Advanced Satisfiability

Mausam

(Based on slides of Carla Gomes, Henry Kautz, Subbarao Kambhampati, Cristopher Moore, Ashish Sabharwal, Bart Selman, Toby Walsh)

Why study Satisfiability?

- Canonical NP complete problem.
- several hard problems modeled as SAT
- Tonne of applications
- State-of-the-art solvers superfast

Real-World Reasoning

Tackling inherent computational complexity

Example domains cast in propositional reasoning system (variables, rules).
Rules (Constraints β

Application: Diagnosis

- Problem: diagnosis a malfunctioning device
- Car
- Computer system
- Spacecraft
- where
- Design of the device is known
- We can observe the state of only certain parts of the device - much is hidden

Model-Based, Consistency-Based Diagnosis

- Idea: create a logical formula that describes how the device should work
- Associated with each "breakable" component C is a proposition that states "C is okay"
- Sub-formulas about component C are all conditioned on C being okay
- A diagnosis is a smallest of "not okay" assumptions that are consistent with what is actually observed

Consistency-Based Diagnosis

1. Make some Observations O.
2. Initialize the Assumption Set A to assert that all components are working properly.
3. Check if the KB, A, O together are inconsistent (can deduce false).
4. If so, delete propositions from A until consistency is restored (cannot deduce false). The deleted propositions are a diagnosis. There may be many possible diagnoses

Example: Automobile Diagnosis

- Observable Propositions:

EngineRuns, GasInTank, ClockRuns

- Assumable Propositions:

FuelLineOK, BatteryOK, CablesOK, ClockOK

- Hidden (non-Assumable) Propositions:

GasInEngine, PowerToPlugs

- Device Description F:
(GasInTank ^FuelLineOK) \rightarrow GasInEngine (GasInEngine \wedge PowerToPlugs) \rightarrow EngineRuns
(BatteryOK ^ CablesOK) \rightarrow PowerToPlugs
(BatteryOK ^ClockOK) \rightarrow ClockRuns
- Observations:
\neg EngineRuns, GasInTank, ClockRuns

Example

- Is F \cup Observations \cup Assumptions consistent?

Example

- Is F \cup Observations \cup Assumptions consistent?
- $F \cup\{\rightarrow$ EngineRuns, GasInTank, ClockRuns $\}$
$\cup\{$ FuelLineOK, BatteryOK, CablesOK, ClockOK $\} \rightarrow$ false
- Must restore consistency!

Example

- Is F \cup Observations \cup Assumptions consistent?
- $F \cup\{\rightarrow$ EngineRuns, GasInTank, ClockRuns $\}$
$\cup\{$ FuelLineOK, BatteryOK, CablesOK, ClockOK $\} \rightarrow$ false
- Must restore consistency!
- $F \cup\{\rightarrow$ EngineRuns, GasInTank, ClockRuns $\}$
$\cup\{$ BatteryOK, CablesOK, ClockOK $\} \rightarrow$ false
- \neg FuelLineOK is a diagnosis

Example

- Is F \cup Observations \cup Assumptions consistent?
- $\mathrm{F} \cup\{\neg$ EngineRuns, GasInTank, ClockRuns $\}$
$\cup\{$ FuelLineOK, BatteryOK, CablesOK, ClockOK \} \rightarrow false
- Must restore consistency!
- $\mathrm{F} \cup\{\rightarrow$ EngineRuns, GasInTank, ClockRuns $\}$
$\cup\{$ BatteryOK, CablesOK, ClockOK \} \rightarrow false
- \neg FuelLineOK is a diagnosis
- $\mathrm{F} \cup\{\rightarrow$ EngineRuns, GasInTank, ClockRuns $\}$
$\cup\{$ FuelLineOK, CablesOK, ClockOK $\} \rightarrow$ false
- \neg BatteryOK is not a diagnosis

Complexity of Diagnosis

- If F is Horn, then each consistency test takes linear time - unit propagation is complete for Horn clauses.
- Complexity = ways to delete propositions from Assumption Set that are considered.
- Single fault diagnosis - $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Double fault diagnosis - $O\left(n^{3}\right)$
- Triple fault diagnosis - $\mathrm{O}\left(\mathrm{n}^{4}\right)$

Deep Space One

- Autonomous diagnosis \& repair "Remote Agent"
- Compiled systems schematic to 7,000 var SAT problem

Deep Space One

- a failed electronics unit
- Remote Agent fixed by reactivating the unit.
- a failed sensor providing false information
- Remote Agent recognized as unreliable and therefore correctly ignored.
- an altitude control thruster (a small engine for controlling the spacecraft's orientation) stuck in the "off" position
- Remote Agent detected and compensated for by switching to a mode that did not rely on that thruster.

Testing Circuit Equivalence

- Do two circuits compute the same function?
- Circuit optimization
- Is there input for which the two circuits compute different values?

Testing Circuit Equivalence

$$
\begin{aligned}
& C \equiv(A \vee B) \\
& C^{\prime} \equiv \neg(D \wedge E) \\
& D \equiv \neg A \\
& E \equiv \neg B \\
& \neg\left(C \equiv C^{\prime}\right)
\end{aligned}
$$

SAT Translation of N -Queens

		산		
				¢ 4
	640			
			안	
알				

SAT Translation of N-Queens

- At least one queen each column:
(Q11 v Q12 v Q13 v ... v Q18)
(Q21 v Q22 v Q23 v ... v Q28)

SAT Translation of N-Queens

- At least one queen each column:

$$
\begin{aligned}
& (Q 11 \vee Q 12 \vee Q 13 \vee \ldots \vee \text { Q18) } \\
& (\text { Q21 v Q22 } \vee \text { Q23 } \vee \ldots \text {. } 28 \text {) }
\end{aligned}
$$

- No attacks:

$$
\begin{aligned}
& (\sim \mathrm{Q} 11 \mathrm{v} \sim \mathrm{Q} 12) \\
& (\sim \mathrm{Q} 11 \mathrm{v} \sim \mathrm{Q} 22) \\
& (\sim \mathrm{Q} 11 \mathrm{v} \sim \mathrm{Q} 21)
\end{aligned}
$$

CSP \rightarrow SAT

- A new SAT Variable for var-val pair

$$
X_{W A-r} X_{\text {WA-g }}, X_{\text {WA-b }}, X_{N T-r}
$$

- Each var has at least 1 value
$-X_{\text {WA-r }} \vee X_{\text {WA-g }} \vee X_{\text {WA-b }}$
- No var has two values

$$
\begin{aligned}
& -\sim X_{\text {WA-r }} \vee \sim X_{\text {WA-g }} \\
& -\sim X_{\text {WA-r }} \vee \sim X_{\text {WA-b }}
\end{aligned}
$$

- Constraints
$-{ }^{\sim} X_{W A-r} V^{\sim} X_{N T-r}$

Synnoilcinocicieckine

- Any finite state machine is characterized by a transition function
- CPU
- Networking protocol
- Wish to prove some invariant holds for any possible inputs
- Bounded model checking: formula is sat iff invariant fails k steps in the future

$$
\begin{aligned}
& \overline{S_{t}}=\text { vector of Booleans representing } \\
& \quad \text { state of machine at time } t \\
& \rho: \text { State } \times \text { Input } \rightarrow \text { State } \\
& \gamma: \text { State } \rightarrow\{0,1\} \\
& \left(\widehat{i=0}_{k-1}\left(\overline{S_{i+1}} \equiv \rho\left(\overline{S_{i}}, \overline{I_{i}}\right)\right) \wedge S_{o} \wedge \neg \gamma\left(S_{k}\right)\right.
\end{aligned}
$$

A "real world" example

From "SATLIB" :
http://www.satlib.org/benchm.html
SAT-encoded bounded model checking instances (contributed by Ofer Shtrichman)

In Bounded Model Checking (BMC) [BCCZ99], a rather newly intraduced problem in formal methods, the task is to check whether a given model M (typically a hardware design) satisfies a temporal property P in all paths with length less or equal to some bound k. The BMC problem can be efficiently reduced to a propositional satisfiability problem, and in fact if the property is in the form of an invariant (Invariants are the most common type of properties, and many other temporal properties can be reduced to their form. It has the form of 'it is always true that ... '.), it has a structure which is similar to many Al planning problerns.

Bounded Model Checking instance

The instance bnc-ibm-6.cnf, IBM LSU 1997:

$$
\begin{aligned}
& \text { p cnf } 51639368352 \\
& -170 \\
& -160 \\
& -150 \\
& -1-40 \\
& -130 \\
& -120 \\
& -1-80 \\
& -9150 \\
& -9140 \\
& -9130 \\
& -9-120 \\
& -9110 \\
& -9100 \\
& -9-160 \\
& -17230 \\
& -17220
\end{aligned}
$$

10 pages later:

```
185-90
185-10
177169161 15314513712912111310597
89817365574941
33251791-1850
186-1870
186-188 0
( }\mp@subsup{x}{177}{}\mathrm{ or }\mp@subsup{x}{169}{}\mathrm{ or }\mp@subsup{x}{161}{}\mathrm{ or }\mp@subsup{x}{153 \ldots}{\ldots
or \mp@subsup{x}{17}{}}\mathrm{ or }\mp@subsup{x}{9}{}\mathrm{ or }\mp@subsup{x}{1}{}\mathrm{ or (not }\mp@subsup{x}{185}{})
```

clauses / constraints are getting more interesting...

4000 pages later:

$$
\begin{aligned}
& 10236-100500 \\
& 10236-100510 \\
& 10236-102350 \\
& 10008100091001010011100121001310014 \\
& 10015100161001710018100191002010021 \\
& 10022100231002410025100261002710028 \\
& 10029100301003110032100331003410035 \\
& 10036100371008610087100881008910090 \\
& 10098100991010010101101021010310104 \\
& 10105101061010710108-55-5453-52-5150 \\
& 100471004810049100501005110235-102360 \\
& 10237-100080 \\
& 10237-100090 \\
& 10237-100100
\end{aligned}
$$

Finally, 15,000 pages later:

$$
\left.\begin{array}{l}
-72600 \\
7-2600 \\
107210700 \\
-15-14-13-12-11-100 \\
-15-14-13-12-11100 \\
-15-14-13-1211-10 \\
-15-14-13-1211100 \\
-7-6-5-4-3-2
\end{array}\right)
$$

Note that: $2^{50000} \approx 3.160699437 \cdot 10^{15051} \quad . . .!!!$

Finally, 15,000 pages later:

$$
\left.\begin{array}{l}
-72600 \\
7-2600 \\
107210700 \\
-15-14-13-12-11-100 \\
-15-14-13-12-11100 \\
-15-14-13-1211-100 \\
-15-14-13-1211100 \\
-7-6-5-4-3-2 \\
-7-6-5-4-320 \\
-7-6-5-43 \\
-7-6
\end{array}\right)
$$

Note that: $2^{50000} \approx 3.160699437 \cdot 10^{15051} \quad . . .!!!$

The Chaff SAT solver (Princeton) solves this instance in less than one minute.

Finally, 15,000 pages later:

$$
\begin{aligned}
& \text {-7 } 2600 \\
& \text { 7-260 } 0 \\
& 107210700 \\
& -15-14-13-12-11-100 \\
& -15-14-13-12-11100 \\
& -15-14-13-1211-100 \\
& -15-14-13-1211100 \\
& -7-6-5-4-3-20 \\
& -7-6-5-4-320 \\
& -7-6-5-43-20 \\
& -7-6-5-4320 \\
& 1850
\end{aligned}
$$

What makes this possible?
Note that: $2^{50000} \approx 3.160699437 \cdot 10^{15051} \ldots!!$

The Chaff SAT solver (Princeton) solves this instance in less than one minute.

Progress in Last 20 years

- Significant progress since the 1990's. How much?
- Problem size: We went from 100 variables, 200 constraints (early 90's) to $\mathbf{1 , 0 0 0}, \mathbf{0 0 0}+$ variables and $\mathbf{5 , 0 0 0 , 0 0 0 +}$ constraints in 20 years
- Search space: from $10^{\wedge} 30$ to $10^{\wedge} 300,000$.
[Aside: "one can encode quite a bit in 1 M variables."]
- Is this just Moore's Law? It helped, but not much...
- $-2 x$ faster computers does not mean can solve $2 x$ larger instances
- - search difficulty does not scale linearly with problem size!
- Tools: 50+ competitive SAT solvers available

Forces Driving Faster, Better SAT Solvers

- From academically interesting to practically relevant "Real" benchmarks, with real interest in solving them
- Regular SAT Solver Competitions (Germany-89, Dimacs-93, China96, SAT-02, SAT-03, ..., SAT-07, SAT-09, SAT-2011)
- "Industrial-instances-only" SAT Races $(2008,2010)$
- A tremendous resource! E.g., SAT Competition 2006 (Seattle):
- 35+ solvers submitted, downloadable, mostly open source
- 500+ industrial benchmarks, 1000+ other benchmarks
- 50,000+ benchmark instances available on the Internet
- This constant improvement in SAT solvers is the key to the success of, e.g., SAT-based planning and verification

Assignment 2: Graph Subset Mapping

- Given two directed graphs G and G^{\prime}
- Check if G is a subset mapping to G^{\prime}
- I.e. construct a one-one mapping (M) from all nodes of G to some nodes of G^{\prime} s.t.
$-(n 1, n 2)$ in $G \rightarrow(M(n 1), M(n 2))$ in G^{\prime}
$-(n 1, n 2)$ not in $G \rightarrow(M(n 1), M(n 2))$ not in G^{\prime}

Graph G
Graph G'

Graph G

Graph G'

No, because the directionality of edges doesn't match.

Graph G

Graph G'

No, because the directionality of edges doesn't match.

No, because there is no edge between A and C in G whereas there is one between P and R in G^{\prime}.

No, because the directionality of edges doesn't match.

No, because there is no edge between A and C in G whereas there is one between P and R in G^{\prime}.

B

Yes. A mapping is: $M(A)=S$,
$M(B)=Q, M(C)=R$
The edges from P to other nodes don't matter since no node in G got mapped to P.

SAT Model for Graph Subset Mapping

- If a mapping exists then SAT formula is satisfiable - Else unsatisfiable
- The satisfying assignment suggests the mapping M

GSAT

- Local search (Hill Climbing + Random Walk) over space of complete truth assignments
-With prob p: flip any variable in any unsatisfied clause -With prob (1-p): flip best variable in any unsat clause
- best = one which minimizes \#unsatisfied clauses
- SAT encodings of N -Queens, scheduling
- Best algorithm for random K-SAT
-Best DPLL: 700 variables
-Walksat: 100,000 variables

Refining Greedy Random Walk

- Each flip
- makes some false clauses become true
- breaks some true clauses, that become false
- Suppose $s 1 \rightarrow s 2$ by flipping x. Then:
\#unsat(s2) = \#unsat(s1) - make(s1,x) + break(s1,x)
- Idea 1: if a choice breaks nothing, it is very likely to be a good move
- Idea 2: near the solution, only the break count matters
- the make count is usually 1

Walksat

state = random truth assignment;
while! GoalTest(state) do
clause := random member $\{\mathrm{C} \mid \mathrm{C}$ is false in state $\}$; for each x in clause do compute break[x];
if exists x with break[x]=0 then var := x;
else
with probability p do
var := random member $\{x \mid x$ is in clause $\} ;$ else
$\operatorname{var}:=\arg \mathrm{x} \min \{\operatorname{break}[\mathrm{x}] \mid \mathrm{x}$ is in clause $\} ;$
endif
state[var] := 1 - state[var];
end
return state;
Put everything inside of a restart loop. Parameters: p, max_flips, max_runs

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

\#clauses/\#variables

Hardness of 3-sat as a function of \#clauses/\#variables

Random 3-SAT

- Random 3-SAT

- sample uniformly from space of all possible 3clauses
- n variables, I clauses
- Which are the hard instances?
- around $I / n=4.3$

Random 3-SAT

- Varying problem size, n
- Complexity peak appears to be largely invariant of algorithm

Random 3-SAT

- Complexity peak coincides with solubility transition

- $\mathrm{I} / \mathrm{n}<4.3$ problems underconstrained and SAT
- I/n > 4.3 problems overconstrained and UNSAT
- $\mathrm{I} / \mathrm{n}=4.3$, problems on "knifeedge" between SAT and UNSAT

Results: Random 3-SAT

Results: Random 3-SAT

- Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03). empirically up to 2.5

Results: Random 3-SAT

- Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03). empirically up to 2.5
- Davis Putnam (DP) up to 3.42 (Kaporis et al. '02) '
empirically up to 3.6
approx. 400 vars at phase transition

Results: Random 3-SAT

- Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03). empirically up to 2.5
- Davis Putnam (DP) up to 3.42 (Kaporis et al. '02) '
empirically up to 3.6 approx. 400 vars at phase transition
- GSAT up till ratio 3.92 (Selman et al. '92, Zecchina et al. ‘02) approx. 1,000 vars at phase transition

Results: Random 3-SAT

- Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03). empirically up to 2.5
- Davis Putnam (DP) up to 3.42 (Kaporis et al. '02) ' empirically up to 3.6 approx. 400 vars at phase transition
- GSAT up till ratio 3.92 (Selman et al. '92, Zecchina et al. ‘02) approx. 1,000 vars at phase transition
- Walksat up till ratio 4.1 (empirical, Selman et al. '93)
approx. 100,000 vars at phase transition

Results: Random 3-SAT

- Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03). empirically up to 2.5
- Davis Putnam (DP) up to 3.42 (Kaporis et al. '02) '
empirically up to 3.6 approx. 400 vars at phase transition
- GSAT up till ratio 3.92 (Selman et al. '92, Zecchina et al. ‘02) approx. 1,000 vars at phase transition
- Walksat up till ratio 4.1 (empirical, Selman et al. '93)
approx. 100,000 vars at phase transition
- Survey propagation (SP) up till 4.2
(empirical, Mezard, Parisi, Zecchina '02)
approx. 1,000,000 vars near phase transition

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions
- E.g. Markov (or 1st moment) method

For any statistic X

$$
\operatorname{prob}(X>=1)<=E[X]
$$

$$
\begin{aligned}
\mathrm{E}[\mathrm{X}] & =0 \cdot p(X=0)+1 \cdot p(X=1)+2 \cdot p(X=2)+3 \cdot p(X=3)+\ldots \\
& >=\quad 1 \cdot p(X=1)+1 \cdot p(X=2)+1 \cdot p(X=3)+\ldots \\
& >=p(X>=1)
\end{aligned}
$$

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions
- E.g. Markov (or 1st moment) method

For any statistic X

$$
\operatorname{prob}(X>=1)<=E[X]
$$

No assumptions about the distribution of X except nonnegative!

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions
- E.g. Markov (or 1st moment) method

For any statistic X

$$
\operatorname{prob}(X>=1)<=E[X]
$$

Let X be the number of satisfying assignments for a 3SAT problem

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions
- E.g. Markov (or 1st moment) method

For any statistic X

$$
\operatorname{prob}(X>=1)<=E[X]
$$

Let X be the number of satisfying assignments for a 3SAT problem
The expected value of X can be easily calculated

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions
- E.g. Markov (or 1st moment) method

For any statistic X

$$
\operatorname{prob}(X>=1)<=E[X]
$$

Let X be the number of satisfying assignments for a 3SAT problem

$$
\mathrm{E}[\mathrm{X}]=2^{\wedge} n^{*}(7 / 8)^{\wedge} /
$$

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions
- E.g. Markov (or 1st moment) method

For any statistic X

$$
\operatorname{prob}(X>=1)<=E[X]
$$

Let X be the number of satisfying assignments for a 3SAT problem

$$
\mathrm{E}[\mathrm{X}]=2^{\wedge} n^{*}(7 / 8)^{\wedge} /
$$

If $E[X]<1$, then $\operatorname{prob}(X>=1)=\operatorname{prob}(S A T)<1$

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions
- E.g. Markov (or 1st moment) method

For any statistic X

$$
\operatorname{prob}(X>=1)<=E[X]
$$

Let X be the number of satisfying assignments for a 3SAT problem

$$
\mathrm{E}[\mathrm{X}]=2^{\wedge} n^{*}(7 / 8)^{\wedge} /
$$

If $\mathrm{E}[\mathrm{X}]<1$, then $2^{\wedge} n^{*}(7 / 8)^{\wedge} /<1$

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions
- E.g. Markov (or 1st moment) method

For any statistic X

$$
\operatorname{prob}(X>=1)<=E[X]
$$

Let X be the number of satisfying assignments for a 3SAT problem

$$
\mathrm{E}[\mathrm{X}]=2^{\wedge} n^{*}(7 / 8)^{\wedge} /
$$

If $\mathrm{E}[\mathrm{X}]<1$, then $2^{\wedge}{ }^{*}{ }^{*}(7 / 8)^{\wedge} /<1$

$$
n+/ \log 2(7 / 8)<0
$$

3SAT phase transition

- Upper bounds (easier)
- Typically by estimating count of solutions
- E.g. Markov (or 1st moment) method

For any statistic X

$$
\operatorname{prob}(X>=1)<=E[X]
$$

Let X be the number of satisfying assignments for a 3SAT problem

$$
\mathrm{E}[\mathrm{X}]=2^{\wedge} n^{*}(7 / 8)^{\wedge} /
$$

If $\mathrm{E}[\mathrm{X}]<1$, then $2^{\wedge} n^{*}(7 / 8)^{\wedge} /<1$

$$
\begin{aligned}
& n+/ \log 2(7 / 8)<0 \\
& 1 / n>1 / \log 2(8 / 7)=5.19 \ldots
\end{aligned}
$$

A Heavy Tail

- But the transition is much lower at $\mathrm{I} / \mathrm{n} \sim 4.27$. What going on?

A Heavy Tail

- But the transition is much lower at $\mathrm{I} / \mathrm{n} \sim 4.27$. What going on?
- In the range $4.27<\mathrm{l} / \mathrm{n}<5.19$,
- the average no. of solutions is exponentially large.
- Occasionally, there are exponentially many...
- ...but most of the time there are none!
- Large average doesn't prove satisfiability!

Real versus Random

- Real graphs tend to be sparse
- dense random graphs contains lots of (rare?) structure
- Real graphs tend to have short path lengths
- as do random graphs
- Real graphs tend to be clustered
- unlike sparse random graphs

Small world graphs

- Sparse, clustered, short path lengths
- Six degrees of separation
- Stanley Milgram's famous 1967 postal experiment
- recently revived by Watts \& Strogatz
- shown applies to:
- actors database
- US electricity grid
- neural net of a worm
- ...

An example

- 1994 exam timetable at Edinburgh University
- 59 nodes, 594 edges so relatively sparse
- but contains 10 -clique
- less than 10^{\wedge} - 10 chance in a random graph
- assuming same size and density
- clique totally dominated cost to solve problem

Real World DPLL

Observation: Complete backtrack style search SAT solvers (e.g. DPLL) display a remarkably wide range of run times.

Even when repeatedly solving the same problem instance; variable branching is choice randomized.

Run time distributions are often "heavy-tailed".
Orders of magnitude difference in run time on different runs.

Heavy Tails on Structured Problems

Heavy Tails on Structured Problems

50\% runs:
1 backtrack

Heavy Tails on Structured Problems

50\% runs:
1 backtrack

Randomized Restarts

Solution: randomize the backtrack strategy
Add noise to the heuristic branching (variable choice) function Cutoff and restart search after a fixed number of backtracks

Provably Eliminates heavy tails
In practice: rapid restarts with low cutoff can dramatically improve performance (Gomes et al. 1998, 1999)

Exploited in many current SAT solvers combined with clause learning and non-chronological backtracking. (e.g., Chaff etc.)

Restarts

Restarts

Restarts

Restarts

Example of Rapid Restart Speedup

Cutoff (log)

Example of Rapid Restart Speedup

Cutoff (log)

Example of Rapid Restart Speedup

Cutoff (log)

Several ways to use restarts

- Restart with increasing cutoff - cutoff increases linearly
- Geometric restarts - (Walsh 99) cutoff increased geometrically;
- Randomized backtracking - (Lynce et al 2001)
- randomizes the target decision points when backtracking (several variants)
- Random jumping (Zhang 2002)
- solver randomly jumps to unexplored portions of search space;
- jumping decisions are based on analyzing the ratio between the space searched vs. the remaining search space;
- solved several open problems in combinatorics;
- Learning restart strategies - (Kautz et al 2001 and Ruan et. al 2002) -
- results on optimal policies for restarts under particular scenarios. Huge area for further research.

Intuitively: Exponential penalties hidden in backtrack search, consisting of large inconsistent subtrees in the search space.

But, for restarts to be effective, you also need short runs.

Intuitively: Exponential penalties hidden in backtrack search, consisting of large inconsistent subtrees in the search space.

But, for restarts to be effective, you also need short runs.

Where do short runs come from?

Backdoors: intuitions

Real World Problems are characterized by Hidden Tractable Substructure

BACKDOORS
Subset of "critical" variables such
that once assigned a value the instance simplifies to a tractable class.

Explain how a solver can get "lucky" and solve very large instances

Backdoors

Informally:
A backdoor to a given problem is a subset of the variables such that once they are assigned values, the polynomial propagation mechanism of the SAT solver solves the remaining formula.

Formal definition includes the notion of a "subsolver": a polynomial simplification procedure with certain general characteristics found in current DPLL SAT solvers.

Backdoors correspond to "clever reasoning shortcuts" in the search space.

Given a combinatorial problem C

Backdoors (for satisfiable instances) (wrt subsolver A):
Definition - [backdoor] A nonempty subset S of the variables is a backdoor in C for A if for some $a_{S}: S \rightarrow D, A$ returns a satisfying assignment of $C\left[a_{S}\right]$.

Strong backdoors (apply to satisfiable or inconsistent instances):
Definition [strong backdoor] A nonempty subset sof the variables is a strong backdoor in C for A if for all $a_{S}: S \rightarrow D$, A returns a satisfying assignment or concludes unsatisfiability of $C\left[a_{S}\right]$.

Reminder: Cycle-cutset

- Given an undirected graph, a cycle cutset is a subset of nodes in the graph whose removal results in a graph without cycles
- Once the cycle-cutset variables are instantiated, the remaining problem is a tree \rightarrow solvable in polynomial time using arc consistency;
- A constraint graph whose graph has a cycle-cutset of size c can be solved in time of $\mathrm{O}\left((\mathrm{n}-\mathrm{c}) \mathrm{k}^{(\mathrm{c}+2)}\right)$
- Important: verifying that a set of nodes is a cutset can be done in polynomial time (in number of nodes).

Backdoors vs. Cutsets

- Can be viewed as a generalization of cutsets;
- Backdoors use a general notion of tractability based on a polytime sub-solver --- backdoors do not require a syntactic characterization of tractability.
- Backdoors factor in the semantics of the constraints wrt sub-solver and values of the variables;
-Backdoors apply to different representations, including different semantics for graphs, e.g., network flows --- CSP, SAT, MIP, etc;

Note: Cutsets and W-cutsets - tractability based solely on the structure of the constraint graph, independently of the semantics of the constraints;

Backdoors can be surprisingly small

instance	\# vars	\# clauses	backdoor	fract.
logistics.d	6783	437431	12	0.0018
3bitadd_32	8704	32316	53	0.0061
pipe_01	7736	26087	23	0.0030
qg_30_1	1235	8523	14	0.0113
qg_35_1	1597	10658	15	0.0094

Most recent: Other combinatorial domains. E.g. graphplan planning, near constant size backdoors (2 or 3 variables) and log(n) size in certain domains. (Hoffmann, Gomes, Selman '04)

Backdoors capture critical problem resources (bottlenecks).

Backdoors --- "seeing is believing"

Constraint graph of reasoning problem. One node per variable: edge between two variables if they share a constraint.

Logistics_b.cnf planning formula.
843 vars, 7,301 clauses, approx min backdoor 16 (backdoor set = reasoning shortcut)

Logistics.b.cnf after setting 5 backdoor vars.

After setting just 12 (out of 800+) backdoor vars - problem almost solved.

Another example

MAP-6-7.cnf infeasible planning instances. Strong backdoor of size 3. 392 vars, 2,578 clauses.

After setting 2 (out of 392) backdoor vars. --reducing problem complexity in just a few steps!

Last example.

Inductive inference problem --- ii16a1.cnf. 1650 vars, 19,368 clauses. Backdoor size 40.

After setting 6 backdoor vars.

Some other intermediate stages:

After setting 38 (out of 1600+) backdoor vars:

After setting 38 (out of 1600+) backdoor vars:

So: Real-world structure hidden in the network. Can be exploited by automated reasoning engines.

Size

backdoor

$B(n)$	deterministic	randomized	heuristic
n / k	$\operatorname{small} \exp (n)$	smaller $\exp (n)$	tiny $\exp (n)$
$O(\log n)$	$\left(\frac{n}{\sqrt{\log n}}\right)^{O(\log n)}$	$\left(\frac{n}{\log n}\right)^{O(\log n)}$	$\operatorname{poly}(n)$
$O(1)$	poly (n)	poly (n)	$\operatorname{poly}(n)$

n = num. vars.
k is a constant
Current solvers
(Williams, Gomes, and Selman '03)

Other Techniques: Nogood Learning

- Learn from mistakes during search
- Nogood Learning: when DPLL backtracks,
- Learn a concise reason: what went wrong
- avoid similar 'mistakes' in the future!
- Extremely powerful in practice

Other Techniques: Machine Learning

- Machine learning to build algorithm portfolios
- Observation: no single SAT solver is good on every family of instances
- Features of a given instance can be used to predict, with reasonable accuracy, which solver will work well on it!
- Solution: design a portfolio solver using ML techniques
- Based on runtime prediction models
- Recent work - avoid complex models, use k-NN or clustering
- Automatic parameter tuning (generic and instance-specific)
- SAT solvers are designed with many 'hardwired' parameters
- Millions of parameter combinations - impossible to explore all by hand!
- Solution: use automatic parameter tuning tools based on local search, genetic algorithms, etc.

Where is SAT Research headed?

Direction A: getting more out of SAT solvers

- Minimal/minimum unsatisfiable cores: very useful in practice!
- MAXSAT, weighted MAXSAT
- Circuit representations (rather than CNF)

Direction B: tacking problems harder than SAT

- Near-uniform sampling from the solution space
- Solution counting (with relations to probabilistic inference)
-- \#P-hard : challenging even to approximate with good confidence bounds

Direction C : expanding the applicability of SAT technology

- Pseudo-Boolean SAT (i.e., linear inequalities over Boolean vars)
- SMT: Satifisiability Modulo Theories (e.g., linear arithmetic, bit-vector operations, uninterpreted functions)

