuse to compete 
against computers, because software is 
too bad.   

  

Chess Go  
Size of board 8 x 8 19 x 19 

Average no. of 

moves per game 
100 300 

Avg branching 

factor per turn 
35 235 

Additional 

complexity 

  

Players can 

pass 
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Recent Successes in Go 

• MoGo defeated a human expert in 9x9 Go 

• Still far away from 19x19 Go. 

 

• Hot area of research 

• Leading to development of novel techniques 

– Monte Carlo tree search (UCT) 
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Other Games 

deterministic chance 

perfect 

information 

chess, 

checkers, go, 

othello 

backgammon, 

monopoly 

imperfect 

information 
stratego 

bridge, poker, 

scrabble 
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Games of Chance 

• What about games that involve chance, such 
as  

– rolling dice 

– picking a card 

• Use three kinds of nodes: 

– max nodes 

– min nodes 

– chance nodes 
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Games of Chance 
Expectiminimax 
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c 

d1 
di dk 

S(c,di) 

chance node with 

max children 

expectimax(c) = ∑P(di)  max(backed-up-value(s)) 

                            i        s in S(c,di) 

 

expectimin(c’) = ∑P(di)  min(backed-up-value(s)) 

                            i        s in S(c,di) 



Example Tree with Chance 
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Complexity 

• Instead of O(bm), it is O(bmnm) where n is the 
number of chance outcomes. 

 

• Since the complexity is higher (both time and 
space), we cannot search as deeply. 

 

• Pruning algorithms may be applied. 
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Imperfect Information 

• E.g. card games, where            
opponents’ initial cards                       are 
unknown 

• Idea: For all deals consistent with what 
you can see 

–compute the minimax value of available 
actions for each of possible deals 

–compute the expected value over all deals 
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Summary 

• Games are fun to work on! 

 

• They illustrate several important points about AI. 

 

• Perfection is unattainable  must approximate. 

 

• Game playing programs have shown the world what 
AI can do. 
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