
Informed search algorithms

Chapter 3
(Based on Slides by Stuart Russell,

Richard Korf, Subbarao Kambhampati,
and UW-AI faculty)

“Intuition, like the rays of the sun, acts only

in an inflexibly straight line; it can guess
right only on condition of never diverting
its gaze; the freaks of chance disturb it.”

5

Informed (Heuristic) Search

Idea: be smart

about what paths

to try.

6

Blind Search vs. Informed Search

• What’s the difference?

• How do we formally specify this?

 A node is selected for expansion based on an
evaluation function that estimates cost to goal.

7

General Tree Search Paradigm

function tree-search(root-node)

 fringe successors(root-node)

 while (notempty(fringe))

 {node remove-first(fringe)

 state state(node)

 if goal-test(state) return solution(node)

 fringe insert-all(successors(node),fringe) }

 return failure

end tree-search

8

General Graph Search Paradigm

function tree-search(root-node)

 fringe successors(root-node)

 explored empty

 while (notempty(fringe))

 {node remove-first(fringe)

 state state(node)

 if goal-test(state) return solution(node)

 explored insert(node,explored)

 fringe insert-all(successors(node),fringe, if node not in explored)

 }

 return failure

end tree-search

9

Best-First Search

• Use an evaluation function f(n) for node n.

• Always choose the node from fringe that has
the lowest f value.

3 5 1

4 6

Best-first search

• A search strategy is defined by picking the order of node
expansion

• Idea: use an evaluation function f(n) for each node
– estimate of "desirability“

 Expand most desirable unexpanded node

• Implementation:
 Order the nodes in fringe in decreasing order of desirability

• Special cases:

– greedy best-first search
– A* search

Romania with step costs in km

Greedy best-first search

• Evaluation function f(n) = h(n) (heuristic)

 = estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n to
Bucharest

• Greedy best-first search expands the node
that appears to be closest to goal

Properties of greedy best-first search

• Complete?

• No – can get stuck in loops, e.g., Iasi Neamt Iasi
Neamt

• Time?

• O(bm), but a good heuristic can give dramatic
improvement

• Space?

• O(bm) -- keeps all nodes in memory

• Optimal?

• No

A* search

• Idea: avoid expanding paths that are already
expensive

• Evaluation function f(n) = g(n) + h(n)

• g(n) = cost so far to reach n

• h(n) = estimated cost from n to goal

• f(n) = estimated total cost of path through n to
goal

15

A* for Romanian Shortest Path

16

17

18

19

20

Admissible heuristics

• A heuristic h(n) is admissible if for every node n,

 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from
n.

• An admissible heuristic never overestimates the cost to reach the
goal, i.e., it is optimistic

• Example: hSLD(n) (never overestimates the actual road distance)

• Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Consistent Heuristics

• h(n) is consistent if
– for every node n

– for every successor n´ due to legal action a

– h(n) <= c(n,a,n´) + h(n´)

• Every consistent heuristic is also admissible.

• Theorem: If h(n) is consistent, A* using GRAPH-
SEARCH is optimal

22

n

n´ G

c(n,a,n´)
h(n´)

h(n)

Properties of A*

• Complete?

 Yes (unless there are infinitely many nodes with f ≤ f(G))

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal?

 Yes (depending upon search algo and heuristic property)

http://www.youtube.com/watch?v=huJEgJ82360

http://www.youtube.com/watch?v=huJEgJ82360

Breadth-First goes level by level

Visualizing Breadth-First & Uniform Cost Search

Breadth-First goes level by level

This is also a proof of

 optimality…

It will not expand

Nodes with f >f*

(f* is f-value of the

Optimal goal which

is the same as g* since

h value is zero for goals)

Uniform

 cost

 search

A*

Visualizing A* Search

h* h0

Cost of computing

 the heuristic

Cost of searching

 with the heuristic

Total cost

 incurred in search

Not always clear where the total minimum

occurs

• Old wisdom was that the global min was

closer to cheaper heuristics

• Current insights are that it may well be far

from the cheaper heuristics for many problems

• E.g. Pattern databases for 8-puzzle

• Plan graph heuristics for planning

How informed should the

 heuristic be?

Reduced level of

 abstraction

 (i.e. more and more concrete)

Memory Problem?

• Iterative deepening A*

– Similar to ID search

– While (solution not found)

• Do DFS but prune when cost (f) > current bound

• Increase bound

Non-optimal variations

• Use more informative, but inadmissible
heuristics

• Weighted A*

– f(n) = g(n)+ w.h(n) where w>1

– Typically w=5.

– Solution quality bounded by w for admissible h

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ?
• h2(S) = ?

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles
• h2(n) = total Manhattan distance
(i.e., no. of squares from desired location of each tile)

• h1(S) = ? 8
• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)
 then h2 dominates h1
• h2 is better for search

• Typical search costs (average number of node expanded):

• d=12 IDS = 3,644,035 nodes

 A*(h1) = 227 nodes
 A*(h2) = 73 nodes

• d=24 IDS = too many nodes
 A*(h1) = 39,135 nodes
 A*(h2) = 1,641 nodes

Relaxed problems

• A problem with fewer restrictions on the actions is called a
relaxed problem

• The cost of an optimal solution to a relaxed problem is an

admissible heuristic for the original problem

• If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then h1(n) gives the shortest solution

• If the rules are relaxed so that a tile can move to any adjacent
square, then h2(n) gives the shortest solution

Sizes of Problem Spaces

• 8 Puzzle: 105 .01 seconds

• 23 Rubik’s Cube: 106 .2 seconds

• 15 Puzzle: 1013 6 days

• 33 Rubik’s Cube: 1019 68,000 years

• 24 Puzzle: 1025 12 billion years

Brute-Force Search Time (10 million

nodes/second)
Problem Nodes

Performance of IDA* on 15 Puzzle

• Random 15 puzzle instances were first solved
optimally using IDA* with Manhattan distance
heuristic (Korf, 1985).

• Optimal solution lengths average 53 moves.

• 400 million nodes generated on average.

• Average solution time is about 50 seconds on
current machines.

Limitation of Manhattan Distance

• To solve a 24-Puzzle instance, IDA* with
Manhattan distance would take about 65,000
years on average.

• Assumes that each tile moves independently

• In fact, tiles interfere with each other.

• Accounting for these interactions is the key to
more accurate heuristic functions.

Example: Linear Conflict

1 3 3 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 3 3 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 3 3

1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 3 3

1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 3 3

1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 3 3 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 3 3 1

Manhattan distance is 2+2=4 moves, but linear conflict adds 2

additional moves.

Linear Conflict Heuristic

• Hansson, Mayer, and Yung, 1991

• Given two tiles in their goal row, but reversed
in position, additional vertical moves can be
added to Manhattan distance.

• Still not accurate enough to solve 24-Puzzle

• We can generalize this idea further.

More Complex Tile Interactions

3

7

11

12 13 14 15

14 7

3

15 12

11 13

M.d. is 19 moves, but 31 moves are

needed.

M.d. is 20 moves, but 28 moves are

needed

3

7

11

12 13 14 15

7 13

12

15 3

11 14

M.d. is 17 moves, but 27 moves are

needed

3

7

11

12 13 14 15

12 11

7 14

13 3

15

Pattern Database Heuristics

• Culberson and Schaeffer, 1996

• A pattern database is a complete set of such
positions, with associated number of moves.

• e.g. a 7-tile pattern database for the Fifteen
Puzzle contains 519 million entries.

Heuristics from Pattern Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9
2 11 4 13

31 moves is a lower bound on the total number of moves needed to solve

this particular state.

Combining Multiple Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9
2 11 4 13

Overall heuristic is maximum of 31 moves

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Additive Pattern Databases

• Culberson and Schaeffer counted all moves
needed to correctly position the pattern tiles.

• In contrast, we count only moves of the
pattern tiles, ignoring non-pattern moves.

• If no tile belongs to more than one pattern,
then we can add their heuristic values.

• Manhattan distance is a special case of this,
where each pattern contains a single tile.

Example Additive Databases

1 2 3

4 5 6 7

8 9 10 11

12 13 15 14

The 7-tile database contains 58 million entries. The 8-tile database contains

519 million entries.

Computing the Heuristic

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

5 10 14 7

8 3 6 1

15 12 9
2 11 4 13

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles

Performance on 15 Puzzle

• IDA* with a heuristic based on these additive
pattern databases can optimally solve random
15 puzzle instances in less than 29
milliseconds on average.

• This is about 1700 times faster than with
Manhattan distance on the same machine.

