. Walk-SAT with multi-valued

variables
CSE592

Said Abou-Hallawa

"
Outline

m A quick review of Satisfiability-Problem
and Walk-SAT algorithm

m Multi-valued variables problem
m Problem description language
m Problem Data structures

m Measurements

S
Satisfiability-Problem

m Input: A set of propositional clauses given in
conjunctive normal form (CNF)

m Target: Find an assignment that satisfies all the
clauses (if such an assignment exists)

m Local searches like Walk-Sat have been
successfully used for finding satisfying
assignments

m The crucial differences among the local search
algorithms are how to choose a variable to be
flipped and how to escape from local minima.

" B
Walk-SAT Algorithm

Procedure Walk-SAT(P)
for i ¢ 1 to MAX-TRIES
T ¢ a randomly generated truth assignment
for j ¢« 1 to MAX-CHANGES
if T satisfies P then
return T

C ¢ randomly selected clause from clauses that false in P

With probability p
£lip the value of randomly selected variable in C
else

flip the value of the variable that maximizes
the number of stratified clauses

end for
end for
return "No satisfying assignment found"

S
Walk-Sat with multi-valued variables

m The domain of Boolean variables is {TRUE,
FALSE}

m With multi-valued variables the domains can
have more than two values, for example for color
variables their domain can be
{RED, GREEN, BLUE}

m As aresult, a clause can looks like the following
(V1==RED || V2==GREEN)

m This decreases the number of variables used in

the problem but it might increase the number of
terms per clause

" B
Problem description language

m To state a problem easily and clearly a context
free grammar is used.

m The types of the variables are defined with their
domain.
type color = {RED, GREEN, BLUE};

m Then the variables of a domain are defined
var V1, V2, V3, V4: color;

m A CNF expression is included representing the
problem to be satisfied
Graph = (V1!=RED||V2!=RED)&& ..

Graph Coloring with Boolean
variables

problen Graph;
type BoOLEAN - (T, F};
var RVi, RV2, RV3, EVA: BOOLEAN;

var GVi, GV2, GV3, GV4: BOOLEAN;
var BV1, BV2, BV3, BV4: BOOLEAN;

begin
v1
vz
vi
va
=2 == F) s (BV
523) s& (3v:
13 ") s (s
e == P s (BV
B34

== F) s (BV

Graph = V1 && V2 && V3 && V4 && E12 & E23 && E13 & E14 & E34;
end;

JE00
Boolean variables versus multi-valued
variables

m The number of Boolean variables is equal to the
number of the multi-valued variables times the
number of values in their domain

m All the Boolean variables that represent one
multi-valued variable can be FALSE at any stage
in Walk-SAT. For example RV1, GV1 and BV1in
the previous graph coloring can all be FALSE.

m Two or more variables Boolean variables multi-
valued represent one multi-valued variable can
be TRUE at any stage in Walk-Sat. For example
RV1, GV1, BV1 in the previous graph coloring
can all be TRUE.

Graph Coloring (Continue)

type color = {RED, GREEN, BLUE};
var V1, V2, V3, V4: color;

Vi
/ V2
problem Graph; /
V3

begin

Graph = alldiff (V1, V2) && alldiff (V2, V3) &&
alldiff(V1, V3) && alldiff(V1, V4) &&
alldiff(V3, V4);

"
O TR AR 1
s 12 e |} 2 12
R sl S T
v 12 |} 12w
R vl Bl M T
o 12 |} 1w
VR =l ol A T
2 12 B || ve 12 e
(V3 1= BLUE || V4 != BLUE);
n

JE
Example — Quasi-group

problen Quasi;
type color = {RED, GREEN, BLUE, YELLOW, PINK};

var s11, $12, $13, 14, S15: colo
var s21, 22, $23, S24, 825: c
var 831, 832, 33, s34, S35: color;
var S41, $42, $43, S44, S45: color;
var $51, $52, 53, S54, 855: color;

Rows =allaiff(sil, S12, §13, S14, S15) &k alldiff(s2l, $22, S23, 824, §25) &k
alldife(s31, s32, 533, S34, $35) & alldiff(s4l, 542, 843, 544, S45) &&
allgife(ssi, ss2, ss3, ss4, $55);

Cols =allaief(sil, s21, 31, 41, S51) &k alldif(si2, s22, S32, S42, S52) &k
alldif(s13, s23, 533, S43, $53) && alldiff(sl4, 524, S34, 44, S54) &k
allgife(sis, s25, s35, sS45, $55);

Quasi = Rows && Cols;

alldiff’s and Negative Terms

= For each pair of alldiff’'s parameters, a clause is generated.
= Each clause has two negative terms for each possible value of their

type.

alldiff (vli, v2) —
(V1 != Red

Green

!= Blue

V2 != Red) &&
V2 != Green) &&
V2 != Blue)

(V1
(vi

Negative terms are replaced by positive ones of the same literal but
for the other possible values of type of the literal except the value in
the negative term

V1l != Red - V1 == Green || V1 == Blue

"
Problem Data Structure

Clauses Table Terms Indices Tables Terms Table Literals Table Types Table

Vi==Red | |

‘ f Color *l

\'—1 J‘Vl--Blue [F{vi Tl

Atoms Table

Red

Green

Blue

"
Measurements

m The examples | am using are Quasi-group and
graph-coloring with large number of variables.

m All the local search strategies will be compared
with Walk-Sat.

m Walk-SAT is really outperforming all the other
local search algorithms with large scale
problems

m The results are measured in terms of time and
number of changes done to satisfy a chosen
term.

Genetic Optimization of
Factory Management

Applications of Al, winter 2003
PMP Program
Muhammad Arrabi

Intro to the Problem

* In a Boeing airplane-parts factory, each manager is
assigned a set of parts.

« Each part is either manufactured from raw materials,
assembled from other parts, or bought from internal or
external vendors.

* The manager supervises the preparation of a part and
manages the vendor relationship.

* Managing external vendors takes more time than internal
vendors.

Supervising related parts (e.g. same plane) saves time.
Demand on different parts can vary.

Goal: find best division of parts amongst managers to
minimize the effort needed and maximize production.

Optimization of Human Activity

Large solution space (~ 75000 parts, ~600
vendors, ~100 managers).

Many fuzzy parameters, should be open
for modification (e.g. managing
relationships depends on personality)

Can't use regular mathematical methods.
Suitable for Stochastic Search Methods
My choice: Genetic Algorithms

Using GA for this problem

Start with a random population of lists,

each assigns parts to managers.

¢ Use Genetic Algorithms to evolve
generations of these lists.

« Let the Genetic Engine run until a
satisfactory solution is found.

« Modify the restrictions and the fithess

function, and then repeat the process.

(optional) GA Engine tuning

* GA methods used for creating new populations:
— Copy the best from previous generation
— Cross the best to create new solutions.
— Mutate some of the best to create new ones.
— Shake, which is a small-scale mutation
— Random new solutions.

« After testing 30,000 values for the methods

above, best percentages: Best 15%, Cross 10%,
Mutate 5%, Shake 60%, Random 10%.

Evauation of Searchesfor
Online FPGA Reconfiguration

Doug Beal

CSE 592 Applications of Artificial
Intelligence

(optional) Machine Errors

« Error: After giving the genetic algorithm a bunch
of penalties on the cost of assigning additional
vendors, it came back with a best solution that
assigns all vendors to very few manager (~4)!
Reason: because assigning all vendors to few

managers minimize the number of penalties
overall.

Solution: Set a maximum of vendors that can
be assigned to one manager.

Motivation — VLSl Limits

Future VLS| Trends

— CMOS hits scaling limits
Nano-scale Alternatives

— Chemical self assembly

— Nano-imprinting

 Implications

— Only regular structures

— Stochastic process — high error rate

Problems with Nano-scale

¢ Only regular nano-scale circuits possible

— Look like FPGAs (Field Programmable Gate Arrays)!
« Differences

— Many more computational resources

— High error rate

* Lower MTBF?

« Solution

— Reconfigure around failures

— How?

How to Reconfigure

» Sounds like a search
— Find new location for computation
« Latency restrictionson signas
— Reroute signals
* Bi-directiona breadth-first hardware assisted search
— Turn off used wires, send out signals
* Implement search model based on FPGA
— Each state isa configuration
» Goal is configuration that meets al latency restrictions
« Heuristic to estimate quality of configuration
— After moving to new state, run hardware signal routing

Evaluation

Cost/Benefit Analysis using
Bayesian Networks

David Beeman
CSE 592 Atrtificial Intelligence
Winter 2003

Project Goals

» Learn more about Bayesian Networks

* Use Inference Diagrams to weigh costs &
benefits of stochastic processes

Approach

Choose a game as a sample model

Use JavaBayes to construct an Inference
Diagram

Validate the game’s cost structure or
determine the balanced structure

Infer optimal benefit using existing cost
structure

Game Description

MWS[BS| S T W[I Al § #1$1000] [
Human 03165
Wartior 43 3 3 3 1 38 1 7 5 200 07730

Champion | 4 4 4 4 3 1 4 2 7 2 33 0.1288

Hero 4 5 5 4 4 2 5 3 8 65 15 00595

Lord 4 6 6 4 4 3 6 4 9 100 10 00387

el 0.1978
Warior 5 4 4 3 3 1 6 1 8 8 12507730

Champion 5 5 5 4 3 1 7 2 8 a8 21 01288

fero 5 6 6 4 4 2 8 3 9 104 1000595

Lord 5 7 7 4 4 3 9 4 10 160 6 00387

Owarf 01978
Warior 3 4 3 3 4 1 2 1 9 el 12507730

Champion | 3 5 4 4 4 1 3 2 9 L 21 01288

fero 3 6 5 4 5 2 4 310 104 1000595

Lord 37 6 4 5 3 5 410 160 6 00387

orc 02878
Warior 4 3 3 3 a4 1 2 1 7 55 12 0173
Champion | 4 4 4 4 4 1 3 2 7 3 30 0.1289

ero 4 5 5 4 5 2 4 3 8 7 14 00501

Lord 4 6 6 4 5 3 5 4 9 110 9 00387

Rol o Hit

Attckers WS

Rol to Wouns

Atisckers S

Game Mechanics

Pl
s Defenders WS

s a5 & 7 & 9o)
050 050 033 033 033 033 033 033 03 03
067 050 050 050 033 033 033 0.3 033 033
067 067 050 050 050 050 033 0.3 033 033
067 067 0.67 050 050 050 050 050 033 033

llulo alala aloula
g
8

“ pliound)

8910 5aue od.
77 o

Initial Network

Creste e Delete cuery Onsere

(o]

Plsger Opponent

postorcr srtuton,

provabity (Piyer 1 varables)snd &
e

02090701 1402051

Plager_Skil strangth Obponent_Skill Toiighne 021363409057 02507

< = 7 021363450087 02587

\ 03rmesiTI0ATea,

/ b
[ro et atizut ora noce, lkon .
fro cvserse 2 nose, eon .

001 atabl(sy ano Svaloes

5

03 03 0.83 083 083 083 083 0.67 050 033
085 083 0.83 083 083 083 083 0.83 067 050

Rolto s pisae) _
No Shild Shiekd | Mounted Mourt & Shiel NoSheld Sheld Mouted | Mount & Shield —
16 [6 [s 0w [ow o |om

Lght Amr 5 s s a4 o017 o3 03 | 0%
ey Amor sC 4 4 3 o [oso | oso | oer BV, o)
Estvarsble Edi Functn, Edi ook g >

Ll

Status/Lessons Learned

» Make sure all dependencies are modeled

» Minimize number of dependencies per Naive Bayesian E-Mall
node by adding additional nodes - .
« Automate JavaBayes input generation Classification

» Easy to infer optimal benefit Lars Bergstrom
« Still trying to validate Cost Structure 3/6/2003

What's the problem? What can we do about it?

* Spam ¢ You can't really ‘unsubscribe’ or ‘opt-out’
— n. Unsolicited e-mail, often of a commercial nature, .
sent indiscriminately to multiple mailing lists, — Added to lists faster than you can remove
individuals, or newsgroups; junk e-mail. — They sometimes ignore your request

Source: The American Heritage® Dictionary of the English Language, Fourth

Edition. Copyright © 2000 by Houghton Mifflin Company. Published by Houghton _ They Sometimes add yOU to more |iStS |f yOU
Mifflin Company. All rights reserved.

— Any email you get but didn’t want reply!
e There's too much of it! Client-side options

— Average users get a bit — Manual filtering

— Top-level domain owners and highly visible people P
get a lot more — Automatic filtering

Automatic Filtering Approach

» Use something to remove spam from
inbox

 Errors when filtering

— Treating spam as inbox
« Sound-alike mails with new words
« Not too bad

— Treating inbox as spam
« Friends forward a silly spam to you

* You get a mail that generally looks spam-like
« Very, very bad!

Automatic Filtering Manual-Style

» Write a whole bunch of rules
— Only capture patterns you notice

— Take time to author, often more ‘effective’ at
removing mail than you want

* Feels more efficient, but still takes a lot of
time!

Real Automatic Filtering

» Smarter options abound
— Let some company do it for you

« Hint: they don't do very well right now or this
presentation wouldn’t be necessary!

 Learning approaches
— Serious text classification algorithms

— Simple Naive Bayesian approach
« Many have subtle ‘tweaks’

Naive Bayes

¢ What's the theory?
— This is for those who slept through that lecture...

« First, learn a bunch of data from some buckets
— Probability(word) = (word count + 1) /
(vocabulary + total corpus word count)
« Then, classify individual emails
— Probability(in-corpus, email-words) =
Probability(in-corpus) *
Apply(*, Map(Probability, email-words))

Analysis (1)

» Okay, so how well does it work?
— Roughly, 99.5% accurate on repeated “learn
on a random 90%, test on the rest” runs
» How did you evaluate this, anyways?
— Scheme 48
« Sub-optimal numeric performance
« But it handles unboundedly large numbers!
— ~2000 spam emails
—~200 inbox emails

Analysis (2)

« What are the not-so-useful hacks people tried?
— Trying to normalize word forms (Pantel, SpamCop)

— In general, training on small corpus (Horvitz et al.,
Androutsopoulos et al., several other works)

* What are the good hacks?

— Just looking at the N most-significant words (Graham,
Better Bayesian Filtering)

— Word pairs, repetition of URLs (Burton, SpamProbe)

What's next?

 Other hacks that might prove useful
— Sound-alike detection
« For the new generation of spam!

« Maybe a different weighting for unseen words
— Requires a really big corpus phonics!

* Or is this already good enough?

— Folks agree 99.7% is about the limit (Burton,
SpamProbe)

Questions?

Extra slides...

Naive Bayes (2)

e Learning from a corpus (i.e. all the spams)
— Pile together all of the entries, count the
unique words
— Make a table that maps:
Probability(word) =
(word occurrence count + 1) /
(unigue corpus word count +
total corpus word count)

Naive Bayes (3)

* Classifying an email
— For each corpus you learned
Probability(in that corpus, given email) =
Probability(in that corpus) *
For each word in email(
Probability(word occurs in corpus))
— The corpus it's in is the one with the highest
probability

« You can even do math on the results to see how
confident you are of that!

Robocode

“...anintelligent creature
in avirtual environment...”

What is Robocode?

A toolkit for building virtual tank robots
» An environment for battles of 2 or more tanks
* Includes a Java applet and APl extension
 Originally created as meansto learn Java

» Seemsto have a small, enthusiastic following

— Lots of sample robot code available

— You can download other people’ s tanks to battle against
— Occasional group battles referred to as melees
Itiskind of fun!

= Robocode: Round 1 of 10 {(paused) 2 - 101 x|
Battle Robot Options Help

MovehiSs s

MovehS5E

J Resumel Etop |

Background

 Tank robots begin battle with 100 energy
units

* You shoot at enemy tanks with “energy”
bullets
— Shooting costs 0.1 to 3 energy units (selectable)
— If you hit the other tank you get 3*energy back
— If you get hit, you lose 4*energy

« Battlelost when your energy is depleted

L ear nable environment?

« Provides abasis for reinforcement learning
— Cost for each shot (lose 1x energy of bullet)
— Reward for a hit (gain 3x energy of bullet)
— You lose the battle when your energy is gone
* Suggests a learning-enabled robot can gain
an edge by shooting only when expected
gain exceeds expected cost
—e.g. P(hit) >33%

My simplified problem

* 2 tanks repeatedly move up/down at a

specific X coordinate — their “patrol ling”

Stop often to look for enemy tank, shoot

— Haveto lead a moving target about 5 degrees

» Range to enemy is divided into 8 bins; these
form input to learning model

Model |earns whether the shot isworth
taking

7=Robocode: Round 1 of 10 {paused) E: -0l x|
Battle Robot Options Help

Robocode

What does the hit/miss probability ook like
depending on target range?
— Ran a series of 500 battles
— Over 10,000 shotsfired
 Counted hits and misses by range bin
Data suggests learning can help avoid
misses

Robocode

Percent Hits by Distance

00%

0.0%

E

2

Hit Rate (Percent)

200%

100%

<z 59 450474 15499 500524 525549 550574 >575
Distance to Target

Numberof Shots

1800

1600

1400

1200

1000

]

Robocode

Hits vs Misses by Zone

<425 425-449 450-474 475-499 500-524 525-549 550574 >575

B Total- Hit B Total - Missed

Distance to Target

Robocode

 Learning models can exploit this knowledge
* One approach is a simple perceptron
— Boolean inputs, one for each distance zone
— Weight for given zoneis adjusted depending on
whether a shot hit or missed

» Lowersweight if wemiss (less likely to shoot)
* Increases weight if we hit (more likely to shoot)

* What does this model look like?

Robocode

Boolean inputs based on range to target Bias

Perceptron output is TRUE if
(sum of weighted inputs) > bias
otherwise output is FALSE.

A Problem??

« Small probability that along sequence of misses
could drive the weight below the ‘ shoot’ threshold
for azone with overall high expected return for
shooting

— If that happens, weight will never return to above
threshold

— Slower learning rate may not be sufficient

— Happens because we get negative reinforcement if we
shoot and miss; but no feedback when we don’t shoot
but would have hit the target if shot was taken

« Solution: randomly shoot sometimes even if
Perceptron model would suggest not shooting

10

Improved Per ceptron

Boolean inputs based on range to target Bias

With some probability, random
input causes firing

Perceptron output is TRUE if
(sumof weighted inputs) > bias
otherwise output is FALSE.

A better model?

« 2 layer neural network

« Inputs: Range, Bearing, Location

4 Outputs: lead on target (3, 6, or 9 degrees)
or don’t shoot

Weighting adjusted by back propagation

| may try it and compare to Perceptron
Could look like this:

Two- layer Neural Network Model

Real valued inputs:

A - Range (400-600)
B - Location (Y coord)
C - Bearing (degrees)

Sigmoid hidden nodes

Sigmoid outputs:

W: Fire, lead 3 degrees
X: Fire, lead 6 degrees
Y: Fire, lead 9 degrees
Z: Don't shoot

Re-implementation of SEER, a
Sequence Extrapolating Robot

By Jason Chalecki
Based on a paper by D. W. Hagelbarger

’ The Game

m Each player has a coin. They each decide
which side to expose and, at the same time,
show each other. If both shown sides are
different, the first player wins. If they are the
same, the second player wins.

= A generally safe strategy is to simply choose
randomly with equal probability.

= This can also be played in terms of + and —
or 1 and 0 instead of heads and tails.

| A Little History

= Around 1955, D. W. Hagelbarger posited that
people don't play completely randomly and
that short periodic sequences emerge.

= He designed a machine that would detect
these sequences, and should be able to win
more than 50% on average.

= Achieved limited success: out of 9,795 trials
with visitors and employees at Bell Labs, it
won 5,218 times and lost 4,577 times.

11

’ Basic Strategy

= The machine will recognize four simple
periodic sequences
a++++ ...
Q----..
a+-+-+-...
o++--++--_..

= While it is still trying to recognize a sequence
or if it is losing, it will play randomly.

’ Implementation of the Strategy (1)

» Since everything is symmetric to + and -, the
machine keeps track of plays in terms of
same (S) or different (D) play compared to
the previous.

» Machine keeps track of:

o Whether it won the previous round.
o Whether it won two rounds ago.
o Whether it played S or D last round.

| Implementation of the Strategy (2)

» For each combination (e.g. WSW, WDL LDL), the
machine maintains some sub-state:

a Whether it won the previous round in this sub-state
when it followed the recommendation or played
randomly.

Whether it won two rounds ago in this sub-state when
it followed the recommendation or played randomly.
A counter keeping track of whether it should have
played S or D the last round. If S, 1 is added. If D, 1 is
subtracted. The counter is bounded by -3 and 3.

o

o

’ Implementation of the Strategy (3)

= If the counter is positive, the recommended
play is S. If it is negative, the recommended
play is D.

= |f the machine won the last two rounds in this
sub-state, it follows its recommendation.

= If it won one of the last two rounds in this
sub-state, it follows the recommendation with
3:1 odds.

m If it lost the last two rounds in this sub-state, it
plays randomly.

| Internals of Recognized Sequences

m++++and-----> SSSS
= +-+--> DDDD
= ++--->DSDS

m SSSS > WSW: play S (ctr > 0)

= DDDD -> WDW: play D (ctr < 0)

= DSDS > WSW: play D (ctr < 0); WDW: play
S (ctr>0)

’ Some Weaknesses

m There are some strategies for beating the
machine, but they are fairly complex as the
opponent needs to keep track of the state the
machine is in.

» For the first several rounds (~10 - 20), the
machine basically plays randomly as it tries
to learn the sequences.

12

Questions?

Predictive Text Entry for Traditional
Keyboards

* Reduce number of keystrokes required for
natural language text entry.

» Focus on new application of existing
methods, rather than exploring new
methods.

Inspiration

* PTE for small devices is an active area of
research.

» Specialized PTE applications for desktop
machines exist in code editors,
accessibility aids, & assisted manual
translation app.

* PTE not widely used for keyboard-based
NL text entry.

Bigram Model: First-order Markov
Assumption

P(wy,Wy,...,w;) = P(W)P(Wy|w,)...P(w|w, ;)
P(wj|w,w,, ..., W, 1) = P(wilw,,)

argmax,, P(W|w,w,,...,w, ;) =
argmax,, c(w,,,w)

Goal
H &) Document1 - Microsoft Word |=X]
|ME-|Ike too' that File Edt \iew Insert Format Tools Table window Help x
works with |02Ee sk ce<s o-~ O > E2
..E f 1 f 2 - 3 ' -
other apps. [Ep—r) 3
o
=
eeeeeeee
g
semsaq | j,
Draw~ [y | Autoshapes- \ W OB 4l [| £ -= 2|
Page 1 Sec 1 o oAt n 1 col 24 £
Smoothing

PestWiW;.1) = APgg(W|w, ;) + (1- A)Pyg(w)

Important to separate training & evaluation
data (otherwise optimal A = 1).

13

Mind Reader:
An Improvement of the
Original SEER Design

Michael D. Helander

SEER

A SEquence Extrapolating Robot, D. Hagelbarger
Built in hardware
Plays a s mple matching game with an opponent

Machine winsif its guess matches the opponent
and the player winsiif the guesses are different

Won approximately 53.27% of 9795 trials against
visitors and employees at Bell Labsin the 1950’s

The Original SEER Strategy

* Assumesthe play of people will not be random
¢ Tracksthe state of play with thefollowing info
— whether it won or lost the last play
— whether it played the same or different the last time
— whether it won or lost the play before last
« For each of the eight states it keeps track of
— should the machine play the same or different?

— has the machine been winning in this state?

The SEER Rules of Play

The machine looks at the information for its state

A counter [-3, +3] tracks whether the machine
should play the same (+) or different (-)

If the machine has lost the last two in this state it
plays randomly with equal likelihood

If the machine has won oncein the last two it has
3:1 oddsit will follow the counter’sinstructions

If the machine has won the last two in this state it
follows the recommendations of the counter

My Version: Mind Reader

Utilizes an order 4 decision tree of depth 5

A collection of predictors sharing the same
decision tree with each looking at a different depth
(i.e. avarying amount of player history)

A simplistic prediction algorithm within each
predictor that assumes player will repeat their play
A selector for choosing the ultimate prediction for

the program from among the options produced by
the predictors

Mind Reader Operation

14

An Analysis of the Initial Version

« Level 1 predictor performs poorly (the final value
for the accuracy score was typically around -10)

Additional selector algorithms should be looked at
beyond the original implementation

— S0: Magjority, breaking ties with random play (original)
— S1: Mgjority, bresking ties with highest accuracy score
— S2: Predictor utilizing the most history

— S3: Predictor with the highest accuracy score

Will vs. the Mind Reader

Player Name: Will
Selector used: 0

Number of Plays: 100

Machine Wins: 88 Win % = 0.88

Player Wins: 12 Win % = 0.12
Predicted Plays: 93
Predicted Wins: 82 Win % = 0.88172

« Will's guesses were in a pattern of heads and tails
— 1 heads, 2 tails, 3 heads, 4 tails, 5 heads, etc.

 Thishigh score shows the program’ s ability to
fairly quickly recognize patterns and adjust its
picks accordingly

Remaining Work

« Look at adding one more layer above the selectors
and keep track of accuracy measures for the
individual selector algorithms

¢ See how well the machine plays when using the
selector with the highest accuracy score instead of
having to pick onethat is used throughout the run

« Look at tailoring the accuracy scores so that only
recent history istaken into account and not the
overall accuracy for the entire game

* Modify predictor algorithm to take into account
current trends for that level of play

Questions?

SEER: SEquence Extrapolating Robot

Chan Im
CSE 592 - Artificial Intelligence
Winter 2003

Overview of SEER

« A machine developed by David W.
Hagelbarger at Bell Labs in 1955.
« Plays a game called “Matching Pennies”.

+ Player B tries to match the coin flip of
Player A

+ 50% probability of success in random play
= Designed to show that machines can
adjust to changing environments.
+ No need to redesign the system
& Applications in telephony - i.e. call routing

15

SEER’s Game Strategy

Human behavior in “Matching Pennies”
are not totally random.

+ Emotion, cheating, or a “system” affects

a person’s game playing behavior.

Determine a pattern in the sequence of
the human opponent’s play.

+ Data model is unknown
4 Simple periodic sequences

L I i i o S e
Challenge: Match > 50%
9795 plays: won 5218, lost 4577 => 53%

SEER Implementation

= Initially, machine plays randomly until a
pattern is found.

= Coin matching based on 3 “state of play”
« Did it win or lose last play?
& Did it win or lose the play before last?
+ Did it play same or different?

= Leads to 8 possible states with 2 data:
a) Play same or different to win?
b) Has it been winning in this state?

SEER Implementation

Take action based on data at each state.
If it has lost the last 2 times in this state:
+ Play randomly

If won one and lost one in this state:

Play same with 3-to-1 odds on same side
If won last 2 times in this state:

+ Always play same side in state data (a)

How To Beat SEER

« Figure out what the machine is going to
play.
& Need to keep track of the memory
content for each state during each game.
=« Change play pattern after establishing a
pattern recognized by the machine.
< Difficult to do for large number of games.

Al Techniques

SEER uses probability theory based on
past data to determine what present
actions to take.

Otherwise, it plays randomly.
Can apply simple decision network

Transition from state to state based on
action from prior state.

Other states have low utility

TD-Gammon in C#
Richard Katz & Lin Huang

Py _Seto_Help

Floy 1000 1000 Elpsed: 16 R Wi wins: 503 Bbe w491

16

Neural Net

Output: Predicted Probability of Winning

®

® ® ® & ® ® &6 ©

OOOOOOOOOOOOO

198 Encoded Input Units

* 24 Locations with 8 Units Each:
-1 or more White(0|1) -1 or moreBlue(0]|1)
-2 or more White(0|1) -2 or more Blue(0]1)
- 3or more White(0|1) - 3 or moreBlue(0|1)
- 4 or more White (n-3)/2 - 4 or more Blue (n-3)/2

* Bar Locations: - White(n/2) - Blue(n/2)
* Pieces Off Board: - White(n/15) - Blue (/15)
e Turnto Move: - White(0]1) - Blue(0|1)

Neura Net Training Rules

» Temporal difference weight change formula:

_ Utk
Wt+1 - Wt - a(YHl - Yl)kzzlﬂ Vka

e Gradient for hidden-to-output weights:
Yo (1-Yo) Yy
* Gradient for input-to-hidden weights:
Yo (1-Y5) Who Yn (1- V) X
« Eligibility traces of decaying contributions:
g=4e,+ V.Y,

Results of TD-Learning

TD-Gammon in C#

Experiments: 1M Training; Unit Encoding; o A; Hidden—80

g

MMMMMMMMMM

Play 100061000 Elpsed 18 Remin 0 Whitevins 503 Bl wis: 451

Crossword Puzzle Generation

By
Alia Nabawy
]

17

The Problem
¢ |
e Given:
- Dictionary of words.
- Crossword puzzle with a certain layout.
e Find

- Layout of words from dictionary to fit into the puzzle.

How to solve problem ?
e —

e For puzzles greater than 4x4 brute-force depth
first search is impractical.

e Need to use some heuristics

C

Common Heuristics used
R —

e Cheapest-first

e Connectivity

e Lookahead

e Intelligent instantiation

Cheapest-first
G —
e Fill in words that have the smallest candidate
lists.
e These words are typically:
- Longer words.
- Partially-filled words.

e Justification: Solve hard words first, more likely
later words will have solutions at all.

C)

Connectivity
e —

e Used for reducing backtracking.

e Backtrack NOT to previously completed word
but to the oldest word intersecting current
failing word.

e No need to waste steps regenerating words
that are not the cause of problem.

()

Connectivity
e

Example: l Order of filling:
tlalbl| 1 le]| @ table (2 dam (3)cals (4Ir...
alllalr|m
Don'’t backtrack to calls but to table
and regenerate all words again.
clal|l|Il]s

18

Intelligent Instantiation

G

e Why just pick the first candidate word ?

e This technique treats the first k candidate words fairly.
For each candidate w; compute number of possibilities
for each intersecting word and then compute product of
all these values.
Choose w; that maximizes this value.
Idea is to choose a candidate word that maximizes the
number of possibilities for later intersecting words.

Lookahead
(e
e Simple check: Before a word is filled, candidate
lists for all intersecting words are checked.
e If any of the lists are empty discard the word
and look for another candidate.

e Can be used in conjunction with any of the
other heuristics.

1'?![*ii'la"lﬂil[ﬂ Scheduler

“Arwen Pond CSE592
Roger Rabbit's Car
Toon Spin =

Big Thunder

Autopia
Mountgin

Pirates of
Caribbean

92_Project\indexchtm - Microsoft Internet Explorer

Disneyland.
Popular Ride Scheduler L

Availabilty Table | Distance Chart | Ride Duration

‘Which rides would you like to go on?

Ay
 Haunfed
MNansion

‘What time is it?

800am 7]

‘Which Ride are you closest
to?

Spleshbourtam =]
E i

.

Disnewland
FASTPASS® RN
Scheduler
¥Can have only | WSchedule as many
one pass at a rides as you want
time ¥Go to any ride to

¥Must physically schedule
go to the ride to
get that pass

Annealing Options

Wihiat annealing options would you like? L]
Starting Temperature}20 Temperature Dampening[1.005 Number of Times without changes]15

Send | Reset | Run Simulation

. Z Z o
[0one [[[B owslimranst Y

W Starting Temperature
¥ Temperature Dampening
¥ Number of times without Changes

19

Sample Schedule

Computation Time (in

Seconds)

Computation Time vs Accuracy

600 y

500

400 —&— Temperature = 0

300 4 —— Temperature = 20
Temperature = 40|

200

197 t\‘\‘

0 T T T T T T

360 380 400 420 440 460 480 500
Average Schedule Time (in Minutes)

Schedule
Ride Time Ride Duration Walking Time
Autopia 8:00am 0 26
Big Thunder Mountain | 8:30am 4 16
Splash Mountan 9:00am 9
Haunted Mansion 9:30am 8
Pirates of the
Caribbean 45ar © 6
Indiana Jones 10:15am 5 18
Star Tours 10:45am 4 4
Space Mountain 11:00am 3 18
Autopia 11:30am 8 28
Roger Rebbit's Car
Toon Spin 12:15pm 3
Total Time: 255 minutes Total Walking Time | 128

% Diamond = 10 times without change
% Circle = 30 times without change

¥ Triangle = 70 times without change

% Square = 100 times without change

Tunction Computescheaule ()

{
do

{

ChangeNode () ;

Juhile (nTimesiiithoutChange < nGoalTimesiithoutChange+1);

function ChangeNode ()

//Choose an invalid node at random and change either the order

<Choose 2 random different numbers between 0 and the number of rides-1>
//switch the order

<Switch nodes Rides([n] and Rides([n2]>

//Compare the total time of the schedule to the previous total time

if (nNewCurrent > nCurrentTotalTime)

{

else

//1f this order isn't better then there is a percent
//chance that we will keep it anyway. This chance is based
//on the current temperature

var chance=(99+Math.random()) ;

if (chance < temperature)

{

//We keep the current config even though it is worse and reset
//the number of times without change
nTimesWithoutChange=0;

else
//We go back to the better confi

<Switch the order of Ride(n] and ride(n2] back to original>
nTimesWithoutChange++;

//Keep current configuration and reset the number of times without change
nTimesWithoutChange = 0;

Future Enhancements

< Bayesian net that figures the probability
of a person showing up on time given
variables such as current temperature,
number of people in the park, number of
people from out of state etc.

* Add location information so you can find
other people in your party.

« Be able to change the schedule
throughout the day

Applying Naive Bayes to
Classifying Junk Email

CSE 592 Final Project

Alfred L. Schumer
Winter 2003

Overview

Implemented as Win32 command line utility that
classifies email messages saved to disk as text files.

Examines factors using a local search algorithm that
yield the best classification results.

Implements a method by which false classifications
are reduced via dynamic pruning.

Combines local search and pruning into global search
function that seeks optimum classification score.

20

General Approach

= Analyze two corpuses of valid and junk emails and
build a Bayesian network of junk word probabilities.

» Classify two other known corpuses of randomly
selected sample test files and give an overall score.

= Compute optimum parameters yielding the highest
success rate in classifying valid and junk emails.

» Identify and remove words in messages falsely
classified having greatest contribution to errors.

Implementation

= Classification, searching and pruning can be
combined in any order, any number of times.

= Supports other features such as condensing and
parsing that are typically run once.

= Other utilities written that renumber files for ease of
identification and randomly swap files for sampling.

= Results sent to the standard output and captured via
command line redirection.

{ Email Corpuses

= Required corpus of junk and valid emails, from which
a subset were extracted as test samples.

= Compiled ~3000 junk and ~1800 valid messages,
and randomly extracted 200 each for test samples.

= Each class placed in unique subdirectory, hard-coded
into program comprising working directories.

» Directories named Junk Corpus, Valid Corpus, Junk
Samples and Valid Samples.

} Command Usage

Program invoked via the following command line
arguments:

SpamBayes [+|-condense] [+|-parse] [+]-classify]
[+]-search] [+]|-prune] [+]|-global]

Where plus (+) or minus (-) sign before function
indicates verbose (+) or terse (-) program output.

Tokenization & Hashing

= Parsed files are tokenized using starting, word and
ending tokens resulting in alpha-numeric words
possibly hyphenated and possessive.

= All words over two chars parsed though not used
depending on the minimum word length specified.

= Did not have time to investigate word stemming.
= Word tokens are hashed according to Horner’s Rule.
= Floating point closed hash tables prime in size.

} Condensing

= Corpus and sample files have the possibility of being
parsed and classified frequently.

= Condense added to optimize file contents.

= Reduces files in working directories to sorted, unique
word lists.

= Only needs to be run the first time or when files are
added to the working directories.

= Significantly improves processing time of commands.

21

Parsing
» Tokenizes corpus files, counts word frequencies, and
calculates junk probability.

» Words that appear in one corpus but not other are
assigned probabilities of 1% or 99%.

» Otherwise, the probability is calculated as:
P = (Junk/nJunk)/((Junk/nJunk)+(Valid/nValid))

= Should be called before other functions each time the
corpuses change, or pruning is performed.

CIassifica‘tion

= Heuristic for measuring success is percentage of
messages falsely (or correctly) classified.

= Different weighted costs assigned to false positives
and false negatives.

= Score returned from Classify function that classifies
the sample files in the working directories.

= Classification depends on minimum word size, word
count, analysis threshold and junk threshold.

{ Classification State Space

Classification Search

=
=3
=
i
I==
A=
=

Soore
N
3

Variable Combinations

} Pruning

= Recursively classifies junk and valid samples tracking
misclassified files.

= Attempts to remove words contributing most to
misclassifications.

= Groups common, duplicated words from misclassified
files and rank orders them by probabilities.

= Removing the most significant word from statistical
base, and then recursively prunes again.

Global Search

= Highest-level command seeks to iteratively search
and prune data until global maximum is found.

= Code trivial building on Prune and Search functions:

while (true)
{
Prune (...)
Search (...);
if (New Score > Best Score)
Best Score = New Score;
else break;

} Test Results

Test Type Classification Score Time (seconds)

Search Only 88.5% 192.90
Prune Only 88.8% 34.255
Search & Prune 92.5% 226.691
Global Search 93.0% 476.514

Conclusions

= Most work being done today has to do with inputs as
discrete words and applying Bayesian principles.

= Project shows that searching and pruning (especially
as Global Search) significantly improves accuracy of
applying Naive Bayes theory.

» Results showed improvement in classification scores
on the order of 83% to 93%.

» Corpuses work best when they are from the same
email user.

i

. 5 g g
- - el ot testl - > r:slnswel

7
- e testl
camivorelh &

_camivorel Be

S Gy, v >
b Y Sl S _ testl
St e I

‘efrakium.. -
SETS e TRINR T LN

test]
test * P I S m fﬁ .
- : O Je C &
. st
sk i e e 4
S e Sl T Winfred Wong
o PR C e - B CSE 592'Winter 2003
Foan et - testl >
testl %

.NET Terrarium Project

@ A multiplayer ecosystem game developed using the .NET
Framework

[

Creatures in the Terrarium ecosystem compete for
resources

(-]

Types of Creatures:
= Plants — feed on Sun light ONLY
= Herbivores — feed on Plants ONLY
= Carnivores - feed on Herbivores ONLY

(-]

gre?tures can reproduce, die from old age/disease, get killed in
attles.

[

Terrarium official homepage:
= http://www.gotdotnet.com/terrarium/

Actions, States and Events

@ Actions on each turn 8 proporty Shast

= Move, Eat, Attack, Defend,
Reproduce, nop

@ Creature States
= Boolean values
& IsAlive, IsMoving, IsEating, ...
= Numeric values
@ PercentEnergy, Percentinjured,

@ Events
= BornEvent, IdleEvent, AttackEvent, ...

Problem Definition

4 Study the effects of states and actions on a herbivore’s
survival in the ecosystem — a classification problem

@ Scope
= Closed environment — no connection to other network

Fixed sets of species — two plant species, one herbivore
specie, one carnivore specie
No communication among creatures

a Steps
= Use prototype herbivore to collect data

= Use WEKA J48 classifier to generate decision tree based on
the data

= Deduce interesting rules from decision tree

Data Collection

@ Attributes Hungry | HasPlant | HasThreat | Eat | Move | Attack | Defend | Class
= Hungry : {'yes’,’no’} yes no. no. no yes no o Bad
= HasPlant : {'yes’,’no’} [w Yes Good

HasThreat : {'yes’,'no’}

yes ves ves o |no o no Bad

Eat : {'yes’,'no’}

Move : {'yes’, ‘no’}

« Attack : {'yes’, 'no’} o e e o e | [e
« Defend: {yes’, 'no} [w [w yes W |ves |no |ves | cood
@ Class

= Condition of the herbivore in next turn : {good’,’bad’}
= Use a combination of health and threat level
@ PercentEnergy > 30% and ~HasThreat

23

Decision Tree

Hungry = yes
Eat = yes: good (6.0)
Eat = no

I

|

| | HasThreat = yes: bad (55.0/7.0)
| | HasThreat=no

| | | HasPlant = yes: good (9.0)

| | | HasPlant =no: bad (23.0/6.0)
Hungry = no

| HasThreat = yes

| | Move =yes: good (23.0/3.0)

| | Move =no: bad (11.0/1.0)

| HasThreat = no: good (49.0)

Analysis

@ Interesting observations:
» Attack and Defend are not factors
=« ~Hungry * HasThreat » Move => Good
« ~Hungry * HasThreat ~ ~Move => Bad

@ Is running away the only way to survive when a
herbivore meets a carnivore?

« In most case, yes.

= However, statistics showed a small number of
carnivores were killed by herbivores.

Analysis (cont'd)

{8 Population Statistics

Analysis (cont’d)

@ Herbivores can defend carnivores in some cases, why doesn't it show up
in the decision tree?

@ Missing attributes
= Need more data to show this fact
= Add Healthy : {'yes’;’'no’} -- Percentinjured < 50%
= Add AttackerHealthy : {'yes’,'no’} -- attacker.Percentinjured < 50%

Hungry HasPlant | HasTheal | Eat Move, ‘Attack Defend Healthy | Allacker | Class
Healthy

ves no no no yes

< = =] z| =| =

HEEEEE

Decision Tree |l

HasThreat = yes
| AttackerHealthy = yes: bad (68.67/14.06)
| AttackerHealthy = no

| | Attack =yes: good (20.43/7.43)

| | Attack =no

| | | Move =yes: good (12.31/5.37)

| | | Move =no: bad (5.58)

HasThreat = no

| Healthy = yes: good (73.0/2.0)

| Healthy = no

| | Hungry = yes: bad (8.0/1.0)

| | Hungry = no: good (10.0/2.0)

Demo

24

A Study of Iterated Prisoner’s
* Dilemma

CSE 592 Class Project.
By Man Xiong

Strategies in Different Game scenarios

» Iterated:
= Tit-For-Tat
= With chaos:
= Tit-For-2-Tat
= Generous Tit-For-Tat (p):

p: cooperates
1-p: tit for tat
= Pavlov (n):
P<-1/n
p += 1/n if the other agent cooperates
P: cooperates; 1-p: defects

Self-tuning GTFT and Pavlov

= At the very beginning, the parameter for each agent
obey normal distribution

= For every generation, the value of the parameter of
most successful agents is used as the median value
for distribution

A Formal Model for Cooperation in Game Theory

Cooperate | Defect

R=3 S=0

Cooperate R=3 T=5
T=5 P=1

Defect S=0 p=1

n T>R>P>S
n 2R>T+S

Implementation and Simulation

= Implemented in C++ for fast simulation
= Iteration

= Tournament: two agents per strategy

= Chaos

= Evolution

elfls et

CSEB92 Artificial Intelligence
University of Washington
Dajun Xu

25

cltietiof)

| satisfiable 3SAT problems can be
il to benchmark and fine tune new
rithms.

to generate hard 3SAT formula has
ys been a challenging topic.

blems become hard at critical point

ed that problems even harder when
signs” are balanced for each variable

Treelitlonel Ag

erate arandom truth assignment
struct a formula with N variables
M random clauses

DwW away any clause that violates

3SAT hard problems, set M =
I\

2Cf)

orced” approach, namely start with a
om truth assignment

“equivalent literals” as seeds to plant
auses / sentences

mple,
-C) is the equivalent literals to an assignment (1, -1, -1)

erator controls randomness of

bbles and balance of signs
implementation

ient enough to construct some hard
blems in comparison to random 3SAT

ate a generator for this type of
T formula.

dy the phase transition behavior
look for the critical point if there
ne.

] out if this type of problems is

ly hard in comparison to the
lar random 3SAT problems

Qfczcr) Cort,

inciple generate all possible
sfiable formulas with a clause-to-
able ratio of 4.25 that have T among
solution

ewhat surprising result is that the

pling of these formulas is far from

brm, biased towards formulas with

y assignments, clustered around T
easy for Walksat

SHMIPNGRS

variable must appear at least once in
ntence, but can be either positive or
ative or both

ame variable, regardless of sign, in
clause

mple,

B) or (A, A, B) are considered to have same variable

clause has exactly three literals, this
for easy implementation.

26

AssUnfgtlons, Cont,

o clauses have exact same
structs, regardless the appearing

or

mple,

) and (C, B, A) are considered to have the exact same constructs
number of clauses M is not less than
umber of variables N

only interested in generating hard problems. All satisfiable

s are easy for Walksat when M is small.

erate arandom truth assignment
ize N.

erate the equivalent literals of
N from the truth assignment as
seeding literals.

domly assign each of equivalent
als exactly once to N of M
ses.

each of rest clauses with one
Homly selected equivalent literals

pach clause has at least one equivalent literal. The sentence
guaranteed satisfiable.

now on, keep track of the

ber of positive and negative sign
pach variable including those
those created in previous steps.

Cerlerzior Petzlls, corit,

y variable is not balanced, repeatedly
ct the variable with negated sign and
t to arandomly selected clause, until
variable balanced.

variables are balanced, randomly

ct one from 2*N literals, regardless
valent to truth assignment or not, to a
omly selected clause such that

e variable

e clauses exist in the sentence

() |

Seziferline) ior Critical Foirt

cally a binary search

for point (humber of clause) at which
sat has the max runtime

sure runtime by the median number of
ple 100 points in search range each
entences for each point

ns Walksat for each sentence due to
hastic nature of Walksat

erate 1000 sentences for the
cal points found by the balanced
T generator
d the benchmark sentences
nloaded from www.satlib.org
both against Walksat and
pare results.

cal point found

= X
B4 i‘“ ,
se-Variable .
=3.68 o

uuuuuuu

secl Vs Fariclorn

Balanced Random

Critical Point | Clause-Var Critical Point | Clause-Var

brating Satisfiable Problem Instances -
optas, Kautz (2000)

ce and Filtering in Structured Satisfiable
lems - Kautz, Ruan, Achlioptas, et al(2001)
rimental Results on the Crossover point in
om 3SAT - Crawford (1996)

CSP Look-Back Techniques to Solve
ptionally Hard SAT Instance — Bayardo,

ag (1996)

D0 sentences
cal point found
b5

se-Variable
=3.55

pestllishipllelnless Cornyerizor

Balanced Random
Avg Flips Avg Flips
1445.095 653.917

8031.563 3656.377

Wesdley Yang
OliviaYang

28

|pireceluetior) of HogoCocle

At it is?

a programming game which lets
create virtual "Robots," real Java
pcts that battle against other

pts.

to play?
D movement and fire

WisEoNIIE?
saeioks to be considered
tness of predication
hit/missing ratio
ce to object
y status of all opponents

g Bayesian learning

