Logic in Al Chapter 7

Mausam
(Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz...)

Knowledge Representation

- represent knowledge about the world in a manner that facilitates inferencing (i.e. drawing conclusions) from knowledge.
- Example: Arithmetic logic
- $x>=5$
- In AI: typically based on
- Logic
- Probability
- Logic and Probability

Common KR Languages

KR Languages

- Propositional Logic
- Predicate Calculus
- Frame Systems
- Rules with Certainty Factors
- Bayesian Belief Networks
- Influence Diagrams
- Ontologies
- Semantic Networks
- Concept Description Languages
- Non-monotonic Logic

Basic Idea of Logic

- By starting with true assumptions, you can deduce true conclusions.

Truth

-Francis Bacon (1561-1626)

No pleasure is comparable to the standing upon the vantage-ground of truth.
-Thomas Henry Huxley (18251895)

Irrationally held truths may be more harmful than reasoned errors.
-John Keats (1795-1821)
Beauty is truth, truth beauty; that is all ye know on earth, and all ye need to know.
-Blaise Pascal (1623-1662)
We know the truth, not only by the reason, but also by the heart.
-François Rabelais (c. 1490-1553)
Speak the truth and shame the Devil.
-Daniel Webster (1782-1852)
There is nothing so powerful as truth, and often nothing so strange.

Truth

-Francis Bacol (1561-1626)

No pleasure is comparable to the standing upon the varatage-ground of truth.
-Thomas Henry Huxley (18251895)

Irrationally held truths may be more harmful than reasoned errors.
-John Keats (1795-1821)
Beauty is truth, truth beauty; that is all yeknow on earth, and all ye need to know.
-Blaise Pascal (1623-1662)
We know thetruth, not only by the reason, but also by the heart.

- François Rabelais (c. 1490-1553)

Speak the truth and shame the Devil.
-Danie Webster (1782-1852)
There is nothing so powerful as truth, and ofter nothing so strange.

Components of KR

- Syntax: defines the sentences in the language
- Semantics: defines the "meaning" to sentences
- Inference Procedure
- Algorithm
- Sound?
- Complete?
- Complexity
- Knowledge Base

Knowledge bases

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
- Tell it what it needs to know
- Then it can Ask itself what to do - answers should follow from the KB
- Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented
- Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

Propositional Logic

- Syntax
- Atomic sentences: P, Q, ...
- Connectives: $\wedge, \vee, \neg, \rightarrow$
- Semantics
- Truth Tables
- Inference
- Modus Ponens
- Resolution
- DPLL
- GSAT

Propositional Logic: Syntax

- Atoms
$-P, Q, R, \ldots$
- Literals
$-\mathrm{P}, \neg \mathrm{P}$
- Sentences
- Any literal is a sentence
- If S is a sentence
- Then $(S \wedge S)$ is a sentence
- Then $(S \vee S)$ is a sentence
- Conveniences
$\mathrm{P} \rightarrow \mathrm{Q}$ same as $\neg \mathrm{P} \vee \mathrm{Q}$

Semantics

- Syntax: which arrangements of symbols are legal
- (Def "sentences")
- Semantics: what the symbols mean in the world
- (Mapping between symbols and worlds)

Propositional Logic: SEMANTICS

- "Interpretation" (or "possible world")
- Assignment to each variable either T or F
- Assignment of T or F to each connective via defns

Propositional Logic: SEMANTICS

- "Interpretation" (or "possible world")
- Assignment to each variable either T or F
- Assignment of T or F to each connective via defns

Q

P $\vee \mathrm{Q}$

Propositional Logic: SEMANTICS

- "Interpretation" (or "possible world")
- Assignment to each variable either T or F
- Assignment of T or F to each connective via defns

	T	F
P T	T T	T
F	F T	F

Satisfiability, Validity, \& Entailment

- S is satisfiable if it is true in some world
- S is unsatisfiable if it is false all worlds
- S is valid if it is true in all worlds
- S1 entails S2 if wherever S1 is true S2 is also true

Examples

$P \rightarrow Q$

Examples

$$
\begin{aligned}
& P \rightarrow Q \\
& R \rightarrow \neg R
\end{aligned}
$$

Examples

$$
\begin{aligned}
& P \rightarrow Q \\
& R \rightarrow \neg R \\
& S \wedge(W \wedge \neg S)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& P \rightarrow Q \\
& R \rightarrow \neg R \\
& S \wedge(W \wedge \neg S) \\
& T \vee \neg T
\end{aligned}
$$

Examples

$$
\begin{aligned}
& P \rightarrow Q \\
& R \rightarrow \neg R \\
& S \wedge(W \wedge \neg S) \\
& T \vee \neg T \\
& x \rightarrow x
\end{aligned}
$$

Notation

\Rightarrow
\rightarrow
\rightarrow
$\mid-$
$\mid=$

Notation

Implication (syntactic symbol)

Notation

Implication (syntactic symbol)

Proves: $S 1 I_{-i e}$ S2 if 'ie' algorithm says `S2' from S1
=
Entails: $\mathrm{S} 1 \mathrm{l}=\mathrm{S} 2$ if wherever S 1 is true S 2 is also true

Notation

Implication (syntactic symbol)

Proves: $\left.S 1\right|_{-i e} S 2$ if 'ie' algorithm says `S2' from S1
$=\quad$ Entails: $S 1 \mid=S 2$ if wherever $S 1$ is true $S 2$ is also true

- Sound
- Complete
- (all truth \& nothing but the truth)

Notation

\rightarrow

Implication (syntactic symbol)

Proves: $\mathrm{S} 1 \mathrm{I}_{\mathrm{ie}} \mathrm{S} 2$ if 'ie' algorithm says `S2' from S1
|=
Entails: $\mathrm{S} 1 \mathrm{l}=\mathrm{S} 2$ if wherever S 1 is true S 2 is also true

- Sound $\quad|-\rightarrow|=$
- Complete $|=\rightarrow|-$
- (all truth \& nothing but the truth)

Reasoning Tasks

Model finding

$K B=$ background knowledge
$S=$ description of problem
Show $(K B \wedge S)$ is satisfiable
A kind of constraint satisfaction

Deduction

S = question
Prove that KB $\mid=S$
Two approaches:

Reasoning Tasks

Model finding

$K B=$ background knowledge
$S=$ description of problem
Show ($K B \wedge S$) is satisfiable
A kind of constraint satisfaction

Deduction

S = question
Prove that KB $\mid=S$
Two approaches:

- Rules to derive new formulas from old (inference)
- Show $(K B \wedge \neg S)$ is unsatisfiable

Special Syntactic Forms

- General Form:

$$
((q \wedge \neg r) \rightarrow s)) \wedge \neg(s \wedge t)
$$

- Conjunction Normal Form (CNF)

$$
(\neg q \vee r \vee s) \wedge(\neg s \vee \neg \mathrm{t})
$$

Set notation: $\{(\neg \mathrm{q}, \mathrm{r}, \mathrm{s}),(\neg \mathrm{s}, \neg \mathrm{t})\}$ empty clause () = false

- Binary clauses: 1 or 2 literals per clause

$$
(\neg q \vee r) \quad(\neg s \vee \neg t)
$$

- Horn clauses: 0 or 1 positive literal per clause

$$
\begin{array}{ll}
(\neg \mathrm{q} \vee \neg \mathrm{r} \vee \mathrm{~s}) & (\neg \mathrm{s} \vee \neg \mathrm{t}) \\
(\mathrm{q} \wedge \mathrm{r}) \rightarrow \mathrm{s} & (\mathrm{~s} \wedge \mathrm{t}) \rightarrow \text { false }
\end{array}
$$

Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward \& Forward Chaining
2. Resolution (Proof by Contradiction)
3. Davis Putnam
4. WalkSat

Inference 1: Forward Chaining

Forward Chaining Based on rule of modus ponens

If know $P_{1}, \ldots, P_{n} \&$ know $\left(P_{1} \wedge \ldots \wedge P_{n}\right) \rightarrow Q$
Then can conclude Q

Backward Chaining: search
start from the query and go backwards

Analysis

- Sound?
- Complete?

Analysis

- Sound?
- Complete?

Can you prove

$$
\} \mid=Q \vee \neg Q
$$

Analysis

- Sound?
- Complete?

Can you prove

$$
\} \mid=Q \vee \neg Q
$$

- If KB has only Horn clauses \& query is a single literal
- Forward Chaining is complete
- Runs linear in the size of the KB

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Example

$$
\begin{aligned}
& P \Rightarrow Q \\
& L \wedge M \Rightarrow P \\
& B \wedge L \Rightarrow M \\
& A \wedge P \Rightarrow L \\
& A \wedge B \Rightarrow L \\
& A \\
& B
\end{aligned}
$$

Propositional Logic: Inference

A mechanical process for computing new sentences

1. Backward \& Forward Chaining
2. Resolution (Proof by Contradiction)
3. GSAT
4. Davis Putnam

Conversionto cNE

$$
B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)
$$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)$.

$$
\left(B_{1,1} \Rightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Rightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\vee over \wedge) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Inference 2: Resolution

[Robinson 1965]

$$
\{(p \vee \alpha),(\neg p \vee \beta \vee \gamma)\} \quad-_{R}(\alpha \vee \beta \vee \gamma)
$$

Inference 2: Resolution
 [Robinson 1965]

$$
\{(p \vee \alpha),(\neg p \vee \beta \vee \gamma)\} \mid{ }_{-R}(\alpha \vee \beta \vee \gamma)
$$

Correctness
If $\left.S 1\right|_{-R}$ S2 then $S 1 \mid=S 2$
Refutation Completeness:
If S is unsatisfiable then $S \mid-R()$

Resolution subsumes Modus Ponens

$$
A \rightarrow B, A \mid=B
$$

Resolution subsumes Modus Ponens

$$
A \rightarrow B, A \mid=B
$$

$(\neg A \vee B)$

Resolution subsumes Modus Ponens

$$
A \rightarrow B, A \mid=B
$$

$$
\begin{equation*}
(\neg A \vee B) \tag{A}
\end{equation*}
$$

Resolution subsumes Modus Ponens

$$
A \rightarrow B, A \mid=B
$$

If Will goes, Jane will go ~W V J
If doesn't go, Jane will still go W V J
Will Jane go?
$1=\mathrm{J}$?

If Will goes, Jane will go ~W V J
If doesn't go, Jane will still go J V J =J W V J
Will Jane go?
$1=\mathrm{J}$?

If Will goes, Jane will go ~W V J
If doesn't go, Jane will still go W V J
Will Jane go?
$\mathrm{I}=\mathrm{J}$?
Don't need to use other equivalences if we use resolution in refutation style

Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned. Prove: the unicorn is horned.

Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned. Prove: the unicorn is horned.
$M=$ mythical
$I=$ immortal
$A=$ mammal
$H=$ horned

Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned. Prove: the unicorn is horned.

$$
(\neg \mathbf{A} \vee \mathrm{H})
$$

$M=$ mythical
$I=$ immortal
$A=$ mammal
$H=$ horned

Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned. Prove: the unicorn is horned.

$$
(\neg A \vee H)
$$

$(\neg \mathbf{I} \vee \mathrm{H})$
$M=$ mythical
$(M \vee A)$
I = immortal
$A=$ mammal
$H=$ horned

Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned. Prove: the unicorn is horned.
$M=$ mythical
$I=$ immortal
$A=$ mammal
$H=$ horned

Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned. Prove: the unicorn is horned.
$M=$ mythical
I = immortal
$A=$ mammal
$H=$ horned

Resolution

If the unicorn is mythical, then it is immortal, but if it is not mythical, it is a mammal. If the unicorn is either immortal or a mammal, then it is horned. Prove: the unicorn is horned.
$M=$ mythical
I = immortal
$A=$ mammal
$H=$ horned

Search in Resolution

- Convert the database into clausal form D_{c}
- Negate the goal first, and then convert it into clausal form D_{G}
- Let $D=D_{c}+D_{G}$
- Loop
- Select a pair of Clauses C1 and C2 from D
- Different control strategies can be used to select C1 and C2 to reduce number of resolutions tries
- Resolve C1 and C2 to get C12
- If C12 is empty clause, QED!! Return Success (We proved the theorem;)
$-\mathrm{D}=\mathrm{D}+\mathrm{C} 12$
- Out of loop but no empty clause. Return "Failure"
- Finiteness is guaranteed if we make sure that:
- we never resolve the same pair of clauses more than once;
- we use factoring, which removes multiple copies of literals from a clause (e.g. QVPVP => QVP)

Idea 1: Set of
Support: At least
one of C1 or C2
must be either
the goal clause or
a clause derived
by doing
resolutions on the goal clause
(*COMPLETE*)
Idea 2: Linear input form:
Atleast one of C1 or C2 must be one of the clauses in the input KB (*INCOMPLETE*)

Model Finding

- Find assignments to variables that makes a formula true
- a CSP

Inference 3: Model Enumeration

for (m in truth assignments) \{
if (m makes Φ true)
then return "Sat!"
$\}$
return "Unsat!"

Inference 4: DPLL

(Enumeration of Partial Models)
[Davis, Putnam, Loveland \& Logemann 1962]
Version 1
dpll_1(pa) \{
if (pa makes F false) return false;
if (pa makes F true) return true;
choose P in F;
if (dpll_1 (pa $\cup\{P=0\}))$ return true; return dpll_1(pa $\cup\{P=1\}) ;$
\}
Returns true if F is satisfiable, false otherwise

DPLL Version 1

$(a \vee b \vee c)$
$(a \vee \neg b)$
$(a \vee \neg C)$
$(\neg a \vee c)$

DPLL Version 1

$(a \vee b \vee c)$

$(a \vee \neg b)$
$(a \vee \neg C)$
$(\neg a \vee c)$

DPLL Version 1

$(F \vee b \vee c)$
($\mathrm{F} \vee \neg b$)
($F \vee \neg C$)
$(T \vee c)$

DPLL Version 1

$(F \vee F \vee c)$
$(F \vee T)$
$(F \vee \neg C)$

$(T \vee C)$

DPLL Version 1

DPLL Version 1

DPLL Version 1

DPLL Version 1

DPLL as Search

- Search Space?
- Algorithm?

Improving DPLL

If literal L_{1} is true, then clause ($L_{1} \vee L_{2} \vee \ldots$) is true If clause C_{1} is true, then $C_{1} \wedge C_{2} \wedge C_{3} \wedge \ldots$ has the same value as $C_{2} \wedge C_{3} \wedge \ldots$
Therefore: Okay to delete clauses containing true literals!
If literal L_{1} is false, then clause $\left(L_{1} \vee L_{2} \vee L_{3} \vee \ldots\right)$ has the same value as $\left(L_{2} \vee L_{3} \vee \ldots\right)$
Therefore: Okay to shorten clauses containing false literals! If literal L_{1} is false, then clause $\left(L_{1}\right)$ is false Therefore: the empty clause means false!

DPLL version 2

dpll_2(F, literal) \{
choose V in F ;
if (dpll_2(F, \neg V)) return true;
return dpll_2(F, V); \}

DPLL version 2

dpll_2(F, literal) \{
remove clauses containing literal
if (F contains no clauses) return true;
shorten clauses containing \neg literal
if (F contains empty clause) return false;
choose V in F;
if (dpll_2(F, \rightarrow V)) return true;
return dpll_2(F, V);
\}

DPLL Version 2

$(F \vee b \vee c)$
($\mathrm{F} \vee \neg b$)
($F \vee \neg C$)
$(T \vee c)$

DPLL Version 2

$(b \vee c)$

$(\neg b)$
$(\neg C)$

DPLL Version 2

$(F \vee c)$
(T)
$(\neg c)$

DPLL Version 2

(c)
$(\neg C)$

DPLL Version 2

DPLL Version 2

Structure in Clauses

- Unit Literals

A literal that appears in a singleton clause $\{\{\neg b c\}\{\neg c\}\{a \neg b$ e\} $\} d b\}\{e a \neg c\}\}$

Structure in Clauses

- Unit Literals

A literal that appears in a singleton clause $\{\{\neg b c\}\{-c\}\{a \neg b$ e\} $\}$ d $b\}\{e a \neg c\}\}$

Might as well set it true! And simplify
$\{\{\neg b\} \quad\{a \neg b e\}\{d b\}\}$

Structure in Clauses

- Unit Literals

A literal that appears in a singleton clause $\{\{\neg b c\}\{-c\}\{a \neg b$ e\} $\}$ d $b\}\{e a \neg c\}\}$

Might as well set it true! And simplify
$\{\{\neg b\} \quad\{a \neg b e\}\{d b\}\}$
$\{\{d\}\}$

Structure in Clauses

- Unit Literals

A literal that appears in a singleton clause $\{\{\neg b c\}\{-c\}\{a \neg b$ e\} $\}$ d $b\}\{e a \neg c\}\}$

Might as well set it true! And simplify
$\{\{\neg b\} \quad\{a \neg b e\}\{d b\}\}$ \{\{d\}\}

- Pure Literals
- A symbol that always appears with same sign
$-\{\{a \neg b c\}\{\neg c d \neg e\}\{\neg a \neg b e\}\{d b\}\{e a \neg c\}\}$

Structure in Clauses

- Unit Literals

A literal that appears in a singleton clause $\{\{\neg b c\}\{-c\}\{a \neg b$ e\} $\}$ d $b\}\{e a \neg c\}\}$

Might as well set it true! And simplify
$\{\{\neg b\}$ $\{a \neg b e\}\{d b\}$ $\{\{d\}\}$

- Pure Literals
- A symbol that always appears with same sign
$-\{\{a \neg b c\}\{\neg c d \neg e\}\{\neg a \neg b e\}\{d b\}\{e a \neg c\}\}$ Might as well set it true! And simplify $\{\{a \neg b c\} \quad\{\neg a \neg b e\} \quad\{e a \neg c\}\}$

In Other Words

Formula $(L) \wedge C_{2} \wedge C_{3} \wedge \ldots$ is only true when literal L is true Therefore: Branch immediately on unit literals!

May view this as adding constraint propagation techniques into play

In Other Words

Formula $(L) \wedge C_{2} \wedge C_{3} \wedge \ldots$ is only true when literal L is true Therefore: Branch immediately on unit literals!
If literal L does not appear negated in formula F, then setting
L true preserves satisfiability of F
Therefore: Branch immediately on pure literals!

> May view this as adding constraint propagation techniques into play

DPLL (previous version)

Davis - Putnam - Loveland - Logemann

dpll(F, literal) \{
remove clauses containing literal
if (F contains no clauses) return true;
shorten clauses containing $\neg l i t e r a l$
if (F contains empty clause) return false;
choose V in F;
if (dpll($\mathrm{F}, ~ \neg \mathrm{~V})$)return true;
return dpll(F, V);
\}

DPLL (for real!)

Davis - Putnam - Loveland - Logemann

dpll (F, literal) \{
remove clauses containing literal
if (F contains no clauses) return true;
shorten clauses containing $\neg l i t e r a l$
if (F contains empty clause) return false;
if (F contains a unit or pure L) return dpll(F, L);
choose V in F;
if (dpll($\mathrm{F}, ~ \neg \mathrm{~V})$)return true; return dpll(F, V);

DPLL (for real)

DPLL (for real!)

Davis - Putnam - Loveland - Logemann

Heuristic Search in DPLL

- Heuristics are used in DPLL to select a (nonunit, non-pure) proposition for branching
- Idea: identify a most constrained variable

Heuristic Search in DPLL

- Heuristics are used in DPLL to select a (nonunit, non-pure) proposition for branching
- Idea: identify a most constrained variable
- Likely to create many unit clauses

Heuristic Search in DPLL

- Heuristics are used in DPLL to select a (nonunit, non-pure) proposition for branching
- Idea: identify a most constrained variable - Likely to create many unit clauses
- MOM's heuristic:
- Most occurrences in clauses of minimum length

Success of DPLL

- 1962 - DPLL invented
- 1992-300 propositions
- 1997 - 600 propositions (satz)
- Additional techniques:
- Learning conflict clauses at backtrack points
- Randomized restarts
- 2002 (zChaff) 1,000,000 propositions - encodings of hardware verification problems

