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Knowledge Representation 

• represent knowledge about the world in a manner that facilitates 
inferencing (i.e. drawing conclusions) from knowledge. 

 

• Example: Arithmetic logic 
– x >= 5 

 

• In AI: typically based on 

– Logic 

– Probability 

– Logic and Probability 
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Common KR Languages 
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KR Languages 

• Propositional Logic 

• Predicate Calculus 

• Frame Systems 

• Rules with Certainty Factors 

• Bayesian Belief Networks 

• Influence Diagrams 

• Ontologies 

• Semantic Networks 

• Concept Description Languages 

• Non-monotonic Logic 
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Basic Idea of Logic 

• By starting with true assumptions, you can 
deduce true conclusions. 

6 



Truth 
•Francis Bacon (1561-1626)  
No pleasure is comparable to the 
standing upon the vantage-ground 
of truth.  
 
•Thomas Henry Huxley (1825-
1895)  
Irrationally held truths may be 
more harmful than reasoned 
errors.  
 
•John Keats (1795-1821)  
Beauty is truth, truth beauty; that 
is all ye know on earth, and all ye 
need to know.  
 
 

•Blaise Pascal (1623-1662)  
We know the truth, not only by 
the reason, but also by the heart. 
 
•François Rabelais (c. 1490-1553)  
Speak the truth and shame the 
Devil.  
 
•Daniel Webster (1782-1852)  
There is nothing so powerful as 
truth, and often nothing so 
strange. 
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Components of KR 

• Syntax: defines the sentences in the language 

• Semantics: defines the “meaning” to sentences 

• Inference Procedure 

– Algorithm 

– Sound? 

– Complete? 

– Complexity 

• Knowledge Base 
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Knowledge bases 

• Knowledge base = set of sentences in a formal language 
 

• Declarative approach to building an agent (or other system): 
– Tell it what it needs to know 

 
• Then it can Ask itself what to do - answers should follow from the KB 

 
• Agents can be viewed at the knowledge level 

i.e., what they know, regardless of how implemented 
 

• Or at the implementation level 
i.e., data structures in KB and algorithms that manipulate them 
 



Propositional Logic 
• Syntax 

– Atomic sentences: P, Q, … 

– Connectives:  , , ,  

• Semantics 
–   Truth Tables 

• Inference 
– Modus Ponens 
– Resolution 
– DPLL 
– GSAT 
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Propositional Logic: Syntax 
• Atoms 

–P, Q, R, … 
• Literals 

–P, P 
• Sentences 

–Any literal is a sentence 
– If S is a sentence 

• Then (S  S) is a sentence 
• Then (S  S) is a sentence 

• Conveniences 
P  Q    same as P  Q 
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Semantics 
• Syntax: which arrangements of symbols are legal  

– (Def “sentences”) 

• Semantics: what the symbols mean in the world 

– (Mapping between symbols and worlds) 
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Propositional Logic: SEMANTICS 

• “Interpretation”  (or “possible world”) 

– Assignment to each variable either T or F 

– Assignment of T or F to each connective via defns 
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Propositional Logic: SEMANTICS 
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Satisfiability, Validity, & Entailment 

• S is satisfiable if it is true in some world 

 

• S is unsatisfiable if it is false all worlds 

 

• S is valid if it is true in all worlds 

 

• S1 entails S2 if wherever S1 is true S2 is also true 
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Examples 
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P  Q 



Examples 

R  R 
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P  Q 



Examples 

R  R 
 

S  (W  S) 
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Examples 

R  R 
 

S  (W  S) 
 

T  T 
 

X  X 
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Notation 
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 

 
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 

= 

Inference  
Entailment 

}  
Proves:  S1 |-ie S2 if `ie’  algorithm says `S2’ from S1 
 

Entails:  S1 |= S2 if wherever S1 is true S2 is also true 

Implication (syntactic symbol) 



Notation 

• Sound 
 

• Complete 
 

• (all truth & nothing but the truth)  = 
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Reasoning Tasks 
• Model finding 

KB = background knowledge 

S = description of problem 

Show (KB  S) is satisfiable 

A kind of constraint satisfaction 

• Deduction 

S = question 

Prove that KB |= S 

Two approaches: 
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29 

• Rules to derive new formulas from old (inference) 

• Show (KB   S) is unsatisfiable 



Special Syntactic Forms 
• General Form: 

((q r)  s))   (s  t) 

• Conjunction Normal Form (CNF) 

( q  r  s )  ( s   t) 

Set notation: { ( q, r, s ),  ( s,  t) } 

empty clause () = false  

• Binary clauses: 1 or 2 literals per clause 

( q  r)               ( s   t) 

• Horn clauses: 0 or 1 positive literal per clause 

( q   r  s )     ( s   t) 

(qr)  s               (st)  false 
30 



Propositional Logic: Inference 
 

 A mechanical process for computing new sentences 

1. Backward & Forward Chaining  

2. Resolution (Proof by Contradiction) 

3. Davis Putnam 

4. WalkSat 
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Inference 1: Forward Chaining  
 

Forward Chaining      
 Based on rule of modus ponens 

If know P1, …, Pn  & know (P1 ...  Pn )  Q 

Then can conclude Q 

 

Backward Chaining: search 

 start from the query and go backwards 
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Analysis 

• Sound? 

• Complete? 
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Analysis 

• Sound? 

• Complete? 
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Can you prove  
 { }  |=  Q  Q 

 



Analysis 

• Sound? 

• Complete? 

 

 

 

• If KB has only Horn clauses & query is a single literal  

– Forward Chaining is complete 

– Runs linear in the size of the KB 
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Propositional Logic: Inference 
 A mechanical process for computing new sentences 

1. Backward & Forward Chaining  

2. Resolution (Proof by Contradiction) 

3. GSAT 

4. Davis Putnam 
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Conversion to CNF 
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Inference 2: Resolution 
[Robinson 1965] 

 

  { (p  ), ( p    ) }  |-R  (    ) 
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Inference 2: Resolution 
[Robinson 1965] 

 

  { (p  ), ( p    ) }  |-R  (    ) 
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Correctness 

  If S1 |-R S2 then S1 |= S2  
Refutation Completeness: 

  If S is unsatisfiable then S |-R  () 
 



Resolution subsumes Modus Ponens 
 

A  B, A |= B 
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Resolution subsumes Modus Ponens 
 

A  B, A |= B 
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( A  B) 



Resolution subsumes Modus Ponens 
 

A  B, A |= B 
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( A  B) (A) 



Resolution subsumes Modus Ponens 
 

A  B, A |= B 
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( A  B) (A) 

(B) 



If Will goes, Jane will go 
    ~W V J 
If doesn’t go, Jane will still go 
    W V J 
Will Jane go? 
   |= J?  
 



If Will goes, Jane will go 
    ~W V J 
If doesn’t go, Jane will still go 
    W V J 
Will Jane go? 
   |= J?  
 

J V J =J 



Don’t need to use other 
equivalences if we use 
resolution in refutation style 
~J          ~W 
~W V J 
W V J 
  

J 

If Will goes, Jane will go 
    ~W V J 
If doesn’t go, Jane will still go 
    W V J 
Will Jane go? 
   |= J?  
 

J V J =J 



Resolution 
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If the unicorn is mythical, then it is immortal, but if 

it is not mythical, it is a mammal.  If the unicorn is 
either immortal or a mammal, then it is horned. 

Prove: the unicorn is horned. 
 



Resolution 

57 

 
If the unicorn is mythical, then it is immortal, but if 

it is not mythical, it is a mammal.  If the unicorn is 
either immortal or a mammal, then it is horned. 

Prove: the unicorn is horned. 
 

 
M = mythical 
I = immortal 
A = mammal 
H = horned 
 



Resolution 
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Resolution 
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Resolution 
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Resolution 
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Resolution 
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If the unicorn is mythical, then it is immortal, but if 

it is not mythical, it is a mammal.  If the unicorn is 
either immortal or a mammal, then it is horned. 

Prove: the unicorn is horned. 
 

( A  H) 

(M  A) 

( H) (I  H) 

( M) 

( M  I) (I) (A) 
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() 

 
M = mythical 
I = immortal 
A = mammal 
H = horned 
 



Search in Resolution 
• Convert the database into clausal form Dc 
• Negate the goal first, and then convert it into clausal 

form  DG 
• Let D = Dc+ DG 

• Loop  
– Select a pair of Clauses C1 and C2 from D 

• Different control strategies can be used to select C1 and C2 
to reduce number of resolutions tries 

– Resolve C1 and C2 to get C12 
– If C12 is empty clause, QED!! Return Success (We proved 

the theorem; ) 
– D = D + C12 

 

• Out of loop but no empty clause. Return “Failure” 
– Finiteness is guaranteed if we make sure that: 

• we never resolve the same pair of clauses more than 
once;  

• we use factoring, which removes multiple copies of 
literals from a clause (e.g. QVPVP => QVP) 

 
 

 

Idea 1: Set of 
Support: At least 
one of C1 or C2 
must be either 
the goal clause or 
a clause derived 
by doing 
resolutions on the 
goal clause 
(*COMPLETE*) 
 
Idea 2: Linear 
input form: 
Atleast one of C1 
or C2 must be one 
of the clauses in 
the input KB 
(*INCOMPLETE*) 

 



Model Finding 

• Find assignments to variables that makes a 
formula true 

 

• a CSP 
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Inference 3: Model Enumeration 

 for (m in truth assignments){ 

   if  (m makes  true)  

    then return “Sat!” 

 } 

  return “Unsat!” 
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Inference 4: DPLL  
(Enumeration of Partial Models) 
[Davis, Putnam, Loveland & Logemann 1962] 

Version 1 

dpll_1(pa){ 

 if (pa makes F false) return false; 

 if (pa makes F true) return true; 

 choose P in F; 

 if (dpll_1(pa  {P=0})) return true; 

 return dpll_1(pa  {P=1}); 

} 

 

Returns true if F is satisfiable, false otherwise 
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DPLL Version 1 
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DPLL Version 1 
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DPLL Version 1 
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DPLL Version 1 
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DPLL Version 1 
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DPLL Version 1 
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DPLL Version 1 
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DPLL Version 1 
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DPLL as Search 

• Search Space? 

 

• Algorithm? 
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Improving DPLL 
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DPLL version 2 

dpll_2(F, literal){ 

                                    

                                         

                                      

                               
               

 choose V in F; 

 if (dpll_2(F, V))return true; 

 return dpll_2(F, V); 

} 

 

77 



DPLL version 2 

dpll_2(F, literal){ 

 remove clauses containing literal 

 if (F contains no clauses)return true; 

 shorten clauses containing literal 

 if (F contains empty clause) 
 return false; 

 choose V in F; 

 if (dpll_2(F, V))return true; 

 return dpll_2(F, V); 

} 
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DPLL Version 2 
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DPLL Version 2 
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DPLL Version 2 
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DPLL Version 2 
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DPLL Version 2 
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Structure in Clauses  
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• Unit Literals 
 A literal that appears in a singleton clause 
 {{b c}{c}{a b e}{d b}{e a c}} 

 



Structure in Clauses  
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• Unit Literals 
 A literal that appears in a singleton clause 
 {{b c}{c}{a b e}{d b}{e a c}} 

 
 
      Might as well set it true!   And simplify 
 {{b}         {a b e}{d b}} 



Structure in Clauses  
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• Unit Literals 
 A literal that appears in a singleton clause 
 {{b c}{c}{a b e}{d b}{e a c}} 

 
 
      Might as well set it true!   And simplify 
 {{b}         {a b e}{d b}} 

 
       
                             {{d}} 



Structure in Clauses  

• Pure Literals 

– A symbol that always appears with same sign 

– {{a b c}{c d e}{a b e}{d b}{e a c}} 
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• Unit Literals 
 A literal that appears in a singleton clause 
 {{b c}{c}{a b e}{d b}{e a c}} 

 

 
      Might as well set it true!   And simplify 
 {{a b c}               {a b e}       {e a c}} 

 
      Might as well set it true!   And simplify 
 {{b}         {a b e}{d b}} 

 
       
                             {{d}} 



In Other Words 
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DPLL (previous version) 
Davis – Putnam – Loveland – Logemann 

dpll(F, literal){ 

 remove clauses containing literal 

 if (F contains no clauses) return true; 

 shorten clauses containing literal 
if (F contains empty clause) 
 return false; 

 if (F contains a unit or pure L) 
 return dpll(F, L); 

 choose V in F; 

 if (dpll(F, V))return true; 

 return dpll(F, V); 

} 
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DPLL (for real!) 
Davis – Putnam – Loveland – Logemann 

dpll(F, literal){ 

 remove clauses containing literal 

 if (F contains no clauses) return true; 

 shorten clauses containing literal 
if (F contains empty clause) 
 return false; 

 if (F contains a unit or pure L) 
 return dpll(F, L); 

 choose V in F; 

 if (dpll(F, V))return true; 

 return dpll(F, V); 

} 
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DPLL (for real) 

94 

a 

b c 

c 

(a  b  c) 

(a  ¬b) 

(a  ¬c) 

(¬a  c) 



DPLL (for real!) 
Davis – Putnam – Loveland – Logemann 

dpll(F, literal){ 

 remove clauses containing literal 

 if (F contains no clauses) return true; 

 shorten clauses containing literal 
if (F contains empty clause) 
 return false; 

 if (F contains a unit or pure L) 
 return dpll(F, L); 

 choose V in F; 

 if (dpll(F, V))return true; 

 return dpll(F, V); 

} 
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Heuristic Search in DPLL 

• Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching 

 

• Idea: identify a most constrained variable 
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Heuristic Search in DPLL 

• Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching 

 

• Idea: identify a most constrained variable 

– Likely to create many unit clauses 

• MOM’s heuristic: 

– Most occurrences in clauses of minimum length 
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Success of DPLL 

• 1962 – DPLL invented 

• 1992 – 300 propositions 

• 1997 – 600 propositions (satz) 

• Additional techniques: 

– Learning conflict clauses at backtrack points 

– Randomized restarts 

– 2002 (zChaff) 1,000,000 propositions – encodings 
of hardware verification problems 
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