
1

Walk-SAT with multi-valued
variables
CSE592

Said Abou-Hallawa

Outline

! A quick review of Satisfiability-Problem
and Walk-SAT algorithm

! Multi-valued variables problem

! Problem description language
! Problem Data structures

! Measurements

Satisfiability-Problem

! Input: A set of propositional clauses given in
conjunctive normal form (CNF)

! Target: Find an assignment that satisfies all the
clauses (if such an assignment exists)

! Local searches like Walk-Sat have been
successfully used for finding satisfying
assignments

! The crucial differences among the local search
algorithms are how to choose a variable to be
flipped and how to escape from local minima.

Walk-SAT Algorithm
Procedure Walk-SAT(P)

for i ←←←← 1 to MAX-TRIES
T ←←←← a randomly generated truth assignment
for j ←←←← 1 to MAX-CHANGES

if T satisfies P then
return T

C ←←←← randomly selected clause from clauses that false in P

With probability p
flip the value of randomly selected variable in C

else
flip the value of the variable that maximizes
the number of stratified clauses

end for
end for
return "No satisfying assignment found"

Walk-Sat with multi-valued variables

! The domain of Boolean variables is {TRUE,
FALSE}

! With multi-valued variables the domains can
have more than two values, for example for color
variables their domain can be
{RED, GREEN, BLUE}

! As a result, a clause can looks like the following
(V1==RED || V2==GREEN)

! This decreases the number of variables used in
the problem but it might increase the number of
terms per clause

Problem description language

! To state a problem easily and clearly a context
free grammar is used.

! The types of the variables are defined with their
domain.
type color = {RED, GREEN, BLUE};

! Then the variables of a domain are defined
var V1, V2, V3, V4: color;

! A CNF expression is included representing the
problem to be satisfied
Graph = (V1!=RED||V2!=RED)&& …

2

Graph Coloring with Boolean
variables
problem Graph;

type BOOLEAN = {T, F};

var RV1, RV2, RV3, RV4: BOOLEAN;
var GV1, GV2, GV3, GV4: BOOLEAN;
var BV1, BV2, BV3, BV4: BOOLEAN;

begin
V1 = (RV1 == T || GV1 == T || BV1 == T);
V2 = (RV2 == T || GV2 == T || BV2 == T);
V3 = (RV3 == T || GV3 == T || BV3 == T);
V4 = (RV4 == T || GV4 == T || BV4 == T);

E12 = (RV1 == F || RV2 == F) && (GV1 == F || GV2 == F) && (BV1 == F || BV2 == F);
E23 = (RV2 == F || RV3 == F) && (GV2 == F || GV3 == F) && (BV2 == F || BV3 == F);
E13 = (RV1 == F || RV3 == F) && (GV1 == F || GV3 == F) && (BV1 == F || BV3 == F);
E14 = (RV1 == F || RV4 == F) && (GV1 == F || GV4 == F) && (BV1 == F || BV4 == F);
E34 = (RV3 == F || RV4 == F) && (GV3 == F || GV4 == F) && (BV3 == F || BV4 == F);

Graph = V1 && V2 && V3 && V4 && E12 && E23 && E13 && E14 && E34;
end;

Boolean variables versus multi-valued
variables
! The number of Boolean variables is equal to the

number of the multi-valued variables times the
number of values in their domain

! All the Boolean variables that represent one
multi-valued variable can be FALSE at any stage
in Walk-SAT. For example RV1, GV1 and BV1in
the previous graph coloring can all be FALSE.

! Two or more variables Boolean variables multi-
valued represent one multi-valued variable can
be TRUE at any stage in Walk-Sat. For example
RV1, GV1, BV1 in the previous graph coloring
can all be TRUE.

Graph Coloring with multi-valued
variables

problem Graph;

type color = {RED, GREEN, BLUE};

var V1, V2, V3, V4: color;

begin

E12 = (V1 != RED || V2 != RED) && (V1 != GREEN || V2 != GREEN) &&

(V1 != BLUE || V2 != BLUE);

E23 = (V2 != RED || V3 != RED) && (V2 != GREEN || V3 != GREEN) &&

(V2 != BLUE || V3 != BLUE);

E13 = (V1 != RED || V3 != RED) && (V1 != GREEN || V3 != GREEN) &&

(V1 != BLUE || V3 != BLUE);

E14 = (V1 != RED || V4 != RED) && (V1 != GREEN || V4 != GREEN) &&

(V1 != BLUE || V4 != BLUE);

E34 = (V3 != RED || V4 != RED) && (V3 != GREEN || V4 != GREEN) &&

(V3 != BLUE || V4 != BLUE);

Graph = E12 && E23 && E13 && E14 && E34;

end;

Graph Coloring (Continue)

problem Graph;

type color = {RED, GREEN, BLUE};

var V1, V2, V3, V4: color;

begin

Graph = alldiff(V1, V2) && alldiff(V2, V3) &&

alldiff(V1, V3) && alldiff(V1, V4) &&

alldiff(V3, V4);

end;

Example – Quasi-group

problem Quasi;

type color = {RED, GREEN, BLUE, YELLOW, PINK};

var S11, S12, S13, S14, S15: color;
var S21, S22, S23, S24, S25: color;
var S31, S32, S33, S34, S35: color;
var S41, S42, S43, S44, S45: color;
var S51, S52, S53, S54, S55: color;

begin
Rows = alldiff(S11, S12, S13, S14, S15) && alldiff(S21, S22, S23, S24, S25) &&

alldiff(S31, S32, S33, S34, S35) && alldiff(S41, S42, S43, S44, S45) &&
alldiff(S51, S52, S53, S54, S55);

Cols = alldiff(S11, S21, S31, S41, S51) && alldiff(S12, S22, S32, S42, S52) &&
alldiff(S13, S23, S33, S43, S53) && alldiff(S14, S24, S34, S44, S54) &&
alldiff(S15, S25, S35, S45, S55);

Quasi = Rows && Cols;
end;

alldiff’s and Negative Terms

! For each pair of alldiff’s parameters, a clause is generated.
! Each clause has two negative terms for each possible value of their

type.

alldiff(V1, V2) →→→→
(V1 != Red || V2 != Red) &&
(V1 != Green || V2 != Green) &&
(V1 != Blue || V2 != Blue)

! Negative terms are replaced by positive ones of the same literal but
for the other possible values of type of the literal except the value in
the negative term

V1 != Red →→→→ V1 == Green || V1 == Blue

3

Problem Data Structure

Color

Green

V1

Types Table

Atoms Table

Literals Table

V1==Blue

Red

Blue

Terms TableTerms Indices TablesClauses Table

:

:

:

V1==Red

Green

Blue

V1==Blue

Measurements

! The examples I am using are Quasi-group and
graph-coloring with large number of variables.

! All the local search strategies will be compared
with Walk-Sat.

! Walk-SAT is really outperforming all the other
local search algorithms with large scale
problems

! The results are measured in terms of time and
number of changes done to satisfy a chosen
term.

Genetic Optimization of
Factory Management

Applications of AI, winter 2003
PMP Program

Muhammad Arrabi

Intro to the Problem

• In a Boeing airplane-parts factory, each manager is
assigned a set of parts.

• Each part is either manufactured from raw materials,
assembled from other parts, or bought from internal or
external vendors.

• The manager supervises the preparation of a part and
manages the vendor relationship.

• Managing external vendors takes more time than internal
vendors.

• Supervising related parts (e.g. same plane) saves time.
• Demand on different parts can vary.
• Goal: find best division of parts amongst managers to

minimize the effort needed and maximize production.

Optimization of Human Activity

• Large solution space (~ 75000 parts, ~600
vendors, ~100 managers).

• Many fuzzy parameters, should be open
for modification (e.g. managing
relationships depends on personality)

• Can’t use regular mathematical methods.
• Suitable for Stochastic Search Methods

• My choice: Genetic Algorithms

Using GA for this problem

• Start with a random population of lists,
each assigns parts to managers.

• Use Genetic Algorithms to evolve
generations of these lists.

• Let the Genetic Engine run until a
satisfactory solution is found.

• Modify the restrictions and the fitness
function, and then repeat the process.

4

(optional) GA Engine tuning

• GA methods used for creating new populations:
– Copy the best from previous generation
– Cross the best to create new solutions.
– Mutate some of the best to create new ones.
– Shake, which is a small-scale mutation
– Random new solutions.

• After testing 30,000 values for the methods
above, best percentages: Best 15%, Cross 10%,
Mutate 5%, Shake 60%, Random 10%.

(optional) Machine Errors

• Error: After giving the genetic algorithm a bunch
of penalties on the cost of assigning additional
vendors, it came back with a best solution that
assigns all vendors to very few manager (~4)!

• Reason: because assigning all vendors to few
managers minimize the number of penalties
overall.

• Solution: Set a maximum of vendors that can
be assigned to one manager.

Evaluation of Searches for
Online FPGA Reconfiguration

Doug Beal

CSE 592 Applications of Artificial
Intelligence

Motivation – VLSI Limits

• Future VLSI Trends
– CMOS hits scaling limits

• Nano-scale Alternatives
– Chemical self assembly
– Nano-imprinting

• Implications
– Only regular structures
– Stochastic process – high error rate

Problems with Nano-scale

• Only regular nano-scale circuits possible
– Look like FPGAs (Field Programmable Gate Arrays)!

• Differences
– Many more computational resources

– High error rate
• Lower MTBF?

• Solution
– Reconfigure around failures

– How?

How to Reconfigure

• Sounds like a search
– Find new location for computation

• Latency restrictions on signals

– Reroute signals
• Bi-directional breadth-first hardware assisted search

– Turn off used wires, send out signals

• Implement search model based on FPGA
– Each state is a configuration

• Goal is configuration that meets all latency restrictions
• Heuristic to estimate quality of configuration

– After moving to new state, run hardware signal routing

5

Evaluation

Cost/Benefit Analysis using
Bayesian Networks

David Beeman
CSE 592 Artificial Intelligence

Winter 2003

Project Goals

• Learn more about Bayesian Networks
• Use Inference Diagrams to weigh costs &

benefits of stochastic processes

Approach

• Choose a game as a sample model
• Use JavaBayes to construct an Inference

Diagram
• Validate the game’s cost structure or

determine the balanced structure
• Infer optimal benefit using existing cost

structure

Game Description

M WS BS S T W I A Ld $ # / $1000 p

Human 0.3165
Warrior 4 3 3 3 3 1 3 1 7 5 200 0.7730
Champion 4 4 4 4 3 1 4 2 7 30 33 0.1288
Hero 4 5 5 4 4 2 5 3 8 65 15 0.0595
Lord 4 6 6 4 4 3 6 4 9 100 10 0.0387

Elf 0.1978
Warrior 5 4 4 3 3 1 6 1 8 8 125 0.7730
Champion 5 5 5 4 3 1 7 2 8 48 21 0.1288
Hero 5 6 6 4 4 2 8 3 9 104 10 0.0595
Lord 5 7 7 4 4 3 9 4 10 160 6 0.0387

Dwarf 0.1978
Warrior 3 4 3 3 4 1 2 1 9 8 125 0.7730
Champion 3 5 4 4 4 1 3 2 9 48 21 0.1288
Hero 3 6 5 4 5 2 4 3 10 104 10 0.0595
Lord 3 7 6 4 5 3 5 4 10 160 6 0.0387

Orc 0.2878
Warrior 4 3 3 3 4 1 2 1 7 5.5 182 0.7734
Champion 4 4 4 4 4 1 3 2 7 33 30 0.1289
Hero 4 5 5 4 5 2 4 3 8 72 14 0.0591
Lord 4 6 6 4 5 3 5 4 9 110 9 0.0387

6

Game Mechanics
Roll to Hit p(Hit)

Attacker's W S 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
1 4 4 5 5 5 5 5 5 5 5 0.50 0.50 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
2 3 4 4 4 5 5 5 5 5 5 0.67 0.50 0.50 0.50 0.33 0.33 0.33 0.33 0.33 0.33
3 3 3 4 4 4 4 5 5 5 5 0.67 0.67 0.50 0.50 0.50 0.50 0.33 0.33 0.33 0.33
4 3 3 3 4 4 4 4 4 5 5 0.67 0.67 0.67 0.50 0.50 0.50 0.50 0.50 0.33 0.33
5 3 3 3 3 4 4 4 4 4 4 0.67 0.67 0.67 0.67 0.50 0.50 0.50 0.50 0.50 0.50
6 3 3 3 3 3 4 4 4 4 4 0.67 0.67 0.67 0.67 0.67 0.50 0.50 0.50 0.50 0.50
7 3 3 3 3 3 3 4 4 4 4 0.67 0.67 0.67 0.67 0.67 0.67 0.50 0.50 0.50 0.50
8 3 3 3 3 3 3 3 4 4 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.50 0.50 0.50
9 3 3 3 3 3 3 3 3 4 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.50 0.50

10 3 3 3 3 3 3 3 3 3 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.50

Roll to Wound p(W ound)

Attacker's S 1 2 3 4 5 6 7 8 9 10 Save Mod. 1 2 3 4 5 6 7 8 9 10
1 4 5 6 6 7 7 7 7 7 7 0 0.50 0.33 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.00
2 3 4 5 6 6 7 7 7 7 7 0 0.67 0.50 0.33 0.17 0.17 0.00 0.00 0.00 0.00 0.00
3 2 3 4 5 6 6 7 7 7 7 0 0.83 0.67 0.50 0.33 0.17 0.17 0.00 0.00 0.00 0.00
4 2 2 3 4 5 6 6 7 7 7 -1 0.83 0.83 0.67 0.50 0.33 0.17 0.17 0.00 0.00 0.00
5 2 2 2 3 4 5 6 6 7 7 -2 0.83 0.83 0.83 0.67 0.50 0.33 0.17 0.17 0.00 0.00
6 2 2 2 2 3 4 5 6 6 7 -3 0.83 0.83 0.83 0.83 0.67 0.50 0.33 0.17 0.17 0.00
7 2 2 2 2 2 3 4 5 6 6 -4 0.83 0.83 0.83 0.83 0.83 0.67 0.50 0.33 0.17 0.17
8 2 2 2 2 2 2 3 4 5 6 -5 0.83 0.83 0.83 0.83 0.83 0.83 0.67 0.50 0.33 0.17
9 2 2 2 2 2 2 2 3 4 5 -6 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.67 0.50 0.33

10 2 2 2 2 2 2 2 2 3 4 -7 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.67 0.50

Roll to Save p(Save)
No Shield Shield Mounted Mount & Shield No Shield Shield Mounted Mount & Shield

No Armor 7 6 6 5 0.00 0.17 0.17 0.33
Light Armor 6 5 5 4 0.17 0.33 0.33 0.50
Heavy Armor 5 4 4 3 0.33 0.50 0.50 0.67

Defender's WS Defender's W S

Defender's T Defender's T

Initial Network

Status/Lessons Learned

• Make sure all dependencies are modeled
• Minimize number of dependencies per

node by adding additional nodes
• Automate JavaBayes input generation

• Easy to infer optimal benefit
• Still trying to validate Cost Structure

Naïve Bayesian E-Mail
Classification

Lars Bergstrom
3/6/2003

What’s the problem?

• Spam
– n. Unsolicited e-mail, often of a commercial nature,

sent indiscriminately to multiple mailing lists,
individuals, or newsgroups; junk e-mail.
Source: The American Heritage® Dictionary of the English Language, Fourth
Edition. Copyright © 2000 by Houghton Mifflin Company. Published by Houghton
Mifflin Company. All rights reserved.

– Any email you get but didn’t want

• There’s too much of it!
– Average users get a bit
– Top-level domain owners and highly visible people

get a lot more

What can we do about it?

• You can’t really ‘unsubscribe’ or ‘opt-out’
– Added to lists faster than you can remove

– They sometimes ignore your request

– They sometimes add you to more lists if you
reply!

• Client-side options
– Manual filtering

– Automatic filtering

7

Automatic Filtering Approach

• Use something to remove spam from
inbox

• Errors when filtering
– Treating spam as inbox

• Sound-alike mails with new words
• Not too bad

– Treating inbox as spam
• Friends forward a silly spam to you
• You get a mail that generally looks spam-like
• Very, very bad!

Automatic Filtering Manual-Style

• Write a whole bunch of rules
– Only capture patterns you notice

– Take time to author, often more ‘effective’ at
removing mail than you want

• Feels more efficient, but still takes a lot of
time!

Real Automatic Filtering

• Smarter options abound
– Let some company do it for you

• Hint: they don’t do very well right now or this
presentation wouldn’t be necessary!

• Learning approaches
– Serious text classification algorithms

– Simple Naïve Bayesian approach
• Many have subtle ‘tweaks’

Naïve Bayes

• What’s the theory?
– This is for those who slept through that lecture…

• First, learn a bunch of data from some buckets
– Probability(word) = (word count + 1) /

(vocabulary + total corpus word count)

• Then, classify individual emails
– Probability(in-corpus, email-words) =

Probability(in-corpus) *
Apply(*, Map(Probability, email-words))

Analysis (1)

• Okay, so how well does it work?
– Roughly, 99.5% accurate on repeated “learn

on a random 90%, test on the rest” runs

• How did you evaluate this, anyways?
– Scheme 48

• Sub-optimal numeric performance
• But it handles unboundedly large numbers!

– ~2000 spam emails

– ~200 inbox emails

Analysis (2)

• What are the not-so-useful hacks people tried?
– Trying to normalize word forms (Pantel, SpamCop)
– In general, training on small corpus (Horvitz et al.,

Androutsopoulos et al., several other works)

• What are the good hacks?
– Just looking at the N most-significant words (Graham,

Better Bayesian Filtering)
– Word pairs, repetition of URLs (Burton, SpamProbe)

8

What’s next?

• Other hacks that might prove useful
– Sound-alike detection

• For the new generation of spam!
• Maybe a different weighting for unseen words

– Requires a really big corpus phonics!

• Or is this already good enough?
– Folks agree 99.7% is about the limit (Burton,

SpamProbe)

Questions?

Extra slides… Naïve Bayes (2)

• Learning from a corpus (i.e. all the spams)
– Pile together all of the entries, count the

unique words

– Make a table that maps:
Probability(word) =

(word occurrence count + 1) /
(unique corpus word count +
total corpus word count)

Naïve Bayes (3)

• Classifying an email
– For each corpus you learned

Probability(in that corpus, given email) =
Probability(in that corpus) *
For each word in email(

Probability(word occurs in corpus))
– The corpus it’s in is the one with the highest

probability
• You can even do math on the results to see how

confident you are of that! “...an intelligent creature
in a virtual environment...”

Robocode

9

What is Robocode?

• A toolkit for building virtual tank robots
• An environment for battles of 2 or more tanks
• Includes a Java applet and API extension
• Originally created as means to learn Java
• Seems to have a small, enthusiastic following

– Lots of sample robot code available
– You can download other people’s tanks to battle against
– Occasional group battles referred to as melees

• It is kind of fun!

Background

• Tank robots begin battle with 100 energy
units

• You shoot at enemy tanks with “energy”
bullets
– Shooting costs 0.1 to 3 energy units (selectable)

– If you hit the other tank you get 3*energy back

– If you get hit, you lose 4*energy

• Battle lost when your energy is depleted

Learnable environment?

• Provides a basis for reinforcement learning
– Cost for each shot (lose 1x energy of bullet)

– Reward for a hit (gain 3x energy of bullet)

– You lose the battle when your energy is gone

• Suggests a learning-enabled robot can gain
an edge by shooting only when expected
gain exceeds expected cost
– e.g. P(hit) >33%

My simplified problem

• 2 tanks repeatedly move up/down at a
specific X coordinate – their “patrol line”

• Stop often to look for enemy tank, shoot
– Have to lead a moving target about 5 degrees

• Range to enemy is divided into 8 bins; these
form input to learning model

• Model learns whether the shot is worth
taking

10

Robocode

• What does the hit/miss probability look like
depending on target range?
– Ran a series of 500 battles

– Over 10,000 shots fired
• Counted hits and misses by range bin

• Data suggests learning can help avoid
misses

Robocode
Percent Hits by Distance

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

<425 425-449 450-474 475-499 500-524 525-549 550-574 > 575

Distance to Target

H
it

R
at

e
(P

er
ce

n
t)

Hit %

Robocode
Hits vs Misses by Zone

0

200

400

600

800

1000

1200

1400

1600

1800

<425 425-449 450-474 475-499 500-524 525-549 550-574 > 575

Distance to Target

N
u

m
b

er
 o

f S
h

o
ts

Total - Hit Total - Missed

Robocode

• Learning models can exploit this knowledge

• One approach is a simple perceptron
– Boolean inputs, one for each distance zone

– Weight for given zone is adjusted depending on
whether a shot hit or missed

• Lowers weight if we miss (less likely to shoot)

• Increases weight if we hit (more likely to shoot)

• What does this model look like?

Robocode

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 B

Fire!

W1 W2 W3 W4 W5 W6 W7 W8 WB = -0.33

Boolean inputs based on range to target Bias

Perceptron output is TRUE if
(sum of weighted inputs) > bias
otherwise output is FALSE.

A Problem??

• Small probability that a long sequence of misses
could drive the weight below the ‘shoot’ threshold
for a zone with overall high expected return for
shooting
– If that happens, weight will never return to above

threshold
– Slower learning rate may not be sufficient
– Happens because we get negative reinforcement if we

shoot and miss; but no feedback when we don’t shoot
but would have hit the target if shot was taken

• Solution: randomly shoot sometimes even if
Perceptron model would suggest not shooting

11

Improved Perceptron

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 B

Fire!

W1 W2 W3 W4 W5 W6 W7 W8 WB = -0.33

Boolean inputs based on range to target Bias

Perceptron output is TRUE if
(sum of weighted inputs) > bias
otherwise output is FALSE.

R

With some probability, random
input causes firing

WR = 1

A better model?

• 2 layer neural network

• Inputs: Range, Bearing, Location

• 4 Outputs: lead on target (3, 6, or 9 degrees)
or don’t shoot

• Weighting adjusted by back propagation

• I may try it and compare to Perceptron

• Could look like this:

Two- layer Neural Network Model

X

Real valued inputs:
A - Range (400-600)
B - Location (Y coord)
C - Bearing (degrees)

A B C

W Y

Sigmoid outputs:
W: Fire, lead 3 degrees
X: Fire, lead 6 degrees
Y: Fire, lead 9 degrees
Z: Don't shoot

Sigmoid hidden nodes

Z

Re-implementation of SEER, a
Sequence Extrapolating Robot

By Jason Chalecki
Based on a paper by D. W. Hagelbarger

The Game

! Each player has a coin. They each decide
which side to expose and, at the same time,
show each other. If both shown sides are
different, the first player wins. If they are the
same, the second player wins.

! A generally safe strategy is to simply choose
randomly with equal probability.

! This can also be played in terms of + and –
or 1 and 0 instead of heads and tails.

A Little History

! Around 1955, D. W. Hagelbarger posited that
people don’t play completely randomly and
that short periodic sequences emerge.

! He designed a machine that would detect
these sequences, and should be able to win
more than 50% on average.

! Achieved limited success: out of 9,795 trials
with visitors and employees at Bell Labs, it
won 5,218 times and lost 4,577 times.

12

Basic Strategy

! The machine will recognize four simple
periodic sequences
" + + + + …
" - - - - …
" + - + - + - …
" + + - - + + - - …

! While it is still trying to recognize a sequence
or if it is losing, it will play randomly.

Implementation of the Strategy (1)

! Since everything is symmetric to + and -, the
machine keeps track of plays in terms of
same (S) or different (D) play compared to
the previous.

! Machine keeps track of:
" Whether it won the previous round.
" Whether it won two rounds ago.
" Whether it played S or D last round.

Implementation of the Strategy (2)

! For each combination (e.g. WSW, WDL LDL), the
machine maintains some sub-state:
" Whether it won the previous round in this sub-state

when it followed the recommendation or played
randomly.

" Whether it won two rounds ago in this sub-state when
it followed the recommendation or played randomly.

" A counter keeping track of whether it should have
played S or D the last round. If S, 1 is added. If D, 1 is
subtracted. The counter is bounded by -3 and 3.

Implementation of the Strategy (3)

! If the counter is positive, the recommended
play is S. If it is negative, the recommended
play is D.

! If the machine won the last two rounds in this
sub-state, it follows its recommendation.

! If it won one of the last two rounds in this
sub-state, it follows the recommendation with
3 : 1 odds.

! If it lost the last two rounds in this sub-state, it
plays randomly.

Internals of Recognized Sequences

! + + + + and - - - - # SSSS

! + - + - # DDDD
! + + - - # DSDS

! SSSS # WSW: play S (ctr > 0)
! DDDD # WDW: play D (ctr < 0)

! DSDS # WSW: play D (ctr < 0); WDW: play
S (ctr > 0)

Some Weaknesses

! There are some strategies for beating the
machine, but they are fairly complex as the
opponent needs to keep track of the state the
machine is in.

! For the first several rounds (~10 - 20), the
machine basically plays randomly as it tries
to learn the sequences.

13

Questions?

Predictive Text Entry for Traditional
Keyboards

• Reduce number of keystrokes required for
natural language text entry.

• Focus on new application of existing
methods, rather than exploring new
methods.

Inspiration

• PTE for small devices is an active area of
research.

• Specialized PTE applications for desktop
machines exist in code editors,
accessibility aids, & assisted manual
translation app.

• PTE not widely used for keyboard-based
NL text entry.

Goal

IME-like tool that
works with

other apps.

Bigram Model: First-order Markov
Assumption

P(w1,w2,…,wi) = P(w1)P(w2|w1)…P(wi|wi-1)

P(wi|w1,w2,…,wi-1) = P(wi|wi-1)

argmaxw P(w|w1,w2,…,wi-1) =

argmaxw c(wi-1,w)

Smoothing

Pest(wi|wi-1) = λPBG(wi|wi-1) + (1- λ)PUG(wi)

Important to separate training & evaluation
data (otherwise optimal λ = 1).

14

Mind Reader:
An Improvement of the
Original SEER Design

Michael D. Helander

SEER

• A SEquence Extrapolating Robot, D. Hagelbarger

• Built in hardware

• Plays a simple matching game with an opponent

• Machine wins if its guess matches the opponent
and the player wins if the guesses are different

• Won approximately 53.27% of 9795 trials against
visitors and employees at Bell Labs in the 1950’s

The Original SEER Strategy

• Assumes the play of people will not be random

• Tracks the state of play with the following info

– whether it won or lost the last play

– whether it played the same or different the last time

– whether it won or lost the play before last

• For each of the eight states it keeps track of

– should the machine play the same or different?

– has the machine been winning in this state?

The SEER Rules of Play

• The machine looks at the information for its state

• A counter [-3, +3] tracks whether the machine
should play the same (+) or different (-)

• If the machine has lost the last two in this state it
plays randomly with equal likelihood

• If the machine has won once in the last two it has
3:1 odds it will follow the counter’s instructions

• If the machine has won the last two in this state it
follows the recommendations of the counter

My Version: Mind Reader

• Utilizes an order 4 decision tree of depth 5

• A collection of predictors sharing the same
decision tree with each looking at a different depth
(i.e. a varying amount of player history)

• A simplistic prediction algorithm within each
predictor that assumes player will repeat their play

• A selector for choosing the ultimate prediction for
the program from among the options produced by
the predictors

Mind Reader Operation

Player Won
Same or Diff

True
Same

True
Diff

False
Diff

False
Same

WinSam
e

W
in

D
iff

LossDiff

LossSam
e

15

An Analysis of the Initial Version

• Level 1 predictor performs poorly (the final value
for the accuracy score was typically around -10)

• Additional selector algorithms should be looked at
beyond the original implementation

– S0: Majority, breaking ties with random play (original)

– S1: Majority, breaking ties with highest accuracy score

– S2: Predictor utilizing the most history

– S3: Predictor with the highest accuracy score

Will vs. the Mind Reader
Player Name: Will
Selector used: 0
Number of Plays: 100
+++
Machine Wins: 88 Win % = 0.88
Player Wins: 12 Win % = 0.12
Predicted Plays: 93
Predicted Wins: 82 Win % = 0.88172

• Will’s guesses were in a pattern of heads and tails

– 1 heads, 2 tails, 3 heads, 4 tails, 5 heads, etc.

• This high score shows the program’s ability to
fairly quickly recognize patterns and adjust its
picks accordingly

Remaining Work
• Look at adding one more layer above the selectors

and keep track of accuracy measures for the
individual selector algorithms

• See how well the machine plays when using the
selector with the highest accuracy score instead of
having to pick one that is used throughout the run

• Look at tailoring the accuracy scores so that only
recent history is taken into account and not the
overall accuracy for the entire game

• Modify predictor algorithm to take into account
current trends for that level of play

Questions?

SEER: SEquence Extrapolating Robot

Chan Im
CSE 592 - Artificial Intelligence
Winter 2003

Overview of SEER
! A machine developed by David W.

Hagelbarger at Bell Labs in 1955.
! Plays a game called “Matching Pennies”.

$ Player B tries to match the coin flip of
Player A

$ 50% probability of success in random play

! Designed to show that machines can
adjust to changing environments.
$ No need to redesign the system
$ Applications in telephony - i.e. call routing

16

SEER’s Game Strategy
! Human behavior in “Matching Pennies”

are not totally random.
$ Emotion, cheating, or a “system” affects

a person’s game playing behavior.

! Determine a pattern in the sequence of
the human opponent’s play.
$ Data model is unknown

! 4 Simple periodic sequences
$ ++++, ----, +-+-+-, ++--++--++

! Challenge: Match > 50%
! 9795 plays: won 5218, lost 4577 => 53%

SEER Implementation
! Initially, machine plays randomly until a

pattern is found.
! Coin matching based on 3 “state of play”

$ Did it win or lose last play?
$ Did it win or lose the play before last?
$ Did it play same or different?

! Leads to 8 possible states with 2 data:
a) Play same or different to win?
b) Has it been winning in this state?

SEER Implementation
! Take action based on data at each state.
! If it has lost the last 2 times in this state:

$ Play randomly

! If won one and lost one in this state:
$ Play same with 3-to-1 odds on same side

! If won last 2 times in this state:
$ Always play same side in state data (a)

How To Beat SEER
! Figure out what the machine is going to

play.
$ Need to keep track of the memory

content for each state during each game.

! Change play pattern after establishing a
pattern recognized by the machine.
$ Difficult to do for large number of games.

AI Techniques
! SEER uses probability theory based on

past data to determine what present
actions to take.
$ Otherwise, it plays randomly.

! Can apply simple decision network
$ Transition from state to state based on

action from prior state.
$ Other states have low utility

TD-Gammon in C#
Richard Katz & Lin Huang

17

Neural Net
Output: Predicted Probability of Winning

I I

S

I I I I I I I I I I I

S S S S S S S

S

198 Encoded Input Units
• 24 Locations with 8 Units Each:

- 1 or more White (0 | 1) - 1 or more Blue (0 | 1)

- 2 or more White (0 | 1) - 2 or more Blue (0 | 1)

- 3 or more White (0 | 1) - 3 or more Blue (0 | 1)

- 4 or more White (n-3)/2 - 4 or more Blue (n-3)/2

• Bar Locations: - White (n/2) - Blue (n/2)

• Pieces Off Board: - White (n/15) - Blue (n/15)

• Turn to Move: - White (0 | 1) - Blue (0 | 1)

Neural Net Training Rules

• Temporal difference weight change formula:

w
t+1

- w
t
= α (Y

t+1
- Y

t
) Σ

t
λt-k ∇

w
Y

kk=1

• Gradient for hidden-to-output weights:

Yo (1 - Yo) Yh

• Gradient for input-to-hidden weights:

Yo (1 - Yo) wh,o Yh (1 - Yh) xi

• Eligibility traces of decaying contributions:
e

t
= λ e

t-1
+ ∇

w
Y

t

Results of TD-Learning

RANDOM
1K

NEAR
FAR

RISK
10K

100K

RANDOM

1K

NEAR

FAR

RISK

10K
100K

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

TD-Gammon in C#
Experiments: 1M Training; Unit Encoding; α λ; Hidden→80

Crossword Puzzle Generation

By
Alia Nabawy

18

The Problem

% Given:
– Dictionary of words.
– Crossword puzzle with a certain layout.

% Find
– Layout of words from dictionary to fit into the puzzle.

How to solve problem ?

% For puzzles greater than 4x4 brute-force depth
first search is impractical.

% Need to use some heuristics

Common Heuristics used

% Cheapest-first
% Connectivity

% Lookahead

% Intelligent instantiation

Cheapest-first

% Fill in words that have the smallest candidate
lists.

% These words are typically:
– Longer words.
– Partially-filled words.

% Justification: Solve hard words first, more likely
later words will have solutions at all.

Connectivity

% Used for reducing backtracking.
% Backtrack NOT to previously completed word

but to the oldest word intersecting current
failing word.

% No need to waste steps regenerating words
that are not the cause of problem.

Connectivity

Example:

sllac

mrala

elbat

Order of filling:

(1) table (2) alarm (3) calls (4) lr…

Don’t backtrack to calls but to table
and regenerate all words again.

19

Intelligent Instantiation

% Why just pick the first candidate word ?
% This technique treats the first k candidate words fairly.
% For each candidate wi compute number of possibilities

for each intersecting word and then compute product of
all these values.

% Choose wi that maximizes this value.
% Idea is to choose a candidate word that maximizes the

number of possibilities for later intersecting words.

Lookahead

% Simple check: Before a word is filled, candidate
lists for all intersecting words are checked.

% If any of the lists are empty discard the word
and look for another candidate.

% Can be used in conjunction with any of the
other heuristics.

Scheduler
Arwen Pond CSE592

FASTPASS®

Can have only
one pass at a
time
Must physically
go to the ride to
get that pass

Scheduler
Schedule as many
rides as you want
Go to any ride to
schedule

Annealing Options

Starting Temperature

Temperature Dampening
Number of times without Changes

20

128Total Walking Time255 minutesTotal Time:

312:15pm
Roger Rabbit's Car
Toon Spin

28811:30amAutopia

18311:00amSpace Mountain

4410:45amStar Tours

18510:15amIndiana Jones

6169:45am
Pirates of the
Caribbean

689:30amHaunted Mansion

699:00amSplash Mountain

1648:30amBig Thunder Mountain

2608:00amAutopia

Walking TimeRide DurationTimeRide

Schedule

Sample Schedule
Computation Time vs Accuracy

0

100

200

300

400

500

600

360 380 400 420 440 460 480 500

Average Schedule Time (in Minutes)

C
o

m
pu

ta
ti

on
 T

im
e

(in

S
ec

on
d

s) Temperature = 0

Temperature = 20

Temperature = 40

Diamond = 10 times without change
Circle = 30 times without change
Triangle = 70 times without change
Square = 100 times without change

function ComputeSchedule()
{

do
{

temperature = temperature/nDampenFactor;
ChangeNode();

}while (nTimesWithoutChange < nGoalTimesWithoutChange+1);
}
function ChangeNode()
{

//Choose an invalid node at random and change either the order
<Choose 2 random different numbers between 0 and the number of rides-1>
//switch the order
<Switch nodes Rides[n] and Rides[n2]>
//Compare the total time of the schedule to the previous total time
if (nNewCurrent > nCurrentTotalTime)
{

//If this order isn't better then there is a percent
//chance that we will keep it anyway. This chance is based
//on the current temperature.
var chance=(99*Math.random());
if (chance < temperature)
{

//We keep the current config even though it is worse and reset
//the number of times without change
nTimesWithoutChange=0;

}
else
{

//We go back to the better config
<Switch the order of Ride[n] and ride[n2] back to original>
nTimesWithoutChange++;

}
}
else
{

//Keep current configuration and reset the number of times without change
nTimesWithoutChange = 0;

}
}

Future Enhancements

• Bayesian net that figures the probability
of a person showing up on time given
variables such as current temperature,
number of people in the park, number of
people from out of state etc.

• Add location information so you can find
other people in your party.

• Be able to change the schedule
throughout the day

Applying Naïve Bayes to
Classifying Junk Email

CSE 592 Final Project
Alfred L. Schumer

Winter 2003

Overview
! Implemented as Win32 command line utility that

classifies email messages saved to disk as text files.

! Examines factors using a local search algorithm that
yield the best classification results.

! Implements a method by which false classifications
are reduced via dynamic pruning.

! Combines local search and pruning into global search
function that seeks optimum classification score.

21

General Approach
! Analyze two corpuses of valid and junk emails and

build a Bayesian network of junk word probabilities.

! Classify two other known corpuses of randomly
selected sample test files and give an overall score.

! Compute optimum parameters yielding the highest
success rate in classifying valid and junk emails.

! Identify and remove words in messages falsely
classified having greatest contribution to errors.

Implementation
! Classification, searching and pruning can be

combined in any order, any number of times.

! Supports other features such as condensing and
parsing that are typically run once.

! Other utilities written that renumber files for ease of
identification and randomly swap files for sampling.

! Results sent to the standard output and captured via
command line redirection.

Email Corpuses
! Required corpus of junk and valid emails, from which

a subset were extracted as test samples.

! Compiled ~3000 junk and ~1800 valid messages,
and randomly extracted 200 each for test samples.

! Each class placed in unique subdirectory, hard-coded
into program comprising working directories.

! Directories named Junk Corpus, Valid Corpus, Junk
Samples and Valid Samples.

Command Usage
Program invoked via the following command line
arguments:

SpamBayes [+|-condense] [+|-parse] [+|-classify]
[+|-search] [+|-prune] [+|-global]

Where plus (+) or minus (-) sign before function
indicates verbose (+) or terse (-) program output.

Tokenization & Hashing
! Parsed files are tokenized using starting, word and

ending tokens resulting in alpha-numeric words
possibly hyphenated and possessive.

! All words over two chars parsed though not used
depending on the minimum word length specified.

! Did not have time to investigate word stemming.

! Word tokens are hashed according to Horner�s Rule.

! Floating point closed hash tables prime in size.

Condensing
! Corpus and sample files have the possibility of being

parsed and classified frequently.

! Condense added to optimize file contents.

! Reduces files in working directories to sorted, unique
word lists.

! Only needs to be run the first time or when files are
added to the working directories.

! Significantly improves processing time of commands.

22

Parsing
! Tokenizes corpus files, counts word frequencies, and

calculates junk probability.

! Words that appear in one corpus but not other are
assigned probabilities of 1% or 99%.

! Otherwise, the probability is calculated as:
P = (Junk/nJunk)/((Junk/nJunk)+(Valid/nValid))

! Should be called before other functions each time the
corpuses change, or pruning is performed.

Classification
! Heuristic for measuring success is percentage of

messages falsely (or correctly) classified.

! Different weighted costs assigned to false positives
and false negatives.

! Score returned from Classify function that classifies
the sample files in the working directories.

! Classification depends on minimum word size, word
count, analysis threshold and junk threshold.

Classification State Space
Classification Search

88.5%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Variable Combinations

Sc
or

e

Pruning
! Recursively classifies junk and valid samples tracking

misclassified files.

! Attempts to remove words contributing most to
misclassifications.

! Groups common, duplicated words from misclassified
files and rank orders them by probabilities.

! Removing the most significant word from statistical
base, and then recursively prunes again.

Global Search
! Highest-level command seeks to iteratively search

and prune data until global maximum is found.

! Code trivial building on Prune and Search functions:

while (true)
{

Prune (�)
Search (�);
if (New Score > Best Score)

Best Score = New Score;
else break;

}

Test Results

Test Type Classification Score Time (seconds)

Search Only 88.5% 192.90

Prune Only 88.8% 34.255

Search & Prune 92.5% 226.691

Global Search 93.0% 476.514

23

Conclusions
! Most work being done today has to do with inputs as

discrete words and applying Bayesian principles.

! Project shows that searching and pruning (especially
as Global Search) significantly improves accuracy of
applying Naïve Bayes theory.

! Results showed improvement in classification scores
on the order of 83% to 93%.

! Corpuses work best when they are from the same
email user.

TerrariumTerrarium
ProjectProject

Winfred Wong
CSE 592 Winter 2003

.NET Terrarium Project.NET Terrarium Project

A multiplayer ecosystem game developed using the .NET A multiplayer ecosystem game developed using the .NET
FrameworkFramework

Creatures in the Terrarium ecosystem compete for Creatures in the Terrarium ecosystem compete for
resourcesresources

Types of Creatures:Types of Creatures:
!! Plants Plants –– feed on Sun light ONLYfeed on Sun light ONLY
!! Herbivores Herbivores –– feed on Plants ONLYfeed on Plants ONLY
!! Carnivores Carnivores �� feed on Herbivores ONLYfeed on Herbivores ONLY

Creatures can reproduce, die from old age/disease, get killed inCreatures can reproduce, die from old age/disease, get killed in
battles.battles.

Terrarium official homepage:Terrarium official homepage:
!! http://http://www.gotdotnet.comwww.gotdotnet.com/terrarium//terrarium/

Actions, States and EventsActions, States and Events

Actions on each turnActions on each turn
!! Move, Eat, Attack, Defend, Move, Eat, Attack, Defend,

Reproduce, Reproduce, nopnop

Creature StatesCreature States
!! Boolean valuesBoolean values

IsAlive, IsMoving, IsEating, …IsAlive, IsMoving, IsEating, …
!! Numeric Numeric valuesvalues

PercentEnergy, PercentInjured, PercentEnergy, PercentInjured,
……

EventsEvents
!! BornEvent, IdleEvent, AttackEvent, BornEvent, IdleEvent, AttackEvent, ……

Problem DefinitionProblem Definition

Study the effects of states and actions on a herbivore’s Study the effects of states and actions on a herbivore’s
survival in the ecosystem survival in the ecosystem –– a classification problema classification problem

ScopeScope
!! Closed environment Closed environment –– no connection to other networkno connection to other network
!! Fixed sets of species Fixed sets of species –– two plant species, one herbivore two plant species, one herbivore

specie, one carnivore speciespecie, one carnivore specie
!! No communication among creaturesNo communication among creatures

StepsSteps
!! Use prototype herbivore to collect dataUse prototype herbivore to collect data
!! Use WEKA J48 classifier to generate decision tree based on Use WEKA J48 classifier to generate decision tree based on

the datathe data
!! Deduce interesting rules from decision treeDeduce interesting rules from decision tree

Data CollectionData Collection

AttributesAttributes
!! Hungry : {‘yes’,’no’}Hungry : {‘yes’,’no’}

!! HasPlant : {‘yes’,’no’}HasPlant : {‘yes’,’no’}

!! HasThreat : {‘yes’,’no’}HasThreat : {‘yes’,’no’}

!! Eat : {‘yes’,’no’}Eat : {‘yes’,’no’}

!! Move : {‘yes’, ‘no’}Move : {‘yes’, ‘no’}

!! Attack : {‘yes’, ‘no’}Attack : {‘yes’, ‘no’}

!! Defend : {‘yes’, ‘no’}Defend : {‘yes’, ‘no’}

ClassClass
!! Condition of the herbivore in next turn : {‘good’,’bad’}Condition of the herbivore in next turn : {‘good’,’bad’}

!! Use a combination of health and threat levelUse a combination of health and threat level
PercentEnergy > 30% and ~HasThreatPercentEnergy > 30% and ~HasThreat

BadBadnonononononononoyesyesyesyesyesyes

BadBadyesyesyesyesnonononoyesyesnonoyesyes

GoodGoodyesyesnonoyesyesnonoyesyesnononono

BadBadyesyesnonononononoyesyesyesyesnono

GoodGoodnonononononononononoyesyesnono

BadBadnonononoyesyesnonononononoyesyes

ClassClassDefendDefendAttackAttackMoveMoveEatEatHasThreatHasThreatHasPlantHasPlantHungryHungry

24

Decision TreeDecision Tree

Hungry = yesHungry = yes
| Eat = yes: good (6.0)| Eat = yes: good (6.0)
| Eat = no| Eat = no
| | | | HasThreatHasThreat = yes: bad (55.0/7.0)= yes: bad (55.0/7.0)
| | | | HasThreatHasThreat = no= no
| | | | | | HasPlantHasPlant = yes: good (9.0)= yes: good (9.0)
| | | | | | HasPlantHasPlant = no: bad (23.0/6.0)= no: bad (23.0/6.0)
Hungry = noHungry = no
| | HasThreatHasThreat = yes= yes
| | Move = yes: good (23.0/3.0)| | Move = yes: good (23.0/3.0)
| | Move = no: bad (11.0/1.0)| | Move = no: bad (11.0/1.0)
| | HasThreatHasThreat = no: good (49.0)= no: good (49.0)

AnalysisAnalysis

Interesting observations:Interesting observations:
!! Attack and Defend are not factorsAttack and Defend are not factors
!! ~Hungry ^ HasThreat ^ ~Hungry ^ HasThreat ^ MoveMove => => GoodGood
!! ~Hungry ^ HasThreat ^ ~Hungry ^ HasThreat ^ ~Move~Move => => BadBad

Is running away the only way to survive when a Is running away the only way to survive when a
herbivore meets a carnivore?herbivore meets a carnivore?
!! In most case, yes. In most case, yes.
!! However, statistics showed a small number of However, statistics showed a small number of

carnivores were killed by herbivores.carnivores were killed by herbivores.

Analysis (cont’d)Analysis (cont’d) Analysis (cont’d)Analysis (cont’d)

Herbivores can defend carnivores in some cases, why doesn’t it sHerbivores can defend carnivores in some cases, why doesn’t it show up how up
in the decision tree?in the decision tree?

Missing attributesMissing attributes
!! Need more data to show this factNeed more data to show this fact
!! Add Healthy : {‘yes’,’no’} Add Healthy : {‘yes’,’no’} ---- PercentInjured < 50%PercentInjured < 50%
!! Add AttackerHealthy : {‘yes’,’no’} Add AttackerHealthy : {‘yes’,’no’} ---- attacker.PercentInjured < 50%attacker.PercentInjured < 50%

YesYes

YesYes

YesYes

NoNo

YesYes

YesYes

HealthyHealthy

YesYes

NoNo

NoNo

YesYes

??

??

AttackerAttacker
HealthyHealthy

BadBadnonononononononoyesyesyesyesyesyes

GoodGoodyesyesyesyesnonononoyesyesnonoyesyes

BadBadyesyesyesyesNoNononoyesyesnononono

GoodGoodnonoyesyesYesYesnonoyesyesyesyesnono

GoodGoodnonononononononononoyesyesnono

BadBadnonononoyesyesnonononononoyesyes

ClassClassDefendDefendAttackAttackMoveMoveEatEatHasThreatHasThreatHasPlantHasPlantHungryHungry

Decision Tree IIDecision Tree II

HasThreat = yesHasThreat = yes
| AttackerHealthy = yes: bad (68.67/14.06)| AttackerHealthy = yes: bad (68.67/14.06)
| AttackerHealthy = no| AttackerHealthy = no
| | Attack = yes: good (20.43/7.43)| | Attack = yes: good (20.43/7.43)
| | Attack = no| | Attack = no
| | | Move = yes: good (12.31/5.37)| | | Move = yes: good (12.31/5.37)
| | | Move = no: bad (5.58)| | | Move = no: bad (5.58)
HasThreat = noHasThreat = no
| Healthy = yes: good (73.0/2.0)| Healthy = yes: good (73.0/2.0)
| Healthy = no| Healthy = no
| | Hungry = yes: bad (8.0/1.0)| | Hungry = yes: bad (8.0/1.0)
| | Hungry = no: good (10.0/2.0)| | Hungry = no: good (10.0/2.0)

DemoDemo

25

A Study of Iterated Prisoner�s
Dilemma

CSE 592 Class Project.
By Man Xiong

A Formal Model for Cooperation in Game Theory

! T > R > P > S
! 2 R > T + S

Cooperate Defect

Cooperate R = 3
R = 3

S = 0
T = 5

Defect T = 5
S = 0

P = 1
P = 1

Strategies in Different Game scenarios

! Iterated:
! Tit-For-Tat

! With chaos:
! Tit-For-2-Tat
! Generous Tit-For-Tat (p):

p: cooperates
1-p: tit for tat

! Pavlov (n):
P <- 1/n
p += 1/n if the other agent cooperates
P: cooperates; 1-p: defects

Implementation and Simulation

! Implemented in C++ for fast simulation
! Iteration
! Tournament: two agents per strategy
! Chaos
! Evolution

Self-tuning GTFT and Pavlov

! At the very beginning, the parameter for each agent
obey normal distribution

! For every generation, the value of the parameter of
most successful agents is used as the median value
for distribution

Balanced 3SAT ProblemsBalanced 3SAT Problems and and
Instance GeneratorInstance Generator

CSE592 Artificial Intelligence

University of Washington

Dajun Xu

26

IntroductionIntroduction

% Hard satisfiable 3SAT problems can be
used to benchmark and fine tune new
algorithms.

% How to generate hard 3SAT formula has
always been a challenging topic.

% Problems become hard at critical point
% Claimed that problems even harder when

the “signs” are balanced for each variable

Project GoalsProject Goals

% Create a generator for this type of
3SAT formula.

% Study the phase transition behavior
and look for the critical point if there
is one.

% Find out if this type of problems is
really hard in comparison to the
regular random 3SAT problems

Traditional ApproachTraditional Approach

% Generate a random truth assignment
T

% Construct a formula with N variables
and M random clauses

% Throw away any clause that violates
T

% For 3SAT hard problems, set M =
4.25N

Traditional Approach cont.Traditional Approach cont.

% In principle generate all possible
satisfiable formulas with a clause-to-
variable ratio of 4.25 that have T among
their solution

% Somewhat surprising result is that the
sampling of these formulas is far from
uniform, biased towards formulas with
many assignments, clustered around T
and easy for Walksat

Seeding ApproachSeeding Approach

% A “Forced” approach, namely start with a
random truth assignment

% Use “equivalent literals” as seeds to plant
in clauses / sentences
For example,
(A, -B, -C) is the equivalent literals to an assignment (1, -1, -1)

% Generator controls randomness of
variables and balance of signs

% Easy implementation
% Efficient enough to construct some hard

problems in comparison to random 3SAT

AssumptionsAssumptions

% Each variable must appear at least once in
a sentence, but can be either positive or
negative or both

% No same variable, regardless of sign, in
each clause
For example,

(A, -A, B) or (A, A, B) are considered to have same variable

% Each clause has exactly three literals, this
just for easy implementation.

27

Assumptions, cont.Assumptions, cont.

% No two clauses have exact same
constructs, regardless the appearing
order
For example,

(A, B, C) and (C, B, A) are considered to have the exact same constructs

% The number of clauses M is not less than
the number of variables N
We are only interested in generating hard problems. All satisfiable

problems are easy for Walksat when M is small.

Generator DetailsGenerator Details

% Generate a random truth assignment
of size N.

% Generate the equivalent literals of
size N from the truth assignment as
the seeding literals.

% Randomly assign each of equivalent
literals exactly once to N of M
clauses.

Generator Details, cont.Generator Details, cont.

% Fill each of rest clauses with one
randomly selected equivalent literals
Since each clause has at least one equivalent literal. The sentence
can be guaranteed satisfiable.

% From now on, keep track of the
number of positive and negative sign
for each variable including those
from those created in previous steps.

Generator Details, cont.Generator Details, cont.

% If any variable is not balanced, repeatedly
select the variable with negated sign and
put it to a randomly selected clause, until
this variable balanced.

% If all variables are balanced, randomly
select one from 2*N literals, regardless
equivalent to truth assignment or not, to a
randomly selected clause such that
- No same variable
- Less than 3 literals
- No same clauses exist in the sentence

Searching for Critical PointSearching for Critical Point

% Basically a binary search
% Look for point (number of clause) at which

Walksat has the max runtime
% Measure runtime by the median number of

flips
% Sample 100 points in search range each

time
% 15 Sentences for each point
% 10 runs Walksat for each sentence due to

stochastic nature of Walksat

Comparison of HardnessComparison of Hardness

% Generate 1000 sentences for the
critical points found by the balanced
3SAT generator

% Load the benchmark sentences
downloaded from www.satlib.org

% Run both against Walksat and
compare results.

28

Results: 50 VariablesResults: 50 Variables

% Balanced 3SAT
% 50 variables
% 46200 sentences
% Critical point found

at 184
% Clause-Variable

ratio = 3.68

Results: 100 VariablesResults: 100 Variables

% Balanced 3SAT
% 100 Variables
% 64800 sentences
% Critical point found

at 355
% Clause-Variable

ratio = 3.55

Results: Balanced Results: Balanced vsvs RandomRandom

Clause-Var
Ratio

Critical PointClause-Var
Ratio

Critical Point

4.278543.38676200
4.286423.40510150
4.295363.43429125
4.304303.55355100
4.323243.6727575
4.362183.6818450
4.481124.1610425

RandomBalanced

Results: Hardness ComparisonResults: Hardness Comparison

3656.3778031.563100

653.9171445.095 50

Random
Avg Flips

Balanced
Avg Flips

ReferencesReferences

% Generating Satisfiable Problem Instances -
Achlioptas, Kautz (2000)

% Balance and Filtering in Structured Satisfiable
Problems - Kautz, Ruan, Achlioptas, et al(2001)

% Experimental Results on the Crossover point in
Random 3SAT - Crawford (1996)

% Using CSP Look-Back Techniques to Solve
Exceptionally Hard SAT Instance – Bayardo,
Schrag (1996)

RoboCodeRoboCode

Wesley Yang

Olivia Yang

29

Introduction of Introduction of RoboCodeRoboCode

% What it is?
It is a programming game which lets
you create virtual "Robots," real Java
objects that battle against other
robots.

% How to play?
– 2D movement and fire
– Rules

How to predicate movement?How to predicate movement?

% 3 possible methods
– Move straight
– Acceleration
– Curve

% Using Bayesian learning

When to fire?When to fire?
% Factors to be considered

– Correctness of predication
– Bullet hit/missing ratio
– Distance to object
– Energy status of all opponents

DemoDemo

