
Logic in AI
Chapter 7

Mausam

(Based on slides of Dan Weld, Stuart Russell,
Subbarao Kambhampati, Dieter Fox,

Henry Kautz…)

2

Knowledge Representation

• represent knowledge about the world in a manner that facilitates
inferencing (i.e. drawing conclusions) from knowledge.

• Example: Arithmetic logic
– x >= 5

• In AI: typically based on

– Logic

– Probability

– Logic and Probability

3

Common KR Languages

4

Prop logic

First order predicate logic

(FOPC)

Prob. Prop. logic

Objects,

relations
Degree of

belief

First order Prob. logic

Objects,

relations

Degree of

belief

Degree of

truth

Fuzzy Logic

Time

First order Temporal logic

(FOPC)

Epistemological
 commitment

Ontological
 commitment

t/f/u Deg
belief

facts

Facts
Objects
relations

Prop
logic

Prob
prop
logic

FOPC Prob
FOPC

KR Languages

• Propositional Logic

• Predicate Calculus

• Frame Systems

• Rules with Certainty Factors

• Bayesian Belief Networks

• Influence Diagrams

• Ontologies

• Semantic Networks

• Concept Description Languages

• Non-monotonic Logic

5

Basic Idea of Logic

• By starting with true assumptions, you can
deduce true conclusions.

6

Truth
•Francis Bacon (1561-1626)
No pleasure is comparable to the
standing upon the vantage-ground
of truth.

•Thomas Henry Huxley (1825-
1895)
Irrationally held truths may be
more harmful than reasoned
errors.

•John Keats (1795-1821)
Beauty is truth, truth beauty; that
is all ye know on earth, and all ye
need to know.

•Blaise Pascal (1623-1662)
We know the truth, not only by
the reason, but also by the heart.

•François Rabelais (c. 1490-1553)
Speak the truth and shame the
Devil.

•Daniel Webster (1782-1852)
There is nothing so powerful as
truth, and often nothing so
strange.

7

Truth
•Francis Bacon (1561-1626)
No pleasure is comparable to the
standing upon the vantage-ground
of truth.

•Thomas Henry Huxley (1825-
1895)
Irrationally held truths may be
more harmful than reasoned
errors.

•John Keats (1795-1821)
Beauty is truth, truth beauty; that
is all ye know on earth, and all ye
need to know.

•Blaise Pascal (1623-1662)
We know the truth, not only by
the reason, but also by the heart.

•François Rabelais (c. 1490-1553)
Speak the truth and shame the
Devil.

•Daniel Webster (1782-1852)
There is nothing so powerful as
truth, and often nothing so
strange.

8

Components of KR

• Syntax: defines the sentences in the language

• Semantics: defines the “meaning” to sentences

• Inference Procedure

– Algorithm

– Sound?

– Complete?

– Complexity

• Knowledge Base

9

10

Knowledge bases

• Knowledge base = set of sentences in a formal language

• Declarative approach to building an agent (or other system):
– Tell it what it needs to know

• Then it can Ask itself what to do - answers should follow from the KB

• Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented

• Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

Propositional Logic
• Syntax

– Atomic sentences: P, Q, …

– Connectives:  , , , 

• Semantics
– Truth Tables

• Inference
– Modus Ponens
– Resolution
– DPLL
– GSAT

11

Propositional Logic: Syntax
• Atoms

–P, Q, R, …
• Literals

–P, P
• Sentences

–Any literal is a sentence
– If S is a sentence

• Then (S  S) is a sentence
• Then (S  S) is a sentence

• Conveniences
P  Q same as P  Q

12

Semantics
• Syntax: which arrangements of symbols are legal

– (Def “sentences”)

• Semantics: what the symbols mean in the world

– (Mapping between symbols and worlds)

13

Sentences

Facts Facts

Sentences

Representation

World

S
em

a
n
tics

S
em

a
n

tics

Inference

Propositional Logic: SEMANTICS

• “Interpretation” (or “possible world”)

– Assignment to each variable either T or F

– Assignment of T or F to each connective via defns

14

P
T

T

F

F

Q

P
T

T

F

F

Q

P  Q P  Q

Propositional Logic: SEMANTICS

• “Interpretation” (or “possible world”)

– Assignment to each variable either T or F

– Assignment of T or F to each connective via defns

15

P
T

T

F

F

Q

P
T

T

F

F

Q

P  Q P  Q

T

F F

F

Propositional Logic: SEMANTICS

• “Interpretation” (or “possible world”)

– Assignment to each variable either T or F

– Assignment of T or F to each connective via defns

16

P
T

T

F

F

Q

P
T

T

F

F

Q

P  Q P  Q

T

F F

F

F

T T

T

Satisfiability, Validity, & Entailment

• S is satisfiable if it is true in some world

• S is unsatisfiable if it is false all worlds

• S is valid if it is true in all worlds

• S1 entails S2 if wherever S1 is true S2 is also true

17

Examples

18

P  Q

Examples

R  R

19

P  Q

Examples

R  R

S  (W  S)

20

P  Q

Examples

R  R

S  (W  S)

T  T

21

P  Q

Examples

R  R

S  (W  S)

T  T

X  X

22

P  Q

Notation

23









=

Inference
Entailment

Notation

24









=

Inference
Entailment

} Implication (syntactic symbol)

Notation

25









=

Inference
Entailment

}
Proves: S1 |-ie S2 if `ie’ algorithm says `S2’ from S1

Entails: S1 |= S2 if wherever S1 is true S2 is also true

Implication (syntactic symbol)

Notation

• Sound

• Complete

• (all truth & nothing but the truth) =

26









=

Inference
Entailment

}
Proves: S1 |-ie S2 if `ie’ algorithm says `S2’ from S1

Entails: S1 |= S2 if wherever S1 is true S2 is also true

Implication (syntactic symbol)

Notation

• Sound

• Complete

• (all truth & nothing but the truth) =

27









=

Inference
Entailment

}
Proves: S1 |-ie S2 if `ie’ algorithm says `S2’ from S1

Entails: S1 |= S2 if wherever S1 is true S2 is also true

  =

=  

Implication (syntactic symbol)

Reasoning Tasks
• Model finding

KB = background knowledge

S = description of problem

Show (KB  S) is satisfiable

A kind of constraint satisfaction

• Deduction

S = question

Prove that KB |= S

Two approaches:

28

Reasoning Tasks
• Model finding

KB = background knowledge

S = description of problem

Show (KB  S) is satisfiable

A kind of constraint satisfaction

• Deduction

S = question

Prove that KB |= S

Two approaches:

29

• Rules to derive new formulas from old (inference)

• Show (KB   S) is unsatisfiable

Special Syntactic Forms
• General Form:

((q r)  s))   (s  t)

• Conjunction Normal Form (CNF)

( q  r  s)  ( s   t)

Set notation: { ( q, r, s), ( s,  t) }

empty clause () = false

• Binary clauses: 1 or 2 literals per clause

( q  r) ( s   t)

• Horn clauses: 0 or 1 positive literal per clause

( q   r  s) ( s   t)

(qr)  s (st)  false
30

Propositional Logic: Inference

 A mechanical process for computing new sentences

1. Backward & Forward Chaining

2. Resolution (Proof by Contradiction)

3. Davis Putnam

4. WalkSat

31

Inference 1: Forward Chaining

Forward Chaining
 Based on rule of modus ponens

If know P1, …, Pn & know (P1 ...  Pn)  Q

Then can conclude Q

Backward Chaining: search

 start from the query and go backwards

32

Analysis

• Sound?

• Complete?

33

Analysis

• Sound?

• Complete?

34

Can you prove
 { } |= Q  Q

Analysis

• Sound?

• Complete?

• If KB has only Horn clauses & query is a single literal

– Forward Chaining is complete

– Runs linear in the size of the KB

35

Can you prove
 { } |= Q  Q

Example

2

2

2

1

2

36

Example

1

2

2

1

1

37

Example

1

1

2

1

0

38

Example

1

1

2

1

0

39

Example

1

0

1

1

0

40

Example

1

0

1

1

0

41

Example

1

0

0

1

0

42

Example

0

0

0

0

0

43

Example

0

0

0

0

0

44

Propositional Logic: Inference
 A mechanical process for computing new sentences

1. Backward & Forward Chaining

2. Resolution (Proof by Contradiction)

3. GSAT

4. Davis Putnam

45

Conversion to CNF

46

Inference 2: Resolution
[Robinson 1965]

 { (p  ), ( p    ) } |-R (    )

47

Inference 2: Resolution
[Robinson 1965]

 { (p  ), ( p    ) } |-R (    )

48

Correctness

 If S1 |-R S2 then S1 |= S2
Refutation Completeness:

 If S is unsatisfiable then S |-R ()

Resolution subsumes Modus Ponens

A  B, A |= B

49

Resolution subsumes Modus Ponens

A  B, A |= B

50

( A  B)

Resolution subsumes Modus Ponens

A  B, A |= B

51

( A  B) (A)

Resolution subsumes Modus Ponens

A  B, A |= B

52

( A  B) (A)

(B)

If Will goes, Jane will go
 ~W V J
If doesn’t go, Jane will still go
 W V J
Will Jane go?
 |= J?

If Will goes, Jane will go
 ~W V J
If doesn’t go, Jane will still go
 W V J
Will Jane go?
 |= J?

J V J =J

Don’t need to use other
equivalences if we use
resolution in refutation style
~J ~W
~W V J
W V J

J

If Will goes, Jane will go
 ~W V J
If doesn’t go, Jane will still go
 W V J
Will Jane go?
 |= J?

J V J =J

Resolution

56

If the unicorn is mythical, then it is immortal, but if

it is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

Resolution

57

If the unicorn is mythical, then it is immortal, but if

it is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

M = mythical
I = immortal
A = mammal
H = horned

Resolution

58

If the unicorn is mythical, then it is immortal, but if

it is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

( A  H)

(M  A)

(I  H)

( M  I)

M = mythical
I = immortal
A = mammal
H = horned

Resolution

59

If the unicorn is mythical, then it is immortal, but if

it is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

( A  H)

(M  A)

( H) (I  H)

( M  I)

M = mythical
I = immortal
A = mammal
H = horned

Resolution

60

If the unicorn is mythical, then it is immortal, but if

it is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

( A  H)

(M  A)

( H) (I  H)

( M  I) (I) (A)

M = mythical
I = immortal
A = mammal
H = horned

Resolution

61

If the unicorn is mythical, then it is immortal, but if

it is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

( A  H)

(M  A)

( H) (I  H)

( M)

( M  I) (I) (A)

(M)

M = mythical
I = immortal
A = mammal
H = horned

Resolution

62

If the unicorn is mythical, then it is immortal, but if

it is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

( A  H)

(M  A)

( H) (I  H)

( M)

( M  I) (I) (A)

(M)

()

M = mythical
I = immortal
A = mammal
H = horned

Search in Resolution
• Convert the database into clausal form Dc
• Negate the goal first, and then convert it into clausal

form DG
• Let D = Dc+ DG

• Loop
– Select a pair of Clauses C1 and C2 from D

• Different control strategies can be used to select C1 and C2
to reduce number of resolutions tries

– Resolve C1 and C2 to get C12
– If C12 is empty clause, QED!! Return Success (We proved

the theorem;)
– D = D + C12

• Out of loop but no empty clause. Return “Failure”
– Finiteness is guaranteed if we make sure that:

• we never resolve the same pair of clauses more than
once;

• we use factoring, which removes multiple copies of
literals from a clause (e.g. QVPVP => QVP)

Idea 1: Set of
Support: At least
one of C1 or C2
must be either
the goal clause or
a clause derived
by doing
resolutions on the
goal clause
(*COMPLETE*)

Idea 2: Linear
input form:
Atleast one of C1
or C2 must be one
of the clauses in
the input KB
(*INCOMPLETE*)

Model Finding

• Find assignments to variables that makes a
formula true

• a CSP

64

Inference 3: Model Enumeration

 for (m in truth assignments){

 if (m makes  true)

 then return “Sat!”

 }

 return “Unsat!”

65

Inference 4: DPLL
(Enumeration of Partial Models)
[Davis, Putnam, Loveland & Logemann 1962]

Version 1

dpll_1(pa){

 if (pa makes F false) return false;

 if (pa makes F true) return true;

 choose P in F;

 if (dpll_1(pa  {P=0})) return true;

 return dpll_1(pa  {P=1});

}

Returns true if F is satisfiable, false otherwise

66

DPLL Version 1

67

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL Version 1

68

a

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

F

DPLL Version 1

69

a

(F  b  c)

(F  ¬b)

(F  ¬c)

(T  c)

F

DPLL Version 1

70

a

(F  F  c)

(F  T)

(F  ¬c)

(T  c)

F

b

DPLL Version 1

71

a

(F  F  F)

(F  T)

(F  T)

(T  F)

F

b

c

DPLL Version 1

72

a

F

T

T

T

F

b

c

DPLL Version 1

73

a

b

c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL Version 1

74

a

b b

c
c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL as Search

• Search Space?

• Algorithm?

75

Improving DPLL

76

1 1 2

1 1 2 3

2 3

1

If literal is true, then clause (...) is true

If clause is true, then ... has the

Therefore: Okay to delete clauses containing

 s

tr

ame

value as ...

If lit

ue lit

eral is

erals!

L L L

C C C C

C C

L

 

  

 

1 2 3

2 3

1 1

Therefore: Okay to delete shorten containing false liter

false, then clause (...) has

the same value as (...)

If literal is false, then clause () is fals

als!

Therefore: th

e

e empty clau

L L L

L L

L L

  

 

se means false!

DPLL version 2

dpll_2(F, literal){

 choose V in F;

 if (dpll_2(F, V))return true;

 return dpll_2(F, V);

}

77

DPLL version 2

dpll_2(F, literal){

 remove clauses containing literal

 if (F contains no clauses)return true;

 shorten clauses containing literal

 if (F contains empty clause)
 return false;

 choose V in F;

 if (dpll_2(F, V))return true;

 return dpll_2(F, V);

}

78

DPLL Version 2

79

a

(F  b  c)

(F  ¬b)

(F  ¬c)

(T  c)

F

DPLL Version 2

80

a

(b  c)

(¬b)

(¬c)

DPLL Version 2

81

a

(F  c)

(T)

(¬c)

b

DPLL Version 2

82

a

(c)

(¬c)

b

DPLL Version 2

83

a

(F)

(T)

b

c

DPLL Version 2

84

a

()

b

c

Structure in Clauses

85

• Unit Literals
 A literal that appears in a singleton clause
 {{b c}{c}{a b e}{d b}{e a c}}

Structure in Clauses

86

• Unit Literals
 A literal that appears in a singleton clause
 {{b c}{c}{a b e}{d b}{e a c}}

 Might as well set it true! And simplify
 {{b} {a b e}{d b}}

Structure in Clauses

87

• Unit Literals
 A literal that appears in a singleton clause
 {{b c}{c}{a b e}{d b}{e a c}}

 Might as well set it true! And simplify
 {{b} {a b e}{d b}}

 {{d}}

Structure in Clauses

• Pure Literals

– A symbol that always appears with same sign

– {{a b c}{c d e}{a b e}{d b}{e a c}}

88

• Unit Literals
 A literal that appears in a singleton clause
 {{b c}{c}{a b e}{d b}{e a c}}

 Might as well set it true! And simplify
 {{b} {a b e}{d b}}

 {{d}}

Structure in Clauses

• Pure Literals

– A symbol that always appears with same sign

– {{a b c}{c d e}{a b e}{d b}{e a c}}

89

• Unit Literals
 A literal that appears in a singleton clause
 {{b c}{c}{a b e}{d b}{e a c}}

 Might as well set it true! And simplify
 {{a b c} {a b e} {e a c}}

 Might as well set it true! And simplify
 {{b} {a b e}{d b}}

 {{d}}

In Other Words

90

2 3

Therefore: Branch immediately on unit litera

Formula () ... is only true when literal is true

If literal does not appear negated in formula , then setting

 true preserves satisfiability o

ls!

L C C L

L F

L

  

Therefore: Branch immediately on pure liter

f

als!

F

May view this as adding
constraint propagation
techniques into play

In Other Words

91

2 3

Therefore: Branch immediately on unit litera

Formula () ... is only true when literal is true

If literal does not appear negated in formula , then setting

 true preserves satisfiability o

ls!

L C C L

L F

L

  

Therefore: Branch immediately on pure liter

f

als!

F

May view this as adding
constraint propagation
techniques into play

DPLL (previous version)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

 remove clauses containing literal

 if (F contains no clauses) return true;

 shorten clauses containing literal
if (F contains empty clause)
 return false;

 if (F contains a unit or pure L)
 return dpll(F, L);

 choose V in F;

 if (dpll(F, V))return true;

 return dpll(F, V);

}

92

DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

 remove clauses containing literal

 if (F contains no clauses) return true;

 shorten clauses containing literal
if (F contains empty clause)
 return false;

 if (F contains a unit or pure L)
 return dpll(F, L);

 choose V in F;

 if (dpll(F, V))return true;

 return dpll(F, V);

}

93

DPLL (for real)

94

a

b c

c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

 remove clauses containing literal

 if (F contains no clauses) return true;

 shorten clauses containing literal
if (F contains empty clause)
 return false;

 if (F contains a unit or pure L)
 return dpll(F, L);

 choose V in F;

 if (dpll(F, V))return true;

 return dpll(F, V);

}

95

Heuristic Search in DPLL

• Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

• Idea: identify a most constrained variable

96

Heuristic Search in DPLL

• Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

• Idea: identify a most constrained variable

– Likely to create many unit clauses

97

Heuristic Search in DPLL

• Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

• Idea: identify a most constrained variable

– Likely to create many unit clauses

• MOM’s heuristic:

– Most occurrences in clauses of minimum length

98

Success of DPLL

• 1962 – DPLL invented

• 1992 – 300 propositions

• 1997 – 600 propositions (satz)

• Additional techniques:

– Learning conflict clauses at backtrack points

– Randomized restarts

– 2002 (zChaff) 1,000,000 propositions – encodings
of hardware verification problems

99

