
Advanced Satisfiability

Mausam
(Based on slides of Carla Gomes, Henry Kautz,

Subbarao Kambhampati, Cristopher Moore,
Ashish Sabharwal, Bart Selman, Toby Walsh)

Why study Satisfiability?

• Canonical NP complete problem.

– several hard problems modeled as SAT

• Tonne of applications

• State-of-the-art solvers superfast

3

Real-World Reasoning
Tackling inherent computational complexity

100

 200

10K

50K

50K

200K

0.5M

1M

1M

5M

 Variables

1030

10301,020

10150,500

1015,050

103010

 W
o

rs
t

C
a
s
e
 c

o
m

p
le

x
it

y

Car repair diagnosis

Deep space

mission control

Chess

Hardware/Software

Verification

Multi-Agent

Systems

200K

 600K

Military Logistics

Seconds until heat

death of sun

Protein folding

calculation

(petaflop-year)

No. of atoms

on earth 1047

100 10K 20K 100K 1M

Rules (Constraints) Example domains cast in propositional reasoning system (variables, rules).

• High-Performance Reasoning

• Temporal/ uncertainty reasoning

• Strategic reasoning/Multi-player

Technology Targets

DARPA Research

Program

Application: Diagnosis

• Problem: diagnosis a malfunctioning device

– Car

– Computer system

– Spacecraft

• where

– Design of the device is known

– We can observe the state of only certain parts of
the device – much is hidden

Model-Based, Consistency-Based Diagnosis

• Idea: create a logical formula that describes how
the device should work

– Associated with each “breakable” component C is a
proposition that states “C is okay”

– Sub-formulas about component C are all conditioned on
C being okay

• A diagnosis is a smallest of “not okay” assumptions
that are consistent with what is actually observed

Consistency-Based Diagnosis

1. Make some Observations O.

2. Initialize the Assumption Set A to assert that
all components are working properly.

3. Check if the KB, A, O together are inconsistent
(can deduce false).

4. If so, delete propositions from A until
consistency is restored (cannot deduce false).
The deleted propositions are a diagnosis.

There may be many possible diagnoses

Example: Automobile Diagnosis
• Observable Propositions:

EngineRuns, GasInTank, ClockRuns

• Assumable Propositions:

FuelLineOK, BatteryOK, CablesOK, ClockOK

• Hidden (non-Assumable) Propositions:

GasInEngine, PowerToPlugs

• Device Description F:

(GasInTank FuelLineOK) GasInEngine

(GasInEngine PowerToPlugs) EngineRuns

(BatteryOK CablesOK) PowerToPlugs

(BatteryOK ClockOK) ClockRuns

• Observations:

 EngineRuns, GasInTank, ClockRuns

Example
• Is F Observations Assumptions consistent?

Example
• Is F Observations Assumptions consistent?

• F {EngineRuns, GasInTank, ClockRuns}

 { FuelLineOK, BatteryOK, CablesOK, ClockOK } false

– Must restore consistency!

Example
• Is F Observations Assumptions consistent?

• F {EngineRuns, GasInTank, ClockRuns}

 { FuelLineOK, BatteryOK, CablesOK, ClockOK } false

– Must restore consistency!

• F {EngineRuns, GasInTank, ClockRuns}

 { BatteryOK, CablesOK, ClockOK } false

– FuelLineOK is a diagnosis

Example
• Is F Observations Assumptions consistent?

• F {EngineRuns, GasInTank, ClockRuns}

 { FuelLineOK, BatteryOK, CablesOK, ClockOK } false

– Must restore consistency!

• F {EngineRuns, GasInTank, ClockRuns}

 { BatteryOK, CablesOK, ClockOK } false

– FuelLineOK is a diagnosis

• F {EngineRuns, GasInTank, ClockRuns}

 {FuelLineOK, CablesOK, ClockOK } false

– BatteryOK is not a diagnosis

Complexity of Diagnosis

• If F is Horn, then each consistency test takes
linear time – unit propagation is complete for
Horn clauses.

• Complexity = ways to delete propositions from
Assumption Set that are considered.

– Single fault diagnosis – O(n2)

– Double fault diagnosis – O(n3)

– Triple fault diagnosis – O(n4)

 …

Deep Space One

• Autonomous diagnosis & repair “Remote
Agent”

• Compiled systems schematic to 7,000 var
SAT problem

Started: January 1996

Launch: October 15th, 1998

Experiment: May 17-21

Deep Space One

• a failed electronics unit
– Remote Agent fixed by reactivating the unit.

• a failed sensor providing false information
– Remote Agent recognized as unreliable and therefore correctly ignored.

• an altitude control thruster (a small engine for controlling the
spacecraft's orientation) stuck in the "off" position
– Remote Agent detected and compensated for by switching to a mode that

did not rely on that thruster.

Testing Circuit Equivalence

• Do two circuits compute
the same function?

• Circuit optimization

• Is there input for which the
two circuits compute
different values?

A B

nand

A B

C C’

Testing Circuit Equivalence

A B

nand

A B

C C’

D E

()

()

C A B

C D E

D A

E B

C C

SAT Translation of N-Queens

SAT Translation of N-Queens

• At least one queen each column:
(Q11 v Q12 v Q13 v ... v Q18)

(Q21 v Q22 v Q23 v ... v Q28)

…

SAT Translation of N-Queens

• At least one queen each column:
(Q11 v Q12 v Q13 v ... v Q18)

(Q21 v Q22 v Q23 v ... v Q28)

…

• No attacks:
(~Q11 v ~Q12)

(~Q11 v ~Q22)

(~Q11 v ~Q21)

...

CSP SAT

• A new SAT Variable for var-val pair

 XWA-r, XWA-g, XWA-b, XNT-r…

• Each var has at least 1 value

– XWA-r v XWA-g v XWA-b

• No var has two values

– ~XWA-r v ~XWA-g

– ~XWA-r v ~XWA-b

• Constraints

– ~XWA-r v ~XNT-r

Symbolic Model Checking

• Any finite state machine is characterized by a transition function
– CPU
– Networking protocol

• Wish to prove some invariant holds for any possible inputs
• Bounded model checking: formula is sat iff invariant fails k steps in the future

1

1
0

 vector of Booleans representing

state of machine at time

:

: {0,1}

(,

t

k

i i i o k
i

S

t

State Input State

State

S S I S S

A “real world” example

i.e. ((not x1) or x7)

 and ((not x1) or x6)

and … etc.

Bounded Model Checking instance

(x177 or x169 or x161 or x153 …

 or x17 or x9 or x1 or (not x185))

clauses / constraints are getting more interesting…

10 pages later:

…

4000 pages later:

…

!!!
a 59-cnf

clause…

Finally, 15,000 pages later:

Note that: … !!!

Finally, 15,000 pages later:

The Chaff SAT solver (Princeton) solves

this instance in less than one minute.

Note that: … !!!

Finally, 15,000 pages later:

The Chaff SAT solver (Princeton) solves

this instance in less than one minute.

Note that: … !!!

What makes this possible?

Progress in Last 20 years

• Significant progress since the 1990’s. How much?

• Problem size: We went from 100 variables, 200 constraints (early 90’s)

 to 1,000,000+ variables and 5,000,000+ constraints in 20 years

• Search space: from 10^30 to 10^300,000.

 [Aside: “one can encode quite a bit in 1M variables.”]

• Is this just Moore’s Law? It helped, but not much…

• – 2x faster computers does not mean can solve 2x larger instances

• – search difficulty does not scale linearly with problem size!

• Tools: 50+ competitive SAT solvers available

Forces Driving Faster, Better SAT Solvers

• From academically interesting to practically relevant “Real”
benchmarks, with real interest in solving them

• Regular SAT Solver Competitions (Germany-89, Dimacs-93, China-
96, SAT-02, SAT-03, …, SAT-07, SAT-09, SAT-2011)

– “Industrial-instances-only” SAT Races (2008, 2010)

– A tremendous resource! E.g., SAT Competition 2006 (Seattle):

• 35+ solvers submitted, downloadable, mostly open source

• 500+ industrial benchmarks, 1000+ other benchmarks

• 50,000+ benchmark instances available on the Internet

• This constant improvement in SAT solvers is the key to the success
of, e.g., SAT-based planning and verification

Assignment 2: Graph Subset Mapping

• Given two directed graphs G and G’

– Check if G is a subset mapping to G’

• I.e. construct a one-one mapping (M) from all
nodes of G to some nodes of G’ s.t.

– (n1,n2) in G (M(n1), M(n2)) in G’

– (n1,n2) not in G (M(n1), M(n2)) not in G’

A C

B

P R

Q

A C

B

P R

Q

A C

B

P R

Q

S

Graph G Graph G’

A C

B

P R

Q

A C

B

P R

Q

A C

B

P R

Q

S

Graph G Graph G’

No, because the directionality
of edges doesn’t match.

A C

B

P R

Q

A C

B

P R

Q

A C

B

P R

Q

S

Graph G Graph G’

No, because the directionality
of edges doesn’t match.

No, because there is no edge
between A and C in G whereas
there is one between P and R in G’.

A C

B

P R

Q

A C

B

P R

Q

A C

B

P R

Q

S

Graph G Graph G’

No, because the directionality
of edges doesn’t match.

No, because there is no edge
between A and C in G whereas
there is one between P and R in G’.

Yes. A mapping is: M(A) = S,
M(B) = Q, M(C) = R

The edges from P to other nodes
don‘t matter since no node in G
got mapped to P.

SAT Model for Graph Subset Mapping

• If a mapping exists then SAT formula is satisfiable

• Else unsatisfiable

• The satisfying assignment suggests the mapping M

GSAT

• Local search (Hill Climbing + Random Walk) over
space of complete truth assignments

–With prob p: flip any variable in any unsatisfied clause

–With prob (1-p): flip best variable in any unsat clause

• best = one which minimizes #unsatisfied clauses

• SAT encodings of N-Queens, scheduling

• Best algorithm for random K-SAT

–Best DPLL: 700 variables

–Walksat: 100,000 variables

 37

Refining Greedy Random Walk

• Each flip

– makes some false clauses become true

– breaks some true clauses, that become false

• Suppose s1s2 by flipping x. Then:

 #unsat(s2) = #unsat(s1) – make(s1,x) + break(s1,x)

• Idea 1: if a choice breaks nothing, it is very likely to
be a good move

• Idea 2: near the solution, only the break count
matters

– the make count is usually 1

Walksat
state = random truth assignment;
while ! GoalTest(state) do

clause := random member { C | C is false in state };
for each x in clause do compute break[x];
if exists x with break[x]=0 then var := x;
else
 with probability p do
 var := random member { x | x is in clause };
 else
 var := arg x min { break[x] | x is in clause };
endif
state[var] := 1 – state[var];

end
return state; Put everything inside of a restart loop.

Parameters: p, max_flips, max_runs

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

p=0.5

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

p=0.5
You would
expect this

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

p=0.5
You would
expect this

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

p=0.5
You would
expect this

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

p=0.5
You would
expect this

This is what
happens!

Hardness of 3-sat as a function of
#clauses/#variables

#clauses/#variables

Probability that
 there is a satisfying
 assignment

Cost of solving
 (either by finding
 a solution or showing
 there ain’t one)

p=0.5
You would
expect this

This is what
happens!

~4.3

Random 3-SAT

• Random 3-SAT

– sample uniformly from
space of all possible 3-
clauses

– n variables, l clauses

• Which are the hard
instances?

– around l/n = 4.3

53

Random 3-SAT

• Varying problem size, n

• Complexity peak appears
to be largely invariant of
algorithm

54

Random 3-SAT

• Complexity peak coincides
with solubility transition

– l/n < 4.3 problems under-
constrained and SAT

– l/n > 4.3 problems over-
constrained and UNSAT

– l/n=4.3, problems on “knife-
edge” between SAT and
UNSAT

55

56

Random 3-SAT as of 2005

Mitchell, Selman, and Levesque ’92

57

Random 3-SAT as of 2005
Phase

transition

Mitchell, Selman, and Levesque ’92

58

Random 3-SAT as of 2005

Mitchell, Selman, and Levesque ’92

59

Random 3-SAT as of 2005

Random Walk

Mitchell, Selman, and Levesque ’92

60

Random 3-SAT as of 2005

Random Walk

DP

Mitchell, Selman, and Levesque ’92

61

Random 3-SAT as of 2005

Random Walk

DP

DP’

Mitchell, Selman, and Levesque ’92

62

Random 3-SAT as of 2005

Random Walk

DP

DP’

GSAT

Mitchell, Selman, and Levesque ’92

63

Random 3-SAT as of 2005

Random Walk

DP

DP’

Walksat

GSAT

Mitchell, Selman, and Levesque ’92

64

Random 3-SAT as of 2005

Random Walk

DP

DP’

Walksat

SP

GSAT

Mitchell, Selman, and Levesque ’92

65

Results: Random 3-SAT

66

Results: Random 3-SAT

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
 empirically up to 2.5

67

Results: Random 3-SAT

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
 empirically up to 2.5

• Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) ‘
 empirically up to 3.6
 approx. 400 vars at phase transition

68

Results: Random 3-SAT

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
 empirically up to 2.5

• Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) ‘
 empirically up to 3.6
 approx. 400 vars at phase transition

• GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02)
 approx. 1,000 vars at phase transition

69

Results: Random 3-SAT

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
 empirically up to 2.5

• Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) ‘
 empirically up to 3.6
 approx. 400 vars at phase transition

• GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02)
 approx. 1,000 vars at phase transition

• Walksat up till ratio 4.1 (empirical, Selman et al. ’93)
 approx. 100,000 vars at phase transition

70

Results: Random 3-SAT

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03).
 empirically up to 2.5

• Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) ‘
 empirically up to 3.6
 approx. 400 vars at phase transition

• GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02)
 approx. 1,000 vars at phase transition

• Walksat up till ratio 4.1 (empirical, Selman et al. ’93)
 approx. 100,000 vars at phase transition

• Survey propagation (SP) up till 4.2
 (empirical, Mezard, Parisi, Zecchina ’02)
 approx. 1,000,000 vars near phase transition

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

 prob(X>=1) <= E[X]

E[X] = 0.p(X=0) + 1.p(X=1) + 2.p(X=2) + 3.p(X=3) + …

 >= 1.p(X=1) + 1.p(X=2) + 1.p(X=3) + …

 >= p(X>=1)

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

 prob(X>=1) <= E[X]

 No assumptions about the distribution of X except non-
negative!

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

 prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

 prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

 The expected value of X can be easily calculated

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

 prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

 E[X] = 2^n * (7/8)^l

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

 prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

 E[X] = 2^n * (7/8)^l

 If E[X] < 1, then prob(X>=1) = prob(SAT) < 1

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

 prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

 E[X] = 2^n * (7/8)^l

 If E[X] < 1, then 2^n * (7/8)^l < 1

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

 prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

 E[X] = 2^n * (7/8)^l

 If E[X] < 1, then 2^n * (7/8)^l < 1

 n + l log2(7/8) < 0

3SAT phase transition

• Upper bounds (easier)

– Typically by estimating count of solutions

– E.g. Markov (or 1st moment) method

For any statistic X

 prob(X>=1) <= E[X]

Let X be the number of satisfying assignments for a 3SAT
problem

 E[X] = 2^n * (7/8)^l

 If E[X] < 1, then 2^n * (7/8)^l < 1

 n + l log2(7/8) < 0

 l/n > 1/log2(8/7) = 5.19…

A Heavy Tail

• But the transition is much lower at l/n ~ 4.27.
What going on?

A Heavy Tail

• But the transition is much lower at l/n ~ 4.27.
What going on?

• In the range 4.27 < l/n < 5.19,

– the average no. of solutions is exponentially large.

• Occasionally, there are exponentially many...

– ...but most of the time there are none!

• Large average doesn’t prove satisfiability!

83

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

84

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

85

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

86

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

5.19

87

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

5.19

5.081

88

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

5.19

5.081

4.762

89

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

5.19

5.081

4.762

4.643

90

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

5.19

5.081

4.762

4.601

4.643

91

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

5.19

5.081

4.762

4.596

4.601

4.643

92

Random 3-SAT as of 2004

Random Walk

DP

DP’

Walksat

SP

GSAT

Upper bounds
by combinatorial

arguments

(’92 – ’05)

5.19

5.081

4.762

4.596

4.506

4.601

4.643

Real versus Random

• Real graphs tend to be sparse

– dense random graphs contains lots of (rare?) structure

• Real graphs tend to have short path lengths

– as do random graphs

• Real graphs tend to be clustered

– unlike sparse random graphs

Small world graphs

• Sparse, clustered, short path lengths

• Six degrees of separation
– Stanley Milgram’s famous 1967

postal experiment

– recently revived by Watts & Strogatz

– shown applies to:
• actors database

• US electricity grid

• neural net of a worm

• ...

An example

• 1994 exam timetable at
Edinburgh University
– 59 nodes, 594 edges so

relatively sparse

– but contains 10-clique

• less than 10^-10 chance in a
random graph
– assuming same size and

density

• clique totally dominated
cost to solve problem

96
(Gomes et al. 1998; 2000)

Observation: Complete backtrack style search SAT solvers

(e.g. DPLL) display a remarkably wide range of run times.

Even when repeatedly solving the same problem instance; variable

branching is choice randomized.

Run time distributions are often “heavy-tailed”.

Orders of magnitude difference in run time on different runs.

Real World DPLL

Number backtracks (log)

 U
ns

ol
ve

d
fr

ac
ti
on

100,000 1

Heavy Tails on Structured Problems

Number backtracks (log)

 U
ns

ol
ve

d
fr

ac
ti
on

50% runs:

1 backtrack

100,000 1

Heavy Tails on Structured Problems

Number backtracks (log)

 U
ns

ol
ve

d
fr

ac
ti
on

50% runs:

1 backtrack

10% runs:

> 100,000

backtracks

100,000 1

Heavy Tails on Structured Problems

100

Randomized Restarts
Solution: randomize the backtrack strategy

Add noise to the heuristic branching (variable choice) function
Cutoff and restart search after a fixed number of backtracks

Provably Eliminates heavy tails

In practice: rapid restarts with low cutoff can dramatically improve
performance (Gomes et al. 1998, 1999)

Exploited in many current SAT solvers combined with clause learning
and non-chronological backtracking. (e.g., Chaff etc.)

Restarts

1
-
F
(x

)
U
ns

ol
ve

d
 f

ra
ct

io
n

Number backtracks (log)

no restarts

restart every 4 backtracks

Restarts

70%

unsolved

1
-
F
(x

)
U
ns

ol
ve

d
 f

ra
ct

io
n

Number backtracks (log)

no restarts

restart every 4 backtracks

Restarts

70%

unsolved

1
-
F
(x

)
U
ns

ol
ve

d
 f

ra
ct

io
n

Number backtracks (log)

no restarts

restart every 4 backtracks

0.001%

unsolved

Restarts

70%

unsolved

1
-
F
(x

)
U
ns

ol
ve

d
 f

ra
ct

io
n

Number backtracks (log)

no restarts

restart every 4 backtracks

250 (62 restarts)

0.001%

unsolved

Example of Rapid Restart Speedup

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

log(cutoff)

lo
g

 (
 b

a
ck

tr
a
c
ks

)

Cutoff (log)

N
um

b
e
r

b
a
ck

tr
a
ck

s
(l
og

)

Example of Rapid Restart Speedup

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

log(cutoff)

lo
g

 (
 b

a
ck

tr
a
c
ks

)

Cutoff (log)

N
um

b
e
r

b
a
ck

tr
a
ck

s
(l
og

)

~10 restarts

100000

Example of Rapid Restart Speedup

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

log(cutoff)

lo
g

 (
 b

a
ck

tr
a
c
ks

)

20

2000

~100

restarts

Cutoff (log)

N
um

b
e
r

b
a
ck

tr
a
ck

s
(l
og

)

~10 restarts

100000

Several ways to use restarts

• Restart with increasing cutoff - cutoff increases linearly
– Geometric restarts – (Walsh 99) cutoff increased geometrically;

• Randomized backtracking – (Lynce et al 2001)

– randomizes the target decision points when backtracking
(several variants)

• Random jumping (Zhang 2002)

– solver randomly jumps to unexplored portions of search space;
– jumping decisions are based on analyzing the ratio between the

space searched vs. the remaining search space;
– solved several open problems in combinatorics;

• Learning restart strategies – (Kautz et al 2001 and Ruan et. al 2002) –

– results on optimal policies for restarts under particular
scenarios. Huge area for further research.

Intuitively: Exponential penalties hidden in backtrack

search, consisting of large inconsistent subtrees in

the search space.

But, for restarts to be effective, you also need

short runs.

Intuitively: Exponential penalties hidden in backtrack

search, consisting of large inconsistent subtrees in

the search space.

But, for restarts to be effective, you also need

short runs.

Where do short runs come from?

BACKDOORS

Subset of “critical” variables such

 that once assigned a value the instance simplifies to a

 tractable class.

Real World Problems are characterized

 by Hidden Tractable Substructure

Backdoors: intuitions

Explain how a solver can get “lucky” and solve
very large instances

Backdoors

 Informally:

 A backdoor to a given problem is a subset of the variables such
 that once they are assigned values, the polynomial propagation
 mechanism of the SAT solver solves the remaining formula.

 Formal definition includes the notion of a “subsolver”:
 a polynomial simplification procedure with certain general
 characteristics found in current DPLL SAT solvers.

Backdoors correspond to “clever reasoning shortcuts” in the

search space.

Backdoors (for satisfiable instances) (wrt subsolver A):

Strong backdoors (apply to satisfiable or inconsistent instances):

Given a combinatorial problem C

Reminder: Cycle-cutset

• Given an undirected graph, a cycle cutset is a subset of nodes in
the graph whose removal results in a graph without cycles

• Once the cycle-cutset variables are instantiated, the remaining
problem is a tree solvable in polynomial time using arc
consistency;

• A constraint graph whose graph has a cycle-cutset of size c can
be solved in time of O((n-c) k (c+2))

• Important: verifying that a set of nodes is a cutset can be done
in polynomial time (in number of nodes).

(Dechter 93)

Backdoors vs. Cutsets

•Can be viewed as a generalization of cutsets;

•Backdoors use a general notion of tractability based on a polytime

 sub-solver --- backdoors do not require a syntactic characterization

 of tractability.

•Backdoors factor in the semantics of the constraints wrt sub-solver and

 values of the variables;

•Backdoors apply to different representations, including different

semantics for graphs, e.g., network flows --- CSP, SAT, MIP, etc;

Note: Cutsets and W-cutsets – tractability based solely on the structure of
the constraint graph, independently of the semantics of the constraints;

Backdoors can be surprisingly small

Most recent: Other combinatorial domains. E.g. graphplan planning,

near constant size backdoors (2 or 3 variables) and log(n) size

in certain domains. (Hoffmann, Gomes, Selman ’04)

 Backdoors capture critical problem resources (bottlenecks).

Backdoors --- “seeing is believing”

Logistics_b.cnf planning formula.

843 vars, 7,301 clauses, approx min backdoor 16

(backdoor set = reasoning shortcut)

Constraint graph of

reasoning problem.

One node per variable:

edge between two variables

if they share a constraint.

Logistics.b.cnf after setting 5 backdoor vars.

After setting just 12 (out of 800+) backdoor vars – problem almost solved.

MAP-6-7.cnf infeasible planning instances. Strong backdoor of size 3.

392 vars, 2,578 clauses.

Another example

After setting 2 (out of 392) backdoor vars. ---

reducing problem complexity in just a few steps!

Inductive inference problem --- ii16a1.cnf. 1650 vars, 19,368 clauses.

Backdoor size 40.

Last example.

After setting 6 backdoor vars.

After setting 38 (out of 1600+)

backdoor vars:

Some other intermediate stages:

After setting 38 (out of 1600+)

backdoor vars:

Some other intermediate stages:

So: Real-world structure

hidden in the network.

Can be exploited by

automated reasoning

engines.

(Williams, Gomes, and Selman ’03)

Current

solvers

Size

backdoor

n = num. vars.

k is a constant

Other Techniques: Nogood Learning

• Learn from mistakes during search

– Nogood Learning: when DPLL backtracks,

• Learn a concise reason: what went wrong

– avoid similar ‘mistakes’ in the future!

– Extremely powerful in practice

Other Techniques: Machine Learning

• Machine learning to build algorithm portfolios
– Observation: no single SAT solver is good on every family of instances

– Features of a given instance can be used to predict, with reasonable
accuracy, which solver will work well on it!

– Solution: design a portfolio solver using ML techniques

• Based on runtime prediction models

• Recent work – avoid complex models, use k-NN or clustering

• Automatic parameter tuning (generic and instance-specific)
– SAT solvers are designed with many ‘hardwired’ parameters

– Millions of parameter combinations – impossible to explore all by hand!

– Solution: use automatic parameter tuning tools based on local search,
genetic algorithms, etc.

Where is SAT Research headed?
Direction A: getting more out of SAT solvers

– Minimal/minimum unsatisfiable cores: very useful in practice!

– MAXSAT, weighted MAXSAT

– Circuit representations (rather than CNF)

Direction B: tacking problems harder than SAT

– Near-uniform sampling from the solution space

– Solution counting (with relations to probabilistic inference)

-- #P-hard : challenging even to approximate with good confidence bounds

Direction C: expanding the applicability of SAT technology

– Pseudo-Boolean SAT (i.e., linear inequalities over Boolean vars)

– SMT: Satifisiability Modulo Theories (e.g., linear arithmetic, bit-vector

operations, uninterpreted functions)

