CSEP 573

Chapters 3-5
Problem Solving using Search

“First, they do an on-line search”

© CSE Al Faculty

Example: The 8-puzzle

123 1|23
s| [4]—>[4]5]6
7165 7|8

Example: Route Planning

Example: N Queens

EEERE

4 Queens

Example: N Queens

State-Space Search Problems

General problem:
Given a start state, find a path to a goal state

» Cantest if astateisagoal

» Given a state, can generateits successor states
Variants:

» Find any path vs. a least-cost path

» Goal iscompletely specified, task isjust to find the path

— Route planning

» Path doesn’t matter, only finding the goal state
— 8 puzzle, N queens

Tree Representation of 8-Puzzle Problem Space

1123
8 4
7/6|5
1 3 1123 1123 112(3
8|24 84 8(6|4 8|4
7|65 7/6|5 7 5 7|6|5
13 13 1]2 1123 1123 1123 2|3 1123
8|24 8l|2|4 8143 8/4|5 8|6|4 8|64 184 7|84
7|65 7|6|5 7|6|5 76 7|5 7|5 7|6|5 6|5

I Implementation: general tree search |

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe + INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node + REMOVE-FRONT(fringe)
if GOAL-TEST[problem] applied to STATE(node) succeeds return node
fringe + INSERTALL(EXPAND(node, problem), fringe)

fringe (= frontier in the textbook) isthe set of al leaf nodes available for expansion

I Implementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe + INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node + REMOVE-FRONT(fringe)

fringe « INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes

successors < the empty set

for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
s4¢—a new NODE
PARENT-NODE[s] - node; ACTION[s| ¢ action; STATE[s] ¢ result
PATH-COST[$] +— PATH-COST[node] + STEP-COST(node, action, s)
DEPTH[s] ¢+ DEPTH[node] + 1
add s to successors

return successors

if GOAL-TEST[problem] applied to STATE(node) succeeds return node

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(z)
States do not have parents, children, depth, or path cost!
parent
action = Right
depth=6

State

g=6

children

J

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(z)

States do not have parents, children, depth, or path cost!
parent, action

depth = 6

State E’ EI
onos
R T

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORF'N of the problem to create the corresponding states.

g=6

1

Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be co)

Uninformed search strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search

Depth-limited search

Iterative deepening search

Il Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

&,

14

I Breadth-first search |

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

@
>©

15

I Breadth-first search |

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

16

I Breadth-first search |

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

(4)
(B) (O
>O ® ® @

17

I Properties of breadth-first search |

Complete??

18

I Properties of breadth-first search |

Complete?? Yes (if b is finite)

Time??

19

I Properties of breadth-first search |

Complete?? Yes (if b is finite)
Time?? b4+ b2+ + ...+ b =0b?), i.e., exponential in d

Space??

20

(l Properties of breadth-first search

I|

Complete?? Yes (if b is finite)
Time?? b+ b0+ +...+b" = 0b?), i.e., exponential in d
Space?? O(b®) (keeps every node in memory)

Optimal??

21

I Properties of breadth-first search |

Complete?? Yes (if b is finite)

Time?? b+ +b°+ ...+ b = o(bY), i.e., exponential in d
Space?? O(bd) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general
Space is the big problem for BFS.

Example: b =10, 10,000 nodes/sec, 1KB/node

d =3 = 1000 nodes, 0.1 sec, 1MB

d=5=> 100,000 nodes, 10 secs, 100 MB
d =9 = 10° nodes, 31 hours, 1 TB

22

l Uniform-cost search |

Expand least-cost unexpanded node (used when step costs are unequal)

Implementation:
fringe = queue ordered by path cost (use priority queue)

Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost > € (small positive constant; 0 cost may cause infinite loop)

Time?? # of nodes with g < cost of optimal solution, O(b/“"/¢I)
where C'* is the cost of the optimal solution

Space?? # of nodes with g < cost of optimal solution, O(b/"/1)

Optimal?? Yes—nodes expanded in increasing order of g(n)

23

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

LOR

24

I Depth-first search [

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

25

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

26

I Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

27

| Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

28

[Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

29

[Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

30

[Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

31

[Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

32

[Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

33

I Depth-first search

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

34

[Depth-first search |

Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

35

I Properties of depth-first search |

Complete??

36

| Properties of depth-first search |

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path (‘GRAPH-SEARCH in textbook)
= complete in finite spaces

Time??

37

[Properties of depth-first search |

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path (‘GRAPH-SEARCH” in textbook)
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d (M= maximum depth)
but if solutions are dense, may be much faster than breadth-first

Space??

38

I Properties of depth-first search |

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal??

39

Il Properties of depth-first search |

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!

Optimal?? No (may find a solution but least cost solution
may be on a different branch)

40

[Depth-limited search

= depth-first search with depth limit [,
i.e., nodes at depth [have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? + false
if GOAL-TEST[problem](STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? + true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

41

ll Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(Problem) returns a solution

inputs: problem, a problem

I for depth+ 0 to oo do I
result «— DEPTH-LIMITED-SEARCH(problem, depth)

if result # cutoff then return resuli
end

42

| Iterative deepening search [=0 |

it=0 »@ ®

43

I Iterative deepening search [=1 |

it=1 O] () ./@\O ./.\
0]) B

44

I Iterative deepening search | =

it=2 »@
»(@ @,

e
S

45

I Iterative deepening search [=3 |

50 @

46

| Properties of iterative deepening search

I|

Complete??

47

I Properties of iterative deepening search

Complete?? Yes

Time??

48

I Properties of iterative deepening search |

Complete?? Yes
Time?? db' +(d— 1) + ...+ b4 =0

Space??

49

| Properties of iterative deepening search |

Complete?? Yes
Time?? db' + (d— 1)* + ...+ b? = O(b%)
Space?? O(bd)

Optimal??

50

Properties of iterative deepening search
1 pening

Complete?? Yes

Time??

dbt + (d — 1)b% + ... + bl = O(b%)

Space?? O(bd)

Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Increasing path-cost limits instead of depth limits
This is called Iterative lengthening search (exercise 3.17)

51

Summary of algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if | > d Yes
Time b plc* /e pm b b
Space b blC*/e] bm bl bd
Optimal? Yes* Yes* No No Yes

52

Forwardsvs. Backwards

L Craiova Eforie

Problem: Find the shortest route

53

Bidirectional Search

Qs 2D
oS T

Motivation: b%/2 + pd2 << pd
Can use breadth-first search or uniform-cost search

Hard for implicit goals e.g., goal = “checkmate” in chess
54

Repeated States

Failure to detect repeated states can turn alinear problem into an

exponential one! (e.g., repeated states in 8 puzzle)

Graph search algorithm: Store expanded nodes in a set called
closed (or explored) and only add new nodes to the fringe

55

Graph Search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed + an empty set
fringe + INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node « REMOVE-FRONT(fringe)
if GOAL-TEST[problem](STATE[node]) then return SOLUTION(node)
if STATE[node] is not in closed then
add STATE[node] to closed
fringe «+ INSERT ALL(ExPAND(node, problem), fringe)

56

All these methods are slow (blind)

Can wedo better?

57

Informed Search

Use problem-specific knowledge to guide sear ch (use “heuristic
function”)

58

Best-first Search

Generalization of breadth first search
Priority queue of nodesto be explored
Evaluation function f(n) used for each node

Insert initial state into priority queue
While queue not empty
Node = head(queue)
If goal(node) then return node
Insert children of node into pr. queue

59

Who'son (best) first?

Breadth first search is special case of best first
 with f(n) = depth(n)

Dijkstra’s Algorithm isbest first
» with f(n) = g(n)

wher e g(n) = sum of edge costs from start
ton

60

Greedy best-first search

Evaluation function f(n) = h(n) (heuristic) = estimate of cost
from n to goal

e.g., Route finding problems: hg (n) = straight-line distance
from n to destination

Greedy best-fir st search expandsthe nodethat appearsto be
closest to goal

Example: Lost in
Romania

Need: Shortest path from Arad to Bucharest

Straight—line distance
o Buchamst

Arad W6
Bucharest o
Craiova 180
Dobreta a4
Eforie lal
Fagaras 176
Giurgiu 77
Hirsova 151
Ias 16
Lugoj 244
Mehadia 23]
Meamt 214
Orades 180
Pitesti 10
Rimnicu Vikea g3
Sibiu 253

Timisoara £
Urziceni 80
Vaslui 199
Zerind 174

Example: Greedily Searching for Bucharest

3865
™ hg,p(Arad)

63

Example: Greedily Searching for Bucharest

< Aad >

" ﬁ:b_--_--_ ..-in;sczua “--“—‘ﬂ-_“ E'

253 328 ar4

64

Example: Greedily Searching for Bucharest
.t

<sbu

e

;I N 3x T4
o Iy ™, ey
358 176 380 193
65

Example: Greedily Searching for Bucharest
>

o

el 32
,‘ . “ "'“"----.L___H
358 Y ™ 380 193
7 ~,
CEbie P icharsd Greed
253 4] ,
doesn’t
pay!

Not optimall
Arad, Sibiu, Rimnicu Vilcea, Pitesti, Bucharest shorter

66

Properties of Greedy Best-First Search

Complete? No — can get stuck in loops (unless closed list is used)

Time? O(bM), but a good heuristic can give dramatic
improvement

Space? O(b™) -- keeps all nodesin memory ala breadth first
sear ch

Optimal? No, as our exampleillustrated

67

A* Search

(Hart, Nilsson & Rafael 1968)
* Best first search with f(n) = g(n) + h(n)
g(n) = sum of edge costsfrom start ton

h(n) = heuristic function = estimate of lowest cost path
from n to goal

* If h(n) is“admissible’ then search will be optimal

\ Underestimates cost
{ of any solution which

can be reached from node

68

Back in Romania T
. /7 Aici noi
Again energie

iar! /

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
lasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea

Dobreta [J i
LY Craiova o Eforie Vaslui
[] Giurgiu Zerind

Straight—line distance

366

0
160
242
161
178

151

69

A* Examplefor Romania

f(n) = g(n) + h(n) where
g(n) = sum of edge costs from start to n

h(n) = hg, p(n) = straight-line distance from n to destination

366=0+366

70

A* Example

393=140+253 447=118+329 449=75+374

71

A* Example

Aad >
_ S _:'=--=eg:_ N
<Sibiu_>
--':'?ﬂ‘\“-“‘-- 447=118+329 449=75+374

> Cas> PG

G46=280+366 415=239+176 671=281+380 413=220+193

72

A* Example

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

73

A* Example

447=118+329 449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

74

A* Example

449=75+374
646=280+366
526=366+160

591=338+253 450=450+0 553=300+253

418=418+0 615=455+160 607=414+193

75

Admissible heuristics

A heurigtic h(n) isadmissibleif
for every node n,
h(n) < h*(n)
where h*(n) isthe true cost to reach the goal state from n.

An admissible heuristic never overestimates the cost to reach the
god, i.e., itisoptimistic

76

Admissible Heuristics

Isthe Straight Line Distance heuristic hg p(n)
admissible?

77

Admissible Heuristics

|sthe Straight Line Distance heuristic hg p(n)
admissible?

Yes, it never overestimatesthe actual road distance

Theorem: If h(n) isadmissible, A" using TREE-
SEARCH isoptimal.

78

Optimality of A* (proof)

Suppose some suboptimal goal &, has been generated and is in the
ringe. Let n be an unexpanded node in the fringe such that »
/s on a shortest path to an optimal goal 6.

Srawt

N'A"——v_f

C@ G,
f(6,) = 9(6,) since A6,) = 0
> g(6) since 6, is suboptimal
f(6) =9(6) since AG) = 0
f(6,) > f(6) from above

79

Optimality of A* (cont.)

Suppose some suboptimal goal &, has been aenera?ed and is in the
ringe. Let n be an unexpanded node in the fringe such that »
is on a shortest path to an optimal goal 6.

Start

N

@ G,
f(6,) > f(6) from prev slide
h(n) < h*(n) since h is admissible
g(n) + h(n) < g(n) + h'(n)
f(n) = f(6) <« f(6,)

Hence f(n) < f(6,) = A" will never select 6, for expansion.

80

Optimality of A

A" expands nodesin order of increasing f value
Gradually adds " f-contours" of nodes

81

Okay, proof is donel
Time to wake up...

82

41

Properties of A*

Complete? Yes (unless there are infinitely many nodes
with f <f(G))

Time? Exponential (for most heuristic functions in
practice)

Space? Keeps all generated nodes in memory
(exponential number of nodes)

Optimal? Yes

83

Admissible heuristics

E.g., for the 8-puzzle, what are some admissible
heuristic functions? (for # steps to goal state)

hyn) = ?
hsn) = ?

7 2 4 1 2
5 6 3 4 5
8 3 1 6 7 8

Start State Goal State

84

Admissible heuristics

E.g., for the 8-puzzle:
h,(n) = number of misplaced tiles

hx(n) = total Manhattan distance (no. of squares from
desired location of each tile)

7l 2 ||| 4 1] 2
‘ 5 ‘ | 6 | 3lll all s
. s |l 3|l 1 6l 7]l s
hy(S) = ¢
h s - ? Start State Goal State
= S

85

Admissible heuristics

E.g., for the 8-puzzle:
h,(n) = number of misplaced tiles

hx(n) = total Manhattan distance (no. of squares from
desired location of each tile)

7 2 4 1 2
5| 5 | 3lll4lll s
8 3 1 6 7 8
h S - 7 8 Start State Goal State

ho(S) = 2 3+1+2+2+2+3+3+2 = 18

86

Dominance

If hxn) 2 h,(n) for all n (both admissible) then A,
dominates A,

h, is better for search

87

Dominance

E.g., for 8-puzzle heuristics h; and h,, typical
search costs (average number of nodes expanded
for solution depth d):

=12 IDS = 3,644,035 nodes
A’(h,) = 227 nodes
A”(h,) = 73 nodes

=24 IDS = too many nodes
A”(h,) = 39,135 nodes
A’(h,) = 1,641 nodes

88

In general, A* not practical for large scale
problems due to memory requirements
(all generated nodes in memory)

Idea: Use iterative deepening

Iter ative-Deepening A*
Like iterative-deepening search, but
cutoff is f cost (= g + h) rather than depth

At each iteration, cutoff is smallest f cost among
nodes that exceeded cutoff on prev iteration

90

Back to Admissable Heuristics
f(x) = g(x) + h(x)
g: cost so far
h: underestimate of remaining costs

Where do heuristics come from?

91

Relaxed Problems

Derive admissible heuristic from exact cost of a solution
to a relaxed version of problem

» For route planning, what is a relaxed problem?

Relax requirement that car stay on road -
Straight Line Distance becomes optimal cost

Cost of optimal solution to relaxed problem <
cost of optimal solution for real problem

92

Heuristicsfor eight puzzle

7

2|3

5

116

8

‘A

start

9

What can we relax?

1123
415|6
7

d

goal

Original Problem: Tile can move from location A to B if
A is horizontally or vertically next to B and B is blank

93

Heuristicsfor eight puzzle

7

2|3

5

116

8

‘I

>

1

213

4

5/6

7

'l

Relaxed 1: Tile can move from any location A to any location B
Cost = h; = number of misplaced tiles

Relaxed 2: Tile can move from A to B if A is horizontally or
vertically next to B (note: B does not have to be blank)

Cost = h, = total Manhattan distance

You can try other possible heuristics in your HW #1

94

Need for Better Heuristics

Performance of h, (Manhattan Distance Heuristic)

e 8 Puzzle <1 second
¢ 15 Puzzle 1 minute
* 24 Puzzle 65000 years

Can we do better?

Adapted from Richard Korf presentation g5

Creating New Heuristics

Given admissible heuristics h,, h,, ..., h,,, none of them
dominating any other, how to choose the best?

Answer: No need to choose only one! Use:
h(n) = max {h,(n), h,(n), ..., h (n)}
h is admissible (why?)
h dominates all h; (by construction)
Can we do better with:
h’(n) = hy(n) + h,(n) + ... + h(n)?

96

Patter n Databases

Idea: Use solution cost of a subproblem as heuristic. For
8-puzzie: pick any subset of tiles
E.g., 3,7,11,12
Precompute a table
« Compute optimal cost of solving just these tiles
— This is a lower bound on actual cost with all tiles
* For all possible configurations of these tiles
— Could be several million
* Use breadth first search back from goal state
— State = position of just these tiles (& blank)

* Admissible heuristic hyg for complete state = cost
of corresponding sub-problem state in database

Adapted from Richard Korf presentation

97

Combining Multiple Databases

Can choose another set of tiles
* Precompute multiple tables
How to combine table values?
* Use the max trick!

E.g. Optimal solutions to Rubik's cube

* First found w/ IDA* using pattern DB
heuristics

- Multiple DBs were used (diff subsets of
cubies)

* Most problems solved optimally in 1 day
* Compare with 574,000 years for IDS

Adapted from Richard Korf presentation

98

Drawbacks of Standard Pattern DBs

Since we can only take max
« Diminishing returns on additional DBs

Would like to be able to add values

- But not exceed the actual solution cost (to
ensure admissible heuristic)

- How?

Adapted from Richard Korf presentation 99

Disjoint Pattern DBs

Partition tiles into disjoint sets 112|314
- For each set, precompute table 5|6 |7 |8
 Don't count moves of tiles not in set | 9 (10| 11[12

- This makes sure costs are disjoint 1314 15.

- Can be added without overestimating!
- E.g. For 15 puzzle shown, 8 tile DB has 519 million entries

- And 7 tile DB has 58 million
During search
* Look up costs for each set in DB
* Add values to get heuristic function value

* Manhattan distance is a special case of this idea

where each set is a single tile

100

Adapted from Richard Korf presentation

Performance

15 Puzzle: 2000x speedup vs Manhattan dist

« IDA* with the two DBs solves 15 Puzzle
optimally in 30 milliseconds

24 Puzzle: 12 millionx speedup vs Manhattan

- IDA* can solve random instances in 2
days.

* Requires 4 DBs as shown
- Each DB has 128 nillion entries

* Without PDBs: 65000 years E

Adapted from Richard Korf presentation 101

Next: Local Search

How to climb hills
How to reach the top by annealing
How to simulate and profit from evolution

102

Local search algorithms

In many optimization problems, the path to the goal
is irrelevant; the goal state itself is the solution

Find configuration satisfying constraints,
e.g., n-queens

In such cases, we can use local search algorithms

Keep a single "current" state, try to improve it

103

Example: 7-queens

Put n queens on an n x n board with no two
queens on the same row, column, or diagonal

ahai= lhe= e

104

52

Hill-climbing search

“Like climbing Everest in thick fog with amnesia"

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current 4 MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current < neighbor

105

Hill-climbing search

Problem: depending on initial state, can get
stuck in local maxima

objective function global maximmm

1 e

shonlder

local maxirmm

"flat” local macirmim

-ctnte SPE.CE

cument
state

106

Example: 8-queens problem

13.14 13.14

16 15.14.16
14.13 15.14

Heuristic? 14 [y (81 16
(Value function) W[1

w 16

W8 = 5 W 81 W
WS 1o |8 W

14 17 . 14 . 18

16

h = number of pairs of queens that are attacking each
other, either directly or indirectly

h = 17 for the above state (would like to minimize this)

107

Example: 8-queens problem

)"

A local minimum with A = 1. Need A = 0
How to find global minimum (or maximum)?

108

o4

Simulated Annealing

Idea: escape local maxima by allowing some "bad"
moves but gradually decrease their frequency

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

local variables: current, a node
nezxt, a node
| T, a "temperature” controlling prob. of downward steps |

current+ MAKE-NODE(INITIAL-STATE[problem])
for t+ 1to codo

T+ schedule[l]
if T= 0 then return current
next+— a randomly selected successor of current
AE+ VALUE[nezt] - VALUE[current]
if AE > 0 then current + next
else current + nezt only with probability e

A BT

109

Properties of simulated annealing

One can prove: If T decreases slowly enough,
then simulated annealing search will find a global
optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc

110

Local Beam Search

Keep track of k states rather than just one
Start with k& randomly generated states

At each iteration, all the successors of all & states
are generated

If any one is a goal state, stop: else select the &
best successors from the complete list and
repeat.

1

Hey, perhaps sex
can improve
search?

112

Sure - check out ye
book.

“THE ORIGIN OF SPECIES

MEANS OF NATURAL SELECTION,

113

Genetic Algorithms

A successor state is generated by combining two parent states
Start with & randomly generated states (population)

A state is represented as a string over a finite alphabet (often a
string of Os and 1s)

Evaluation function (fitness function). Higher values for better
states.

Produce the next generation of states by selection, crossover,
and mutation

114

Example: 8-queens problem

String
Representation:
16257483

= N W A~ OO N O®

Can we evolve a solution through genetic algorithms?

115

Example: Evolving 8 Queens

Sorry, wrong queens

116

58

Example: Evolving 8 Queens

24 1% __[32752411 [32748552 =] 3274¢[1p2 |
23 20% ™| 24748552 | 24752411 = 24752411 |
20 26% ~[32752411 [32752124 |—| 32b2124]
1 14% | 244155124 | 24415411 |+ 24415410

la] L1}] 1] l=]
Initial Population Fitness Function Selection Cross—Over Mutation

Fitness function: number of non-attacking pairs of queens
(min = 0, max = 8 x 7/2 = 28)

24/(24+23+20+11) = 31% probability of selection for
reproduction

23/(24+23+20+11) = 29% etc

17

H Queens crossing over g
¥ 4

| 32752411 >J 32748552
| 24748552

+.=
W |
||
118

59

Let's move on to
adversarial games

Adversarial Games

Programs that can play competitive board
games

Minimax Search

Alpha-Beta Pruning

120

Games Overview

deterministic chance
chess, checkers, backgammon,
Perfect go, othello monopoly
information
poker,
Imperfect bridge, scrabble
information

121

Games & Game Theory

When there is more than one agent, the future is not
easily predictable anymore for the agent

In competitive environments (conflicting goals),
adversarial search becomes necessary

In AI, we usually consider special type of games:

* board games, which can be characterized as
deterministic, turn-taking, two-player, zero-sum
games with perfect information

122

Games as Search

Components:
= States:
= Tnitial state:
= Successor function:
= Terminal test:

= Utility function:

123

Games as Search

Components:
= States: board configurations

= Initial state: the board position and which player
will move

= Successor function: returns list of (move, state)
pairs, each indicating a legal move and the resulting
state

* Terminal test: determines when the game is over

= Utility function: gives a numeric value in terminal
states (e.g., -1, 0, +1 in chess for loss, tie, win)

124

Games as Search

Convention: first player is called MAX,
2nd player is called MIN

MAX moves first and they take turns until game is
over

Winner gets reward, loser gets penalty

Utility values stated from MAX's perspective
Initial state and legal moves define the game free
MAX uses game tree to determine next move

125

Tic-Tac-Toe Example

MAX (X)
X X X
MIN (O) X X X
X X
x[o x| [o] [x
MAX (X) [
x[o[x] [x[o x[o
MIN (O) X X

o
TERMINAL oX
o

|0 =
o |x|ojo——
O ¢ =

Utility -1

126

Optimal Strategy: Minimax Search

Find the contingent strategy for MAX assuming an
infallible MIN opponent

Assumption: Both players play optimally!

Given a game tree, the optimal strategy can be
determined by using the minimax value of each node
(defined recursively):

MINIMAX-VALUE(n)=
UTILITY(n) If nis a terminal
max, _ o.cc;y MINIMAX-VALUE(s) If nis a MAX node
min, . cuccoy MINIMAX-VALUE(s) If nis a MIN node

127

Two-Ply Game Tree

“Ply” = move by 1 player

MAX

MIN

128

Two-Ply Game Tree

MAX

MIN

129

Two-Ply Game Tree

MAX

MIN

130

Two-Ply Game Tree

Minimax decision = A;

MAX

MIN

Minimax maximizes the wor st-case outcome for max

131

What if MIN does not play optimally?

Definition of optimal play for MAX assumes MIN
plays optimally

 Maximizes worst-case outcome for MAX

If MIN does not play optimally, MAX will do even
better (i.e. at least as much or more utility obtained
than if MIN was optimal) [Exercise 5.7 in textbook]

132

Another example max [6]
(4 ply)
min IEI Izl
max [] [] [[

min E m E E E El E m

W [=] [=] [=] [[G O] [0 [[[ee] [[[] []
© Patrick Winston

max [0]

max [0] [°] [°] []

min m E E E E| E E

HOE G EE E R EEE
® Patrick Winston

max

[¢]

[]

max E

[

[l

I B O

B][]] o] = [][] [s] L]][]
© Patrick Winston

max

[°]

max [0]

o

B

1 1 B O

NN E N][]] =]
© Patrick Winston

min Izl

max [*] [

mo[@] [E O E O OMN L [[

NN NN N][]]] =]

© Patrick Winston

max

min [3]

max []

mn[=] [[E EH EHE B FE

© Patrick Winston

Choose this max %]
move ~—_

min

max B

mn[@] [[E E E E @ E [E

EEEEI - EEEEEEEEEn

© Patrick Winston

Minimax Algorithm

function MiNimaX-DECISION(state) returns an action

v MaX-VALUE(state)
return the action in SUCCESSORS(state) with value v

function Max-VALUE(state) returns o utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U —00

or a,s in DUCCESSORS(state) do
r v+ Max(v, MIN-VALUE(s))
return v

function MIN-VALUE(state) returns a utility value

if TERMINAL-TEST(state) then return UTILITY(state)
U 00

or a,s in SUCCESSORS(state) do
|f v MIN(y, MAX-VALUE(s))
return v

140

Properties of minimax

Complete? Yes (if tree is finite)
Optimal? Yes (against an optimal opponent)
Time complexity? O(b™)

Space complexity? O(bm) (depth-first
exploration)

141

6ood enough?

Chess:
= branching factor b # 35
= game length m & 100
» search space bm & 35100 » 10154

The Universe:
* number of atoms & 1078
» age ® 102! milliseconds

Can we search more efficiently?

142

Next Class:
Wrap up of search
Logic and Reasoning

To do:
Homework #1
Sign up for class mailing list

