
Advanced Satisfiability  

Mausam 
(Based on slides of Carla Gomes, Henry Kautz, 

Subbarao Kambhampati, Cristopher Moore,  
Ashish Sabharwal, Bart Selman, Toby Walsh) 



Why study Satisfiability? 

• Canonical NP complete problem. 

– several hard problems modeled as SAT 

 

• Tonne of applications 

 

• State-of-the-art solvers superfast 
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Real-World Reasoning 
Tackling inherent computational complexity 
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Rules (Constraints) Example domains cast in propositional reasoning system (variables, rules). 

• High-Performance Reasoning 

• Temporal/ uncertainty reasoning 

• Strategic reasoning/Multi-player 

Technology  Targets 

DARPA Research 

Program 



Application: Diagnosis 

• Problem: diagnosis a malfunctioning device 

– Car 

– Computer system 

– Spacecraft 

• where 

– Design of the device is known 

– We can observe the state of only certain parts of 
the device – much is hidden 



Model-Based, Consistency-Based Diagnosis 

• Idea: create a logical formula that describes how 
the device should work 

– Associated with each “breakable” component C is a 
proposition that states “C is okay” 

– Sub-formulas about component C are all conditioned on 
C being okay 

• A diagnosis is a smallest of “not okay” assumptions 
that are consistent with what is actually observed 



Consistency-Based Diagnosis 

1. Make some Observations O. 

2. Initialize the Assumption Set A to assert that 
all components are working properly. 

3. Check if the KB, A, O together are inconsistent 
(can deduce false). 

4. If so, delete propositions from A until 
consistency is restored (cannot deduce false).  
The deleted propositions are a diagnosis. 

There may be many possible diagnoses 

 

 



Example: Automobile Diagnosis 
• Observable Propositions: 

EngineRuns,    GasInTank,     ClockRuns 

• Assumable Propositions: 

FuelLineOK,     BatteryOK,      CablesOK,     ClockOK 

• Hidden (non-Assumable) Propositions: 

GasInEngine,   PowerToPlugs 

• Device Description F: 

(GasInTank  FuelLineOK)  GasInEngine 

(GasInEngine  PowerToPlugs)    EngineRuns 

(BatteryOK  CablesOK)  PowerToPlugs 

(BatteryOK  ClockOK)  ClockRuns 

• Observations: 

 EngineRuns,     GasInTank,     ClockRuns 

 



Example 
• Is F  Observations  Assumptions consistent? 

 

                                           

                                                        

                           

                                           

                                            

                             

                                           

                                            

                                

 



Example 
• Is F  Observations  Assumptions consistent? 

 

• F   {EngineRuns, GasInTank, ClockRuns}  

  { FuelLineOK, BatteryOK, CablesOK, ClockOK }  false 

– Must restore consistency! 

                                           

                                            

                             

                                           

                                            

                                

 



Example 
• Is F  Observations  Assumptions consistent? 

 

• F   {EngineRuns, GasInTank, ClockRuns}  
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• F   {EngineRuns, GasInTank, ClockRuns}  

  { BatteryOK, CablesOK, ClockOK }  false 
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Example 
• Is F  Observations  Assumptions consistent? 

 

• F   {EngineRuns, GasInTank, ClockRuns}  

  { FuelLineOK, BatteryOK, CablesOK, ClockOK }  false 

– Must restore consistency! 

• F   {EngineRuns, GasInTank, ClockRuns}  

  { BatteryOK, CablesOK, ClockOK }  false 

–  FuelLineOK is a diagnosis 

• F   {EngineRuns, GasInTank, ClockRuns}  

  {FuelLineOK, CablesOK, ClockOK }  false 

–  BatteryOK is not a diagnosis 

 



Complexity of Diagnosis 

• If F is Horn, then each consistency test takes 
linear time – unit propagation is complete for 
Horn clauses. 

• Complexity = ways to delete propositions from 
Assumption Set that are considered. 

– Single fault diagnosis – O(n2) 

– Double fault diagnosis – O(n3) 

– Triple fault diagnosis – O(n4) 

   … 



Deep Space One 

• Autonomous diagnosis & repair “Remote 
Agent” 

• Compiled systems schematic to 7,000 var 
SAT problem 

Started:  January 1996 

Launch: October 15th, 1998 

Experiment: May 17-21 



Deep Space One 

• a failed electronics unit 
– Remote Agent fixed by reactivating the unit. 

 

• a failed sensor providing false information 
– Remote Agent recognized as unreliable and therefore correctly ignored. 

 

• an altitude control thruster (a small engine for controlling the 
spacecraft's orientation) stuck in the "off" position  
– Remote Agent detected and compensated for by switching to a mode that 

did not rely on that thruster. 

 



Testing Circuit Equivalence 

• Do two circuits compute 
the same function? 

• Circuit optimization 

• Is there input for which the 
two circuits compute 
different values? 
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SAT Translation of N-Queens 

                                 
                               

                               

   

 

             
               

               

               

     



SAT Translation of N-Queens 

• At least one queen each column: 
(Q11 v Q12 v Q13 v ... v Q18) 

(Q21 v Q22 v Q23 v ... v Q28) 

… 

 

             
               

               

               

     



SAT Translation of N-Queens 

• At least one queen each column: 
(Q11 v Q12 v Q13 v ... v Q18) 

(Q21 v Q22 v Q23 v ... v Q28) 

… 

 

• No attacks: 
(~Q11 v ~Q12) 

(~Q11 v ~Q22) 

(~Q11 v ~Q21) 

... 

 



CSP  SAT 

• A new SAT Variable for var-val pair 

 XWA-r, XWA-g, XWA-b, XNT-r… 

• Each var has at least 1 value 

– XWA-r v XWA-g v XWA-b 

• No var has two values 

– ~XWA-r v ~XWA-g  

– ~XWA-r v ~XWA-b 

• Constraints 

– ~XWA-r v ~XNT-r 

 

 



Symbolic Model Checking 

• Any finite state machine is characterized by a transition function   
– CPU 
– Networking protocol 

• Wish to prove some invariant holds for any possible inputs 
• Bounded model checking: formula is sat iff invariant fails k steps in the future 
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A “real world” example 



i.e.  ((not x1) or x7) 

        and ((not x1) or x6) 

and … etc. 

Bounded Model Checking instance 

                     



(x177 or x169 or x161 or x153 … 

                   or x17 or x9 or x1 or (not x185))  

 

clauses / constraints are getting more interesting… 

10 pages later: 

                

… 



4000 pages later: 

                              

… 

!!! 
a 59-cnf 

clause… 



Finally, 15,000 pages later: 

Note that: … !!! 



Finally, 15,000 pages later: 

The Chaff SAT solver (Princeton) solves  

this instance in less than one minute. 

Note that: … !!! 



Finally, 15,000 pages later: 

The Chaff SAT solver (Princeton) solves  

this instance in less than one minute. 

Note that: … !!! 

 
What makes this possible? 



Progress in Last 20 years 

• Significant progress since the 1990’s. How much? 

• Problem size: We went from 100 variables, 200 constraints (early 90’s) 

 to 1,000,000+ variables and 5,000,000+ constraints in 20 years 

 

• Search space: from 10^30 to 10^300,000. 

 [Aside: “one can encode quite a bit in 1M variables.”] 

 

•  Is this just Moore’s Law? It helped, but not much… 

• – 2x faster computers does not mean can solve 2x larger instances 

• – search difficulty does not scale linearly with problem size! 

•  Tools: 50+ competitive SAT solvers available 



Forces Driving Faster, Better SAT Solvers 

• From academically interesting to practically relevant “Real” 
benchmarks, with real interest in solving them 
 

• Regular SAT Solver Competitions (Germany-89, Dimacs-93, China-
96, SAT-02, SAT-03, …, SAT-07, SAT-09, SAT-2011) 

– “Industrial-instances-only” SAT Races (2008, 2010) 

– A tremendous resource! E.g., SAT Competition 2006 (Seattle): 

• 35+ solvers submitted, downloadable, mostly open source 

• 500+ industrial benchmarks, 1000+ other benchmarks 

• 50,000+ benchmark instances available on the Internet 
 

• This constant improvement in SAT solvers is the key to the success 
of, e.g., SAT-based planning and verification 



Assignment 2: Graph Subset Mapping 

• Given two directed graphs G and G’ 

– Check if G is a subset mapping to G’ 

 

• I.e. construct a one-one mapping (M) from all 
nodes of G to some nodes of G’ s.t. 

– (n1,n2) in G  (M(n1), M(n2)) in G’ 

– (n1,n2) not in G  (M(n1), M(n2)) not in G’ 
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No, because the directionality 
of edges doesn’t match. 

No, because there is no edge 
between A and C in G whereas 
there is one between P and R in G’. 

Yes. A mapping is: M(A) = S,  
M(B) = Q, M(C) = R 
 
The edges from P to other nodes 
don‘t matter since no node in G 
got mapped to P. 



SAT Model for Graph Subset Mapping 

• If a mapping exists then SAT formula is satisfiable 

• Else unsatisfiable 

 

• The satisfying assignment suggests the mapping M 



GSAT 

• Local search (Hill Climbing + Random Walk) over 
space of complete truth assignments 

–With prob p: flip any variable in any unsatisfied clause 

–With prob (1-p): flip best variable in any unsat clause 

• best = one which minimizes #unsatisfied clauses 

 

• SAT encodings of N-Queens, scheduling 

• Best algorithm for random K-SAT 

–Best DPLL: 700 variables 

–Walksat: 100,000 variables 
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Refining Greedy Random Walk 

• Each flip 

– makes some false clauses become true 

– breaks some true clauses, that become false 

• Suppose s1s2 by flipping x.  Then: 

 #unsat(s2) = #unsat(s1) – make(s1,x) + break(s1,x) 

• Idea 1: if a choice breaks nothing, it is very likely to 
be a good move 

• Idea 2: near the solution, only the break count 
matters  

– the make count is usually 1 



Walksat 
state = random truth assignment; 
while ! GoalTest(state) do 

clause := random member { C | C is false in state }; 
for each x in clause do compute break[x]; 
if exists x with break[x]=0 then var := x; 
else 
    with probability p do 
        var := random member { x | x is in clause }; 
    else 
        var := arg x min { break[x] | x is in clause }; 
endif 
state[var] := 1 – state[var]; 

end 
return state; Put everything inside of a restart loop. 

Parameters: p, max_flips, max_runs 



Hardness of 3-sat as a function of  
#clauses/#variables 

#clauses/#variables 

Probability that 
 there is a satisfying 
 assignment 

Cost of solving 
 (either by finding 
  a solution or showing 
  there ain’t one) 
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Hardness of 3-sat as a function of  
#clauses/#variables 

#clauses/#variables 

Probability that 
 there is a satisfying 
 assignment 

Cost of solving 
 (either by finding 
  a solution or showing 
  there ain’t one) 

p=0.5 
You would  
expect this 

This is what  
happens! 

~4.3 



Random 3-SAT 

• Random 3-SAT 

– sample uniformly from 
space of all possible 3-
clauses 

– n variables, l clauses 

 

• Which are the hard 
instances? 

– around l/n = 4.3 
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Random 3-SAT 

• Varying problem size, n 

 

• Complexity peak appears 
to be largely invariant of 
algorithm 
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Random 3-SAT 

• Complexity peak coincides 
with solubility transition 

 

– l/n < 4.3 problems under-
constrained and SAT 

 

– l/n > 4.3 problems over-
constrained and UNSAT 

 

– l/n=4.3, problems on “knife-
edge” between SAT and 
UNSAT 

55 
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Random 3-SAT as of 2005 

Mitchell, Selman, and  Levesque ’92 
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Random 3-SAT as of 2005 
Phase 

transition 

Mitchell, Selman, and  Levesque ’92 
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Random 3-SAT as of 2005 

Mitchell, Selman, and  Levesque ’92 
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Random 3-SAT as of 2005 

Random Walk 

Mitchell, Selman, and  Levesque ’92 
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Random 3-SAT as of 2005 

Random Walk 

DP 

Mitchell, Selman, and  Levesque ’92 
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Random 3-SAT as of 2005 

Random Walk 

DP 

DP’ 

Mitchell, Selman, and  Levesque ’92 
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Random 3-SAT as of 2005 

Random Walk 

DP 

DP’ 

GSAT 

Mitchell, Selman, and  Levesque ’92 
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Random 3-SAT as of 2005 

Random Walk 

DP 

DP’ 

Walksat 

GSAT 

Mitchell, Selman, and  Levesque ’92 
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Random 3-SAT as of 2005 

Random Walk 

DP 

DP’ 

Walksat 

SP 

GSAT 

Mitchell, Selman, and  Levesque ’92 
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Results: Random 3-SAT 
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Results: Random 3-SAT 
 

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03). 
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Results: Random 3-SAT 
 

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03). 
              empirically up to 2.5 

• Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) ‘ 
 empirically up to 3.6 
 approx. 400 vars at phase transition 

• GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02) 
              approx. 1,000 vars at phase transition 

• Walksat up till ratio 4.1 (empirical, Selman et al. ’93) 
              approx. 100,000 vars at phase transition 
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Results: Random 3-SAT 
 

• Random walk up to ratio 1.36 (Alekhnovich and Ben Sasson 03). 
              empirically up to 2.5 

• Davis Putnam (DP) up to 3.42 (Kaporis et al. ’02) ‘ 
 empirically up to 3.6 
 approx. 400 vars at phase transition 

• GSAT up till ratio 3.92 (Selman et al. ’92, Zecchina et al. ‘02) 
              approx. 1,000 vars at phase transition 

• Walksat up till ratio 4.1 (empirical, Selman et al. ’93) 
              approx. 100,000 vars at phase transition 

• Survey propagation (SP) up till 4.2  
              (empirical, Mezard, Parisi, Zecchina ’02) 
                 approx. 1,000,000 vars near phase transition 
 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

 

E[X] = 0.p(X=0) + 1.p(X=1) + 2.p(X=2) + 3.p(X=3) + … 

       >=                 1.p(X=1) + 1.p(X=2) + 1.p(X=3) + … 

       >= p(X>=1) 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

 No assumptions about the distribution of  X except non-
negative! 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 The expected value of X can be easily calculated 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 

 If E[X] < 1, then prob(X>=1) = prob(SAT) < 1 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 

 If E[X] < 1, then  2^n * (7/8)^l < 1 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 

 If E[X] < 1, then  2^n * (7/8)^l < 1 

                                n + l log2(7/8) < 0 



3SAT phase transition 

• Upper bounds (easier) 

– Typically by estimating count of solutions 

– E.g. Markov (or 1st moment) method 

For any statistic X 

 prob(X>=1) <= E[X] 

Let X be the number of satisfying assignments for a 3SAT 
problem 

 E[X] = 2^n * (7/8)^l 

 If E[X] < 1, then  2^n * (7/8)^l < 1 

                                n + l log2(7/8) < 0 

                                l/n > 1/log2(8/7) = 5.19… 



A Heavy Tail 

• But the transition is much lower at l/n ~ 4.27. 
What going on? 

 

                                  

                                                      

                                               

                                         

                                             



A Heavy Tail 

• But the transition is much lower at l/n ~ 4.27. 
What going on? 

 

• In the range 4.27 < l/n < 5.19,  

– the average no. of solutions is exponentially large. 

• Occasionally, there are exponentially many... 

– ...but most of the time there are none! 

• Large average doesn’t prove satisfiability! 
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Random 3-SAT as of 2004 

Random Walk 

DP 

DP’ 

Walksat 

SP 

GSAT 

Upper bounds 
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Random 3-SAT as of 2004 

Random Walk 
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Upper bounds 
by combinatorial 

arguments 

(’92 – ’05) 

5.19 

5.081  
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Random 3-SAT as of 2004 
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DP 

DP’ 
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SP 
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Upper bounds 
by combinatorial 

arguments 

(’92 – ’05) 

5.19 

5.081  
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Random 3-SAT as of 2004 

Random Walk 

DP 

DP’ 

Walksat 

SP 

GSAT 

Upper bounds 
by combinatorial 

arguments 

(’92 – ’05) 

5.19 

5.081  

4.762 

4.643 
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Random 3-SAT as of 2004 

Random Walk 

DP 

DP’ 

Walksat 

SP 

GSAT 

Upper bounds 
by combinatorial 

arguments 

(’92 – ’05) 

5.19 

5.081  

4.762 

4.601 

4.643 
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Random 3-SAT as of 2004 

Random Walk 

DP 

DP’ 

Walksat 

SP 

GSAT 

Upper bounds 
by combinatorial 

arguments 

(’92 – ’05) 

5.19 

5.081  

4.762 

4.596 

4.601 

4.643 
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Random 3-SAT as of 2004 

Random Walk 

DP 

DP’ 

Walksat 

SP 

GSAT 

Upper bounds 
by combinatorial 

arguments 

(’92 – ’05) 

5.19 

5.081  

4.762 

4.596 

4.506 

4.601 

4.643 



Real versus Random 

• Real graphs tend to be sparse 

– dense random graphs contains lots of (rare?) structure 

 

• Real graphs tend to have short path lengths 

– as do random graphs 

 

• Real graphs tend to be clustered 

– unlike sparse random graphs 



Small world graphs 

• Sparse, clustered, short path lengths 

 

• Six degrees of separation 
– Stanley Milgram’s famous 1967 

postal experiment 

– recently revived by Watts & Strogatz 

– shown applies to: 
• actors database 

• US electricity grid 

• neural net of a worm 

• ... 

 



An example 

• 1994 exam timetable at 
Edinburgh University 
– 59 nodes, 594 edges so 

relatively sparse 

– but contains 10-clique 

• less than 10^-10 chance in a 
random graph 
– assuming same size and 

density 

• clique totally dominated 
cost to solve problem 



96 
(Gomes et al. 1998; 2000) 

Observation:  Complete backtrack style search SAT solvers 

(e.g. DPLL) display a remarkably wide range of run times. 

 
Even when repeatedly solving the same problem instance; variable 

branching is choice randomized. 

 

Run time distributions are often “heavy-tailed”. 

 

Orders of magnitude difference in run time on different runs. 

Real World DPLL 
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Randomized Restarts 
Solution:  randomize the backtrack strategy 

Add noise to the heuristic branching (variable choice) function 
Cutoff and restart search after a fixed number of backtracks 
 

Provably Eliminates heavy tails 
 
In practice: rapid restarts with low cutoff can dramatically improve 
performance (Gomes et al. 1998, 1999) 
 

Exploited in many current SAT solvers combined with clause learning 
and non-chronological backtracking. (e.g., Chaff etc.) 
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Several ways to use restarts 

• Restart with increasing cutoff - cutoff increases linearly 
– Geometric restarts – (Walsh 99) cutoff  increased geometrically; 

 
• Randomized backtracking – (Lynce et al 2001) 

– randomizes the target decision points when backtracking 
(several variants) 

 
• Random jumping (Zhang 2002)  

– solver randomly jumps to unexplored portions of search space;  
– jumping decisions are based on analyzing the ratio between the  

space searched vs. the remaining search space;  
– solved several open problems in combinatorics; 

 
• Learning restart strategies – (Kautz et al 2001 and Ruan et. al 2002) –  

– results on optimal policies for restarts under particular 
scenarios. Huge area for further  research. 

 
 



Intuitively: Exponential penalties hidden in backtrack 

search, consisting of large inconsistent subtrees in 

the search space. 

 

But, for restarts to be effective, you also need 

short runs. 



Intuitively: Exponential penalties hidden in backtrack 

search, consisting of large inconsistent subtrees in 

the search space. 

 

But, for restarts to be effective, you also need 

short runs. 

Where do short runs come from? 



 
BACKDOORS 

Subset of “critical” variables such  

    that once assigned a value the instance simplifies to a 

    tractable class. 

 

Real World Problems are characterized 

 by  Hidden Tractable Substructure  

Backdoors: intuitions 

Explain how a solver can get “lucky” and solve 
very large instances 

 



Backdoors 

    Informally:  
 
    A backdoor to a given  problem is a subset of the variables such  
    that once they are assigned values, the polynomial propagation 
    mechanism of the SAT solver solves the remaining formula. 
 
    Formal definition includes the notion of a “subsolver”: 
         a polynomial simplification procedure with certain general  
         characteristics found in current DPLL SAT solvers. 
 
      
          
Backdoors correspond to “clever reasoning shortcuts” in the 

search space. 



Backdoors (for satisfiable instances)  (wrt subsolver A): 

Strong backdoors (apply to satisfiable or inconsistent instances): 

Given a combinatorial problem C  



Reminder: Cycle-cutset 

• Given an undirected graph, a cycle cutset is a subset of nodes in 
the graph whose removal results in a graph without cycles 

 

• Once the cycle-cutset variables are instantiated, the remaining 
problem is a tree  solvable in polynomial time using  arc 
consistency;  

 

• A constraint graph whose graph has a cycle-cutset of size c can 
be solved in time of O((n-c) k (c+2) ) 

 

• Important: verifying that a set of nodes is a cutset  can be done 
in polynomial time (in number of nodes). 

(Dechter 93) 



Backdoors vs. Cutsets 

•Can be viewed as a generalization of cutsets;  

 

•Backdoors use a general  notion of  tractability based on a polytime  

    sub-solver --- backdoors do not require a syntactic characterization 

    of tractability. 

 

•Backdoors factor in the semantics of the constraints wrt sub-solver and 

    values of the variables;   

 

•Backdoors apply to different representations, including different  

semantics for graphs, e.g., network flows --- CSP, SAT, MIP, etc;  

Note: Cutsets and W-cutsets – tractability  based solely on the structure of  
the constraint graph, independently of the semantics of the constraints; 



Backdoors can be surprisingly small 

 

 

Most recent: Other combinatorial domains. E.g. graphplan planning,  

near constant size backdoors (2 or 3 variables) and log(n) size 

in certain domains.  (Hoffmann, Gomes, Selman ’04)  

 

 Backdoors capture critical problem resources (bottlenecks). 



Backdoors --- “seeing is believing” 

Logistics_b.cnf planning formula.  

843 vars, 7,301 clauses, approx min backdoor 16 

(backdoor set = reasoning shortcut) 
 

Constraint graph of 

reasoning problem. 

One node per variable: 

edge between two variables 

if they share a constraint. 



Logistics.b.cnf after setting 5 backdoor vars. 



After setting just 12 (out of 800+) backdoor vars – problem almost solved. 



MAP-6-7.cnf infeasible planning instances. Strong backdoor of size 3. 

392 vars, 2,578 clauses. 

Another example 



After setting 2 (out of 392) backdoor vars. ---  

reducing problem complexity in just a few steps!  



Inductive inference problem --- ii16a1.cnf.  1650 vars, 19,368 clauses. 

Backdoor size 40. 

Last example. 



After setting 6 backdoor vars. 



After setting 38 (out of 1600+) 

backdoor vars: 

Some other intermediate stages: 



After setting 38 (out of 1600+) 

backdoor vars: 

Some other intermediate stages: 

So: Real-world structure 

hidden in the network. 

Can be exploited by 

automated reasoning 

engines. 



(Williams, Gomes, and Selman ’03) 

Current 

solvers 

Size 

backdoor 

n = num. vars. 

k is a constant 



Other Techniques: Nogood Learning 

• Learn from mistakes during search 

– Nogood Learning: when DPLL backtracks, 

• Learn a concise reason: what went wrong 

– avoid similar ‘mistakes’ in the future! 

– Extremely powerful in practice 



Other Techniques: Machine Learning 

•  Machine learning to build algorithm portfolios 
– Observation: no single SAT solver is good on every family of instances 

– Features of a given instance can be used to predict, with reasonable 
accuracy, which solver will work well on it! 

– Solution: design a portfolio solver using ML techniques 

• Based on runtime prediction models 

• Recent work – avoid complex models, use k-NN or clustering 

  

• Automatic parameter tuning (generic and instance-specific) 
– SAT solvers are designed with many ‘hardwired’ parameters 

– Millions of parameter combinations – impossible to explore all by hand! 

– Solution: use automatic parameter tuning tools based on local search, 
genetic algorithms, etc. 



Where is SAT Research headed? 
Direction A: getting more out of SAT solvers 

– Minimal/minimum unsatisfiable cores: very useful in practice! 

– MAXSAT, weighted MAXSAT 

– Circuit representations (rather than CNF) 

  

Direction B: tacking problems harder than SAT 

– Near-uniform sampling from the solution space 

– Solution counting (with relations to probabilistic inference) 

-- #P-hard : challenging even to approximate with good confidence bounds 

 

Direction C: expanding the applicability of SAT technology 

– Pseudo-Boolean SAT (i.e., linear inequalities over Boolean vars) 

– SMT: Satifisiability Modulo Theories (e.g., linear arithmetic, bit-vector 

operations, uninterpreted functions) 


