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Walk-SAT with multi-valued 
variables 
CSE592

Said Abou-Hallawa

Outline 

! A quick review of Satisfiability-Problem 
and Walk-SAT algorithm

! Multi-valued variables problem

! Problem description language
! Problem Data structures

! Measurements

Satisfiability-Problem 

! Input: A set of propositional clauses given in 
conjunctive normal form (CNF)

! Target: Find an assignment that satisfies all the 
clauses (if such an assignment exists)

! Local searches like Walk-Sat have been 
successfully used for finding satisfying 
assignments

! The crucial differences among the local search 
algorithms are how to choose a variable to be 
flipped and how to escape from local minima.

Walk-SAT Algorithm 
Procedure Walk-SAT(P)

for i ←←←← 1 to MAX-TRIES
T ←←←← a randomly generated truth assignment
for j ←←←← 1 to MAX-CHANGES

if T satisfies P then
return T

C ←←←← randomly selected clause from clauses that false in P

With probability p 
flip the value of randomly selected variable in C

else
flip the value of the variable that maximizes 
the number of stratified clauses

end for
end for
return "No satisfying assignment found"

Walk-Sat with multi-valued variables 

! The domain of Boolean variables is {TRUE, 
FALSE}

! With multi-valued variables the domains can 
have more than two values, for example for color 
variables their domain can be 
{RED, GREEN, BLUE}

! As a result, a clause can looks like the following
(V1==RED || V2==GREEN)

! This decreases the number of variables used in 
the problem but it might increase the number of 
terms per clause

Problem description language

! To state a problem easily and clearly a context 
free grammar is used.

! The types of the variables are defined with their 
domain.
type color = {RED, GREEN, BLUE};

! Then the variables of a domain are defined 
var V1,  V2,  V3, V4: color;

! A CNF expression is included representing the 
problem to be satisfied 
Graph = (V1!=RED||V2!=RED)&& …
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Graph Coloring with Boolean 
variables
problem Graph;

type BOOLEAN = {T, F};

var RV1,  RV2,  RV3, RV4: BOOLEAN;
var GV1,  GV2,  GV3, GV4: BOOLEAN;
var BV1,  BV2,  BV3, BV4: BOOLEAN;

begin
V1  = (RV1 == T || GV1 == T || BV1 == T);
V2  = (RV2 == T || GV2 == T || BV2 == T);
V3  = (RV3 == T || GV3 == T || BV3 == T);
V4  = (RV4 == T || GV4 == T || BV4 == T);

E12 = (RV1 == F || RV2 == F) && (GV1 == F || GV2 == F) && (BV1 == F || BV2 == F);
E23 = (RV2 == F || RV3 == F) && (GV2 == F || GV3 == F) && (BV2 == F || BV3 == F);
E13 = (RV1 == F || RV3 == F) && (GV1 == F || GV3 == F) && (BV1 == F || BV3 == F);
E14 = (RV1 == F || RV4 == F) && (GV1 == F || GV4 == F) && (BV1 == F || BV4 == F);
E34 = (RV3 == F || RV4 == F) && (GV3 == F || GV4 == F) && (BV3 == F || BV4 == F);

Graph = V1 && V2 && V3 && V4 && E12 && E23 && E13 && E14 && E34;
end;

Boolean variables versus multi-valued 
variables
! The number of Boolean variables is equal to the 

number of the multi-valued variables times the 
number of values in their domain

! All the Boolean variables that represent one 
multi-valued variable can be FALSE at any stage 
in Walk-SAT. For example RV1, GV1 and BV1in 
the previous graph coloring can all be FALSE.

! Two or more variables Boolean variables multi-
valued represent one multi-valued variable can 
be TRUE at any stage in Walk-Sat. For example 
RV1, GV1, BV1 in the previous graph coloring 
can all be TRUE.

Graph Coloring with multi-valued 
variables

problem Graph;

type color = {RED, GREEN, BLUE};

var V1,  V2,  V3, V4: color;

begin

E12 = (V1 != RED  || V2 != RED) && (V1 != GREEN || V2 != GREEN) && 

(V1 != BLUE || V2 != BLUE);

E23 = (V2 != RED  || V3 != RED) && (V2 != GREEN || V3 != GREEN) && 

(V2 != BLUE || V3 != BLUE);

E13 = (V1 != RED  || V3 != RED) && (V1 != GREEN || V3 != GREEN) && 

(V1 != BLUE || V3 != BLUE);

E14 = (V1 != RED  || V4 != RED) && (V1 != GREEN || V4 != GREEN) && 

(V1 != BLUE || V4 != BLUE);

E34 = (V3 != RED  || V4 != RED) && (V3 != GREEN || V4 != GREEN) && 

(V3 != BLUE || V4 != BLUE);

Graph = E12 && E23 && E13 && E14 && E34;

end;

Graph Coloring (Continue)

problem Graph;

type color = {RED, GREEN, BLUE};

var V1,  V2,  V3, V4: color;

begin

Graph = alldiff(V1, V2) && alldiff(V2, V3) && 

alldiff(V1, V3) && alldiff(V1, V4) && 

alldiff(V3, V4);

end;

Example – Quasi-group

problem Quasi;

type color = {RED, GREEN, BLUE, YELLOW, PINK};

var S11,  S12,  S13,  S14,  S15: color;
var S21,  S22,  S23,  S24,  S25: color;
var S31,  S32,  S33,  S34,  S35: color;
var S41,  S42,  S43,  S44,  S45: color;
var S51,  S52,  S53,  S54,  S55: color;

begin
Rows  = alldiff(S11,  S12,  S13,  S14,  S15) && alldiff(S21,  S22,  S23,  S24,  S25) && 

alldiff(S31,  S32,  S33,  S34,  S35) && alldiff(S41,  S42,  S43,  S44,  S45) && 
alldiff(S51,  S52,  S53,  S54,  S55);

Cols  = alldiff(S11,  S21,  S31,  S41,  S51) && alldiff(S12,  S22,  S32,  S42,  S52) && 
alldiff(S13,  S23,  S33,  S43,  S53) && alldiff(S14,  S24,  S34,  S44,  S54) && 
alldiff(S15,  S25,  S35,  S45,  S55);

Quasi = Rows && Cols;
end;

alldiff’s and Negative Terms

! For each pair of alldiff’s parameters, a clause is generated.
! Each clause has two negative terms for each possible value of their 

type.

alldiff(V1, V2) →→→→
(V1 != Red   || V2 != Red) && 
(V1 != Green || V2 != Green) && 
(V1 != Blue  || V2 != Blue)

! Negative terms are replaced by positive ones of the same literal but 
for the other possible values of type of the literal except the value in 
the negative term

V1 != Red →→→→ V1 == Green || V1 == Blue
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Problem Data Structure

Color

Green

V1

Types Table

Atoms Table

Literals Table

V1==Blue

Red

Blue

Terms TableTerms Indices TablesClauses Table

:

:

:

V1==Red

Green

Blue

V1==Blue

Measurements

! The examples I am using are Quasi-group and 
graph-coloring with large number of variables.

! All the local search strategies will be compared 
with Walk-Sat.

! Walk-SAT is really outperforming all the other 
local search algorithms with large scale 
problems

! The results are measured in terms of time and 
number of changes done to satisfy a chosen 
term.

Genetic Optimization of 
Factory Management

Applications of AI, winter 2003
PMP Program

Muhammad Arrabi

Intro to the Problem

• In a Boeing airplane-parts factory, each manager is 
assigned a set of parts.

• Each part is either manufactured from raw materials, 
assembled from other parts, or bought from internal or 
external vendors.

• The manager supervises the preparation of a part and 
manages the vendor relationship.

• Managing external vendors takes more time than internal 
vendors.

• Supervising related parts (e.g. same plane) saves time.
• Demand on different parts can vary.
• Goal: find best division of parts amongst managers to 

minimize the effort needed and maximize production.

Optimization of Human Activity

• Large solution space (~ 75000 parts, ~600 
vendors, ~100 managers).

• Many fuzzy parameters, should be open 
for modification (e.g. managing 
relationships depends on personality)

• Can’t use regular mathematical methods.
• Suitable for Stochastic Search Methods

• My choice: Genetic Algorithms

Using GA for this problem

• Start with a random population of lists, 
each assigns parts to managers.

• Use Genetic Algorithms to evolve 
generations of these lists.

• Let the Genetic Engine run until a 
satisfactory solution is found.

• Modify the restrictions and the fitness 
function, and then repeat the process.
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(optional) GA Engine tuning

• GA methods used for creating new populations:
– Copy the best from previous generation
– Cross the best to create new solutions.
– Mutate some of the best to create new ones.
– Shake, which is a small-scale mutation
– Random new solutions.

• After testing 30,000 values for the methods 
above, best percentages: Best 15%, Cross 10%, 
Mutate 5%, Shake 60%, Random 10%.

(optional) Machine Errors

• Error: After giving the genetic algorithm a bunch 
of penalties on the cost of assigning additional 
vendors, it came back with a best solution that 
assigns all vendors to very few manager (~4)!

• Reason: because assigning all vendors to few 
managers minimize the number of penalties 
overall.

• Solution: Set a maximum of vendors that can 
be assigned to one manager.

Evaluation of Searches for 
Online FPGA Reconfiguration

Doug Beal

CSE 592 Applications of Artificial 
Intelligence

Motivation – VLSI Limits

• Future VLSI Trends
– CMOS hits scaling limits

• Nano-scale Alternatives
– Chemical self assembly
– Nano-imprinting

• Implications
– Only regular structures
– Stochastic process – high error rate

Problems with Nano-scale

• Only regular nano-scale circuits possible
– Look like FPGAs (Field Programmable Gate Arrays)!

• Differences
– Many more computational resources

– High error rate
• Lower MTBF?

• Solution
– Reconfigure around failures

– How?

How to Reconfigure

• Sounds like a search
– Find new location for computation

• Latency restrictions on signals

– Reroute signals
• Bi-directional breadth-first hardware assisted search

– Turn off used wires, send out signals

• Implement search model based on FPGA
– Each state is a configuration

• Goal is configuration that meets all latency restrictions 
• Heuristic to estimate quality of configuration

– After moving to new state, run hardware signal routing
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Evaluation

Cost/Benefit Analysis using 
Bayesian Networks

David Beeman
CSE 592 Artificial Intelligence

Winter 2003

Project Goals

• Learn more about Bayesian Networks
• Use Inference Diagrams to weigh costs & 

benefits of stochastic processes

Approach

• Choose a game as a sample model
• Use JavaBayes to construct an Inference 

Diagram
• Validate the game’s cost structure or 

determine the balanced structure
• Infer optimal benefit using existing cost 

structure

Game Description

M WS BS S T W I A Ld $ # / $1000 p

Human 0.3165
Warrior 4 3 3 3 3 1 3 1 7 5 200 0.7730
Champion 4 4 4 4 3 1 4 2 7 30 33 0.1288
Hero 4 5 5 4 4 2 5 3 8 65 15 0.0595
Lord 4 6 6 4 4 3 6 4 9 100 10 0.0387

Elf 0.1978
Warrior 5 4 4 3 3 1 6 1 8 8 125 0.7730
Champion 5 5 5 4 3 1 7 2 8 48 21 0.1288
Hero 5 6 6 4 4 2 8 3 9 104 10 0.0595
Lord 5 7 7 4 4 3 9 4 10 160 6 0.0387

Dwarf 0.1978
Warrior 3 4 3 3 4 1 2 1 9 8 125 0.7730
Champion 3 5 4 4 4 1 3 2 9 48 21 0.1288
Hero 3 6 5 4 5 2 4 3 10 104 10 0.0595
Lord 3 7 6 4 5 3 5 4 10 160 6 0.0387

Orc 0.2878
Warrior 4 3 3 3 4 1 2 1 7 5.5 182 0.7734
Champion 4 4 4 4 4 1 3 2 7 33 30 0.1289
Hero 4 5 5 4 5 2 4 3 8 72 14 0.0591
Lord 4 6 6 4 5 3 5 4 9 110 9 0.0387
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Game Mechanics
Roll to Hit p(Hit)

Attacker's W S 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
1 4 4 5 5 5 5 5 5 5 5 0.50 0.50 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
2 3 4 4 4 5 5 5 5 5 5 0.67 0.50 0.50 0.50 0.33 0.33 0.33 0.33 0.33 0.33
3 3 3 4 4 4 4 5 5 5 5 0.67 0.67 0.50 0.50 0.50 0.50 0.33 0.33 0.33 0.33
4 3 3 3 4 4 4 4 4 5 5 0.67 0.67 0.67 0.50 0.50 0.50 0.50 0.50 0.33 0.33
5 3 3 3 3 4 4 4 4 4 4 0.67 0.67 0.67 0.67 0.50 0.50 0.50 0.50 0.50 0.50
6 3 3 3 3 3 4 4 4 4 4 0.67 0.67 0.67 0.67 0.67 0.50 0.50 0.50 0.50 0.50
7 3 3 3 3 3 3 4 4 4 4 0.67 0.67 0.67 0.67 0.67 0.67 0.50 0.50 0.50 0.50
8 3 3 3 3 3 3 3 4 4 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.50 0.50 0.50
9 3 3 3 3 3 3 3 3 4 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.50 0.50

10 3 3 3 3 3 3 3 3 3 4 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.50

Roll to Wound p(W ound)

Attacker's S 1 2 3 4 5 6 7 8 9 10 Save Mod. 1 2 3 4 5 6 7 8 9 10
1 4 5 6 6 7 7 7 7 7 7 0 0.50 0.33 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.00
2 3 4 5 6 6 7 7 7 7 7 0 0.67 0.50 0.33 0.17 0.17 0.00 0.00 0.00 0.00 0.00
3 2 3 4 5 6 6 7 7 7 7 0 0.83 0.67 0.50 0.33 0.17 0.17 0.00 0.00 0.00 0.00
4 2 2 3 4 5 6 6 7 7 7 -1 0.83 0.83 0.67 0.50 0.33 0.17 0.17 0.00 0.00 0.00
5 2 2 2 3 4 5 6 6 7 7 -2 0.83 0.83 0.83 0.67 0.50 0.33 0.17 0.17 0.00 0.00
6 2 2 2 2 3 4 5 6 6 7 -3 0.83 0.83 0.83 0.83 0.67 0.50 0.33 0.17 0.17 0.00
7 2 2 2 2 2 3 4 5 6 6 -4 0.83 0.83 0.83 0.83 0.83 0.67 0.50 0.33 0.17 0.17
8 2 2 2 2 2 2 3 4 5 6 -5 0.83 0.83 0.83 0.83 0.83 0.83 0.67 0.50 0.33 0.17
9 2 2 2 2 2 2 2 3 4 5 -6 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.67 0.50 0.33

10 2 2 2 2 2 2 2 2 3 4 -7 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.67 0.50

Roll to Save p(Save)
No Shield Shield Mounted Mount & Shield No Shield Shield Mounted Mount & Shield

No Armor 7 6 6 5 0.00 0.17 0.17 0.33
Light Armor 6 5 5 4 0.17 0.33 0.33 0.50
Heavy Armor 5 4 4 3 0.33 0.50 0.50 0.67

Defender's  WS Defender's W S

Defender's T Defender's  T

Initial Network

Status/Lessons Learned

• Make sure all dependencies are modeled
• Minimize number of dependencies per 

node by adding additional nodes
• Automate JavaBayes input generation

• Easy to infer optimal benefit
• Still trying to validate Cost Structure

Naïve Bayesian E-Mail 
Classification

Lars Bergstrom
3/6/2003

What’s the problem?

• Spam
– n. Unsolicited e-mail, often of a commercial nature, 

sent indiscriminately to multiple mailing lists, 
individuals, or newsgroups; junk e-mail.
Source: The American Heritage® Dictionary of the English Language, Fourth 
Edition. Copyright © 2000 by Houghton Mifflin Company. Published by Houghton 
Mifflin Company. All rights reserved.

– Any email you get but didn’t want

• There’s too much of it!
– Average users get a bit
– Top-level domain owners and highly visible people 

get a lot more

What can we do about it?

• You can’t really ‘unsubscribe’ or ‘opt-out’
– Added to lists faster than you can remove

– They sometimes ignore your request

– They sometimes add you to more lists if you 
reply!

• Client-side options
– Manual filtering

– Automatic filtering
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Automatic Filtering Approach

• Use something to remove spam from 
inbox

• Errors when filtering
– Treating spam as inbox

• Sound-alike mails with new words
• Not too bad

– Treating inbox as spam
• Friends forward a silly spam to you
• You get a mail that generally looks spam-like 
• Very, very bad!

Automatic Filtering Manual-Style

• Write a whole bunch of rules
– Only capture patterns you notice

– Take time to author, often more ‘effective’ at 
removing mail than you want

• Feels more efficient, but still takes a lot of 
time!

Real Automatic Filtering

• Smarter options abound
– Let some company do it for you 

• Hint: they don’t do very well right now or this 
presentation wouldn’t be necessary!

• Learning approaches
– Serious text classification algorithms

– Simple Naïve Bayesian approach
• Many have subtle ‘tweaks’

Naïve Bayes

• What’s the theory? 
– This is for those who slept through that lecture…

• First, learn a bunch of data from some buckets
– Probability(word) = (word count + 1) / 

(vocabulary + total corpus word count)

• Then, classify individual emails
– Probability(in-corpus, email-words) = 

Probability(in-corpus) *
Apply(*, Map(Probability, email-words))

Analysis (1)

• Okay, so how well does it work?
– Roughly, 99.5% accurate on repeated “learn 

on a random 90%, test on the rest” runs

• How did you evaluate this, anyways?
– Scheme 48

• Sub-optimal numeric performance
• But it handles unboundedly large numbers!

– ~2000 spam emails

– ~200 inbox emails

Analysis (2)

• What are the not-so-useful hacks people tried?
– Trying to normalize word forms (Pantel, SpamCop)
– In general, training on small corpus (Horvitz et al., 

Androutsopoulos et al., several other works)

• What are the good hacks?
– Just looking at the N most-significant words (Graham, 

Better Bayesian Filtering)
– Word pairs, repetition of URLs (Burton, SpamProbe)
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What’s next?

• Other hacks that might prove useful
– Sound-alike detection

• For the new generation of spam!
• Maybe a different weighting for unseen words

– Requires a really big corpus phonics!

• Or is this already good enough?
– Folks agree 99.7% is about the limit (Burton, 

SpamProbe)

Questions?

Extra slides… Naïve Bayes (2)

• Learning from a corpus (i.e. all the spams)
– Pile together all of the entries, count the 

unique words

– Make a table that maps:
Probability(word) = 

(word occurrence count + 1) / 
(unique corpus word count + 
total corpus word count)

Naïve Bayes (3)

• Classifying an email
– For each corpus you learned

Probability(in that corpus, given email) = 
Probability(in that corpus) *
For each word in email(

Probability(word occurs in corpus))
– The corpus it’s in is the one with the highest 

probability
• You can even do math on the results to see how 

confident you are of that! “...an intelligent creature 
in a virtual environment...”

Robocode
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What is Robocode?

• A toolkit for building virtual tank robots
• An environment for battles of 2 or more tanks
• Includes a Java applet and API extension
• Originally created as means to learn Java
• Seems to have a small, enthusiastic following

– Lots of sample robot code available
– You can download other people’s tanks to battle against 
– Occasional group battles referred to as melees

• It is kind of fun!

Background

• Tank robots begin battle with 100 energy 
units

• You shoot at enemy tanks with “energy” 
bullets
– Shooting costs 0.1 to 3 energy units (selectable)

– If you hit the other tank you get 3*energy back

– If you get hit, you lose 4*energy

• Battle lost when your energy is depleted

Learnable environment?

• Provides a basis for reinforcement learning
– Cost for each shot (lose 1x energy of bullet)

– Reward for a hit (gain 3x energy of bullet)

– You lose the battle when your energy is gone

• Suggests a learning-enabled robot can gain 
an edge by shooting only when expected 
gain exceeds expected cost
– e.g. P(hit) >33%

My simplified problem

• 2 tanks repeatedly move up/down at a 
specific X coordinate  – their “patrol line”

• Stop often to look for enemy tank, shoot 
– Have to lead a moving target about 5 degrees

• Range to enemy is divided into 8 bins; these 
form input to learning model

• Model learns whether the shot is worth 
taking 
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Robocode

• What does the hit/miss probability look like 
depending on target range?
– Ran a series of 500 battles

– Over 10,000 shots fired 
• Counted hits and misses by range bin

• Data suggests learning can help avoid 
misses

Robocode
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Robocode

• Learning models can exploit this knowledge

• One approach is a simple perceptron
– Boolean inputs, one for each distance zone

– Weight for given zone is adjusted depending on 
whether a shot hit or missed 

• Lowers weight if we miss (less likely to shoot)

• Increases weight if we hit (more likely to shoot)

• What does this model look like? 

Robocode

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 B

Fire!

W1 W2 W3 W4 W5 W6 W7 W8 WB = -0.33

Boolean inputs based on range to target Bias

Perceptron output is TRUE if
(sum of weighted inputs) > bias
otherwise output is FALSE.

A Problem??

• Small probability that a long sequence of misses 
could drive the weight below the ‘shoot’ threshold 
for a zone with overall high expected return for 
shooting
– If that happens, weight will never return to above 

threshold
– Slower learning rate may not be sufficient
– Happens because we get negative reinforcement if we 

shoot and miss; but no feedback when we don’t shoot 
but would have hit the target if shot was taken

• Solution: randomly shoot sometimes even if 
Perceptron model would suggest not shooting 
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Improved Perceptron

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 B

Fire!

W1 W2 W3 W4 W5 W6 W7 W8 WB = -0.33

Boolean inputs based on range to target Bias

Perceptron output is TRUE if
(sum of weighted inputs) > bias
otherwise output is FALSE.

R

With some probability, random
input causes firing

WR = 1

A better model?

• 2 layer neural network

• Inputs: Range, Bearing, Location

• 4 Outputs: lead on target (3, 6, or 9 degrees) 
or don’t shoot

• Weighting adjusted by back propagation

• I may try it and compare to Perceptron

• Could look like this:

Two- layer Neural Network Model

X

Real valued inputs:
A - Range (400-600)
B - Location (Y coord)
C - Bearing (degrees)

A B C

W Y

Sigmoid outputs:
W: Fire, lead 3 degrees
X: Fire, lead 6 degrees
Y: Fire, lead 9 degrees
Z: Don't shoot

Sigmoid hidden nodes

Z

Re-implementation of SEER, a 
Sequence Extrapolating Robot

By Jason Chalecki
Based on a paper by D. W. Hagelbarger

The Game

! Each player has a coin. They each decide 
which side to expose and, at the same time, 
show each other. If both shown sides are 
different, the first player wins. If they are the 
same, the second player wins.

! A generally safe strategy is to simply choose 
randomly with equal probability.

! This can also be played in terms of + and –
or 1 and 0 instead of heads and tails.

A Little History

! Around 1955, D. W. Hagelbarger posited that 
people don’t play completely randomly and 
that short periodic sequences emerge.

! He designed a machine that would detect 
these sequences, and should be able to win 
more than 50% on average.

! Achieved limited success: out of 9,795 trials 
with visitors and employees at Bell Labs, it 
won 5,218 times and lost 4,577 times.
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Basic Strategy

! The machine will recognize four simple 
periodic sequences
" + + + + …
" - - - - …
" + - + - + - …
" + + - - + + - - …

! While it is still trying to recognize a sequence 
or if it is losing, it will play randomly.

Implementation of the Strategy (1)

! Since everything is symmetric to + and -, the 
machine keeps track of plays in terms of 
same (S) or different (D)  play compared to 
the previous.

! Machine keeps track of:
" Whether it won the previous round.
" Whether it won two rounds ago.
" Whether it played S or D last round.

Implementation of the Strategy (2)

! For each combination (e.g. WSW, WDL LDL), the 
machine maintains some sub-state:
" Whether it won the previous round in this sub-state 

when it followed the recommendation or played 
randomly.

" Whether it won two rounds ago in this sub-state when 
it followed the recommendation or played randomly.

" A counter keeping track of whether it should have 
played S or D the last round. If S, 1 is added. If D, 1 is 
subtracted. The counter is bounded by -3 and 3.

Implementation of the Strategy (3)

! If the counter is positive, the recommended 
play is S. If it is negative, the recommended 
play is D.

! If the machine won the last two rounds in this 
sub-state, it follows its recommendation.

! If it won one of the last two rounds in this 
sub-state, it follows the recommendation with 
3 : 1 odds.

! If it lost the last two rounds in this sub-state, it 
plays randomly.

Internals of Recognized Sequences

! + + + + and - - - - # SSSS

! + - + - # DDDD
! + + - - # DSDS

! SSSS # WSW: play S (ctr > 0)
! DDDD # WDW: play D (ctr < 0)

! DSDS # WSW: play D (ctr < 0); WDW: play 
S (ctr > 0)

Some Weaknesses

! There are some strategies for beating the 
machine, but they are fairly complex as the 
opponent needs to keep track of the state the 
machine is in.

! For the first several rounds (~10 - 20), the 
machine basically plays randomly as it tries 
to learn the sequences.
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Questions?

Predictive Text Entry for Traditional 
Keyboards

• Reduce number of keystrokes required for 
natural language text entry.

• Focus on new application of existing 
methods, rather than exploring new 
methods.

Inspiration

• PTE for small devices is an active area of 
research.

• Specialized PTE applications for desktop 
machines exist in code editors, 
accessibility aids, & assisted manual 
translation app.

• PTE not widely used for keyboard-based 
NL text entry.

Goal

IME-like tool that 
works with 

other apps.

Bigram Model: First-order Markov 
Assumption

P(w1,w2,…,wi) = P(w1)P(w2|w1)…P(wi|wi-1)

P(wi|w1,w2,…,wi-1) = P(wi|wi-1)

argmaxw P(w|w1,w2,…,wi-1) =

argmaxw c(wi-1,w)

Smoothing

Pest(wi|wi-1) = λPBG(wi|wi-1) + (1- λ)PUG(wi)

Important to separate training & evaluation 
data (otherwise optimal λ = 1).
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Mind Reader:
An Improvement of the
Original SEER Design

Michael D. Helander

SEER

• A SEquence Extrapolating Robot, D. Hagelbarger

• Built in hardware

• Plays a simple matching game with an opponent

• Machine wins if its guess matches the opponent 
and the player wins if the guesses are different

• Won approximately 53.27% of 9795 trials against 
visitors and employees at Bell Labs in the 1950’s

The Original SEER Strategy

• Assumes the play of people will not be random

• Tracks the state of play with the following info

– whether it won or lost the last play

– whether it played the same or different the last time

– whether it won or lost the play before last

• For each of the eight states it keeps track of 

– should the machine play the same or different?

– has the machine been winning in this state?

The SEER Rules of Play

• The machine looks at the information for its state

• A counter [-3, +3] tracks whether the machine 
should play the same (+) or different (-)

• If the machine has lost the last two in this state it 
plays randomly with equal likelihood

• If the machine has won once in the last two it has 
3:1 odds it will follow the counter’s instructions

• If the machine has won the last two in this state it 
follows the recommendations of the counter

My Version: Mind Reader

• Utilizes an order 4 decision tree of depth 5

• A collection of predictors sharing the same 
decision tree with each looking at a different depth 
(i.e. a varying amount of player history)

• A simplistic prediction algorithm within each 
predictor that assumes player will repeat their play

• A selector for choosing the ultimate prediction for 
the program from among the options produced by 
the predictors

Mind Reader Operation

Player Won
Same or Diff

True
Same

True
Diff

False
Diff

False
Same

WinSam
e

W
in

D
iff

LossDiff

LossSam
e
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An Analysis of the Initial Version

• Level 1 predictor performs poorly (the final value 
for the accuracy score was typically around -10)

• Additional selector algorithms should be looked at 
beyond the original implementation

– S0: Majority, breaking ties with random play (original)

– S1: Majority, breaking ties with highest accuracy score

– S2: Predictor utilizing the most history

– S3: Predictor with the highest accuracy score

Will vs. the Mind Reader
Player Name: Will 
Selector used: 0 
Number of Plays: 100 
+++++++++++++++++++++++++++++++++++++++++++++++++ 
Machine Wins: 88 Win % = 0.88
Player Wins: 12 Win % = 0.12 
Predicted Plays: 93
Predicted Wins: 82 Win % = 0.88172 

• Will’s guesses were in a pattern of heads and tails

– 1 heads, 2 tails, 3 heads, 4 tails, 5 heads, etc.

• This high score shows the program’s ability to 
fairly quickly recognize patterns and adjust its 
picks accordingly

Remaining Work
• Look at adding one more layer above the selectors 

and keep track of accuracy measures for the 
individual selector algorithms

• See how well the machine plays when using the 
selector with the highest accuracy score instead of 
having to pick one that is used throughout the run

• Look at tailoring the accuracy scores so that only 
recent history is taken into account and not the 
overall accuracy for the entire game

• Modify predictor algorithm to take into account 
current trends for that level of play

Questions?

SEER: SEquence Extrapolating Robot

Chan Im
CSE 592 - Artificial Intelligence
Winter 2003

Overview of SEER
! A machine developed by David W. 

Hagelbarger at Bell Labs in 1955.
! Plays a game called “Matching Pennies”.

$ Player B tries to match the coin flip of 
Player A

$ 50% probability of success in random play

! Designed to show that machines can 
adjust to changing environments.
$ No need to redesign the system
$ Applications in telephony - i.e. call routing
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SEER’s Game Strategy
! Human behavior in “Matching Pennies” 

are not totally random.
$ Emotion, cheating,  or a “system” affects 

a person’s game playing behavior.

! Determine a pattern in the sequence of 
the human opponent’s play.
$ Data model is unknown

! 4 Simple periodic sequences
$ ++++, ----,  +-+-+-, ++--++--++

! Challenge:  Match > 50%
! 9795 plays: won 5218, lost 4577 => 53%

SEER Implementation
! Initially, machine plays randomly until a 

pattern is found.
! Coin matching based on 3 “state of play”

$ Did it win or lose last play?
$ Did it win or lose the play before last?
$ Did it play same or different?

! Leads to 8 possible states with 2 data:
a) Play same or different to win?
b) Has it been winning in this state?

SEER Implementation
! Take action based on data at each state.
! If it has lost the last 2 times in this state: 

$ Play randomly

! If won one and lost one in this state:
$ Play same with 3-to-1 odds on same side

! If won last 2 times in this state:
$ Always play same side in state data (a)

How To Beat SEER
! Figure out what the machine is going to 

play.
$ Need to keep track of the memory 

content for each state during each game.

! Change play pattern after establishing a 
pattern recognized by the machine.
$ Difficult to do for large number of games.

AI Techniques
! SEER uses probability theory based on 

past data to determine what present 
actions to take.
$ Otherwise, it plays randomly.

! Can apply simple decision network
$ Transition from state to state based on 

action from prior state.
$ Other states have low utility

TD-Gammon in C#
Richard Katz & Lin Huang
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Neural Net
Output:  Predicted Probability of Winning

I I

S

I I I I I I I I I I I

S S S S S S S

S

198 Encoded Input Units
• 24 Locations with 8 Units Each:

- 1 or more White (0 | 1)       - 1 or more Blue (0 | 1)

- 2 or more White (0 | 1)       - 2 or more Blue (0 | 1)

- 3 or more White (0 | 1)       - 3 or more Blue (0 | 1)

- 4 or more White (n-3)/2     - 4 or more Blue (n-3)/2

• Bar Locations:       - White (n/2)        - Blue (n/2)

• Pieces Off Board:  - White (n/15)      - Blue (n/15)

• Turn to Move: - White (0 | 1)      - Blue (0 | 1)

Neural Net Training Rules

• Temporal difference weight change formula:

w
t+1 

- w
t
= α (Y

t+1 
- Y

t
) Σ

t
λt-k ∇

w
Y

kk=1

• Gradient for hidden-to-output weights:

Yo (1 - Yo ) Yh

• Gradient for input-to-hidden weights:

Yo (1 - Yo ) wh,o Yh (1 - Yh ) xi

• Eligibility traces of decaying contributions:
e

t
= λ e

t-1
+ ∇

w
Y

t

Results of TD-Learning

RANDOM
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NEAR
FAR

RISK
10K

100K

RANDOM
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NEAR
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100K
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20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

TD-Gammon in C#
Experiments:  1M Training;  Unit Encoding;  α λ;  Hidden→80

Crossword Puzzle Generation

By
Alia Nabawy
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The Problem

% Given:
– Dictionary of words.
– Crossword puzzle with a certain layout.

% Find
– Layout of words from dictionary to fit into the puzzle.

How to solve problem ?

% For puzzles greater than 4x4 brute-force depth 
first search is impractical.

% Need to use some heuristics

Common Heuristics used

% Cheapest-first 
% Connectivity

% Lookahead

% Intelligent instantiation

Cheapest-first

% Fill in words that have the smallest candidate 
lists.

% These words are typically:
– Longer words.
– Partially-filled words.

% Justification: Solve hard words first, more likely 
later words will have solutions at all.

Connectivity

% Used for reducing backtracking.
% Backtrack NOT to previously completed word 

but to the oldest word intersecting current 
failing word.

% No need to waste steps regenerating words 
that are not the cause of problem.

Connectivity 

Example:                       

sllac

mrala

elbat

Order of filling:

(1) table  (2) alarm  (3) calls  (4) lr…

Don’t backtrack to calls but to table
and regenerate all words again.



19

Intelligent Instantiation

% Why just pick the first candidate word ?
% This technique treats the first k candidate words fairly.
% For each candidate wi compute number of possibilities 

for each intersecting word and then compute product of 
all these values.

% Choose wi that maximizes this value.
% Idea is to choose a candidate word that maximizes the 

number of possibilities for later intersecting words.

Lookahead

% Simple check: Before a word is filled, candidate 
lists for all intersecting words are checked.

% If any of the lists are empty discard the word 
and look for another candidate.

% Can be used in conjunction with any of the 
other heuristics.

Scheduler
Arwen Pond CSE592

FASTPASS® 

Can have only 
one pass at a 
time
Must physically 
go to the ride to 
get that pass

Scheduler
Schedule as many 
rides as you want
Go to any ride to 
schedule

Annealing Options

Starting Temperature

Temperature Dampening
Number of times without Changes
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128Total Walking Time255 minutesTotal Time:

312:15pm
Roger Rabbit's Car 
Toon Spin 

28811:30amAutopia

18311:00amSpace Mountain

4410:45amStar Tours

18510:15amIndiana Jones

6169:45am
Pirates of the 
Caribbean

689:30amHaunted Mansion

699:00amSplash Mountain

1648:30amBig Thunder Mountain 

2608:00amAutopia

Walking TimeRide DurationTimeRide

Schedule

Sample Schedule
Computation Time vs Accuracy
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s) Temperature = 0

Temperature = 20

Temperature = 40

Diamond = 10 times without change
Circle = 30 times without change
Triangle = 70 times without change
Square = 100 times without change

function ComputeSchedule()
{

do
{

temperature = temperature/nDampenFactor;
ChangeNode();

}while (nTimesWithoutChange < nGoalTimesWithoutChange+1);
}
function ChangeNode()
{

//Choose an invalid node at random and change either the order
<Choose 2 random different numbers between 0 and the number of rides-1>
//switch the order
<Switch nodes Rides[n] and Rides[n2]>
//Compare the total time of the schedule to the previous total time
if (nNewCurrent > nCurrentTotalTime)
{

//If this order isn't better then there is a percent 
//chance that we will keep it anyway. This chance is based
//on the current temperature.
var chance=(99*Math.random());
if (chance < temperature )
{

//We keep the current config even though it is worse and reset 
//the number of times without change
nTimesWithoutChange=0;

}
else
{

//We go back to the better config
<Switch the order of Ride[n] and ride[n2] back to original>
nTimesWithoutChange++;

}
}
else
{

//Keep current configuration and reset the number of times without change
nTimesWithoutChange = 0;

}
}

Future Enhancements

• Bayesian net that figures the probability 
of a person showing up on time given 
variables such as current temperature, 
number of people in the park, number of 
people from out of state etc.

• Add location information so you can find 
other people in your party.

• Be able to change the schedule 
throughout the day

Applying Naïve Bayes to 
Classifying Junk Email

CSE 592 Final Project
Alfred L. Schumer

Winter 2003

Overview
! Implemented as Win32 command line utility that 

classifies email messages saved to disk as text files.

! Examines factors using a local search algorithm that 
yield the best classification results.

! Implements a method by which false classifications 
are reduced via dynamic pruning.

! Combines local search and pruning into global search 
function that seeks optimum classification score.
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General Approach
! Analyze two corpuses of valid and junk emails and 

build a Bayesian network of junk word probabilities.

! Classify two other known corpuses of randomly 
selected sample test files and give an overall score.

! Compute optimum parameters yielding the highest 
success rate in classifying valid and junk emails.

! Identify and remove words in messages falsely 
classified having greatest contribution to errors.

Implementation
! Classification, searching and pruning can be 

combined in any order, any number of times.

! Supports other features such as condensing and 
parsing that are typically run once.

! Other utilities written that renumber files for ease of 
identification and randomly swap files for sampling.

! Results sent to the standard output and captured via 
command line redirection.

Email Corpuses
! Required corpus of junk and valid emails, from which 

a subset were extracted as test samples.

! Compiled ~3000 junk and ~1800 valid messages, 
and randomly extracted 200 each for test samples.

! Each class placed in unique subdirectory, hard-coded 
into program comprising working directories.

! Directories named Junk Corpus, Valid Corpus, Junk 
Samples and Valid Samples.

Command Usage
Program invoked via the following command line 
arguments:

SpamBayes [+|-condense] [+|-parse] [+|-classify] 
[+|-search] [+|-prune] [+|-global]

Where plus (+) or minus (-) sign before function 
indicates verbose (+) or terse (-) program output.

Tokenization & Hashing
! Parsed files are tokenized using starting, word and 

ending tokens resulting in alpha-numeric words 
possibly hyphenated and possessive.

! All words over two chars parsed though not used 
depending on the minimum word length specified.

! Did not have time to investigate word stemming.

! Word tokens are hashed according to Horner�s Rule.

! Floating point closed hash tables prime in size.

Condensing
! Corpus and sample files have the possibility of being 

parsed and classified frequently.

! Condense added to optimize file contents.

! Reduces files in working directories to sorted, unique 
word lists.

! Only needs to be run the first time or when files are 
added to the working directories.

! Significantly improves processing time of commands.
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Parsing
! Tokenizes corpus files, counts word frequencies, and 

calculates junk probability.

! Words that appear in one corpus but not other are 
assigned probabilities of 1% or 99%.

! Otherwise, the probability is calculated as:
P = (Junk/nJunk)/((Junk/nJunk)+(Valid/nValid))

! Should be called before other functions each time the 
corpuses change, or pruning is performed. 

Classification
! Heuristic for measuring success is percentage of 

messages falsely (or correctly) classified.

! Different weighted costs assigned to false positives 
and false negatives.

! Score returned from Classify function that classifies 
the sample files in the working directories.

! Classification depends on minimum word size, word 
count, analysis threshold and junk threshold. 

Classification State Space
Classification Search

88.5%

50.0%

55.0%

60.0%

65.0%

70.0%

75.0%

80.0%

85.0%

90.0%

95.0%

Variable Combinations

Sc
or

e

Pruning
! Recursively classifies junk and valid samples tracking 

misclassified files.

! Attempts to remove words contributing most to 
misclassifications.

! Groups common, duplicated words from misclassified  
files and rank orders them by probabilities.

! Removing the most significant word from statistical 
base, and then recursively prunes again. 

Global Search
! Highest-level command seeks to iteratively search 

and prune data until global maximum is found.

! Code trivial building on Prune and Search functions:

while (true)
{

Prune (�)
Search (�);
if (New Score > Best Score)

Best Score = New Score;
else break;

}

Test Results

Test Type Classification Score Time (seconds)

Search Only 88.5% 192.90

Prune Only 88.8% 34.255

Search & Prune 92.5% 226.691

Global Search 93.0% 476.514
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Conclusions
! Most work being done today has to do with inputs as 

discrete words and applying Bayesian principles.

! Project shows that searching and pruning (especially 
as Global Search) significantly improves accuracy of 
applying Naïve Bayes theory.

! Results showed improvement in classification scores 
on the order of 83% to 93%.

! Corpuses work best when they are from the same 
email user.   

TerrariumTerrarium
ProjectProject

Winfred Wong
CSE 592 Winter 2003

.NET Terrarium Project.NET Terrarium Project

A multiplayer ecosystem game developed using the .NET A multiplayer ecosystem game developed using the .NET 
FrameworkFramework

Creatures in the Terrarium ecosystem compete for Creatures in the Terrarium ecosystem compete for 
resourcesresources

Types of Creatures:Types of Creatures:
!! Plants Plants –– feed on Sun light ONLYfeed on Sun light ONLY
!! Herbivores Herbivores –– feed on Plants ONLYfeed on Plants ONLY
!! Carnivores Carnivores �� feed on Herbivores ONLYfeed on Herbivores ONLY

Creatures can reproduce, die from old age/disease, get killed inCreatures can reproduce, die from old age/disease, get killed in
battles.battles.

Terrarium official homepage:Terrarium official homepage:
!! http://http://www.gotdotnet.comwww.gotdotnet.com/terrarium//terrarium/

Actions, States and EventsActions, States and Events

Actions on each turnActions on each turn
!! Move, Eat, Attack, Defend, Move, Eat, Attack, Defend, 

Reproduce, Reproduce, nopnop

Creature StatesCreature States
!! Boolean valuesBoolean values

IsAlive, IsMoving, IsEating, …IsAlive, IsMoving, IsEating, …
!! Numeric Numeric valuesvalues

PercentEnergy, PercentInjured, PercentEnergy, PercentInjured, 
……

EventsEvents
!! BornEvent, IdleEvent, AttackEvent, BornEvent, IdleEvent, AttackEvent, ……

Problem DefinitionProblem Definition

Study the effects of states and actions on a herbivore’s Study the effects of states and actions on a herbivore’s 
survival in the ecosystem survival in the ecosystem –– a classification problema classification problem

ScopeScope
!! Closed environment Closed environment –– no connection to other networkno connection to other network
!! Fixed sets of species Fixed sets of species –– two plant species, one herbivore two plant species, one herbivore 

specie, one carnivore speciespecie, one carnivore specie
!! No communication among creaturesNo communication among creatures

StepsSteps
!! Use prototype herbivore to collect dataUse prototype herbivore to collect data
!! Use WEKA J48 classifier to generate decision tree based on Use WEKA J48 classifier to generate decision tree based on 

the datathe data
!! Deduce interesting rules from decision treeDeduce interesting rules from decision tree

Data CollectionData Collection

AttributesAttributes
!! Hungry : {‘yes’,’no’}Hungry : {‘yes’,’no’}

!! HasPlant : {‘yes’,’no’}HasPlant : {‘yes’,’no’}

!! HasThreat : {‘yes’,’no’}HasThreat : {‘yes’,’no’}

!! Eat : {‘yes’,’no’}Eat : {‘yes’,’no’}

!! Move : {‘yes’, ‘no’}Move : {‘yes’, ‘no’}

!! Attack : {‘yes’, ‘no’}Attack : {‘yes’, ‘no’}

!! Defend : {‘yes’, ‘no’}Defend : {‘yes’, ‘no’}

ClassClass
!! Condition of the herbivore in next turn : {‘good’,’bad’}Condition of the herbivore in next turn : {‘good’,’bad’}

!! Use a combination of health and threat levelUse a combination of health and threat level
PercentEnergy > 30% and ~HasThreatPercentEnergy > 30% and ~HasThreat

BadBadnonononononononoyesyesyesyesyesyes

BadBadyesyesyesyesnonononoyesyesnonoyesyes

GoodGoodyesyesnonoyesyesnonoyesyesnononono

BadBadyesyesnonononononoyesyesyesyesnono

GoodGoodnonononononononononoyesyesnono

BadBadnonononoyesyesnonononononoyesyes

ClassClassDefendDefendAttackAttackMoveMoveEatEatHasThreatHasThreatHasPlantHasPlantHungryHungry
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Decision TreeDecision Tree

Hungry = yesHungry = yes
|   Eat = yes: good (6.0)|   Eat = yes: good (6.0)
|   Eat = no|   Eat = no
|   |   |   |   HasThreatHasThreat = yes: bad (55.0/7.0)= yes: bad (55.0/7.0)
|   |   |   |   HasThreatHasThreat = no= no
|   |   |   |   |   |   HasPlantHasPlant = yes: good (9.0)= yes: good (9.0)
|   |   |   |   |   |   HasPlantHasPlant = no: bad (23.0/6.0)= no: bad (23.0/6.0)
Hungry = noHungry = no
|   |   HasThreatHasThreat = yes= yes
|   |   Move = yes: good (23.0/3.0)|   |   Move = yes: good (23.0/3.0)
|   |   Move = no: bad (11.0/1.0)|   |   Move = no: bad (11.0/1.0)
|   |   HasThreatHasThreat = no: good (49.0)= no: good (49.0)

AnalysisAnalysis

Interesting observations:Interesting observations:
!! Attack and Defend are not factorsAttack and Defend are not factors
!! ~Hungry ^ HasThreat ^ ~Hungry ^ HasThreat ^ MoveMove => => GoodGood
!! ~Hungry ^ HasThreat ^ ~Hungry ^ HasThreat ^ ~Move~Move => => BadBad

Is running away the only way to survive when a Is running away the only way to survive when a 
herbivore meets a carnivore?herbivore meets a carnivore?
!! In most case, yes. In most case, yes. 
!! However, statistics showed a small number of However, statistics showed a small number of 

carnivores were killed by herbivores.carnivores were killed by herbivores.

Analysis (cont’d)Analysis (cont’d) Analysis (cont’d)Analysis (cont’d)

Herbivores can defend carnivores in some cases, why doesn’t it sHerbivores can defend carnivores in some cases, why doesn’t it show up how up 
in the decision tree?in the decision tree?

Missing attributesMissing attributes
!! Need more data to show this factNeed more data to show this fact
!! Add Healthy : {‘yes’,’no’}  Add Healthy : {‘yes’,’no’}  ---- PercentInjured < 50%PercentInjured < 50%
!! Add AttackerHealthy : {‘yes’,’no’}  Add AttackerHealthy : {‘yes’,’no’}  ---- attacker.PercentInjured < 50%attacker.PercentInjured < 50%

YesYes

YesYes

YesYes

NoNo

YesYes

YesYes

HealthyHealthy

YesYes

NoNo

NoNo

YesYes

??

??

AttackerAttacker
HealthyHealthy

BadBadnonononononononoyesyesyesyesyesyes

GoodGoodyesyesyesyesnonononoyesyesnonoyesyes

BadBadyesyesyesyesNoNononoyesyesnononono

GoodGoodnonoyesyesYesYesnonoyesyesyesyesnono

GoodGoodnonononononononononoyesyesnono

BadBadnonononoyesyesnonononononoyesyes

ClassClassDefendDefendAttackAttackMoveMoveEatEatHasThreatHasThreatHasPlantHasPlantHungryHungry

Decision Tree IIDecision Tree II

HasThreat = yesHasThreat = yes
|   AttackerHealthy = yes: bad (68.67/14.06)|   AttackerHealthy = yes: bad (68.67/14.06)
|   AttackerHealthy = no|   AttackerHealthy = no
|   |   Attack = yes: good (20.43/7.43)|   |   Attack = yes: good (20.43/7.43)
|   |   Attack = no|   |   Attack = no
|   |   |   Move = yes: good (12.31/5.37)|   |   |   Move = yes: good (12.31/5.37)
|   |   |   Move = no: bad (5.58)|   |   |   Move = no: bad (5.58)
HasThreat = noHasThreat = no
|   Healthy = yes: good (73.0/2.0)|   Healthy = yes: good (73.0/2.0)
|   Healthy = no|   Healthy = no
|   |   Hungry = yes: bad (8.0/1.0)|   |   Hungry = yes: bad (8.0/1.0)
|   |   Hungry = no: good (10.0/2.0)|   |   Hungry = no: good (10.0/2.0)

DemoDemo
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A Study of Iterated Prisoner�s 
Dilemma 

CSE 592 Class Project.
By Man Xiong

A Formal Model for Cooperation in Game Theory

! T > R > P > S
! 2 R > T + S

Cooperate Defect

Cooperate R = 3
R = 3

S = 0
T = 5

Defect T = 5
S = 0

P = 1
P = 1

Strategies in Different Game scenarios

! Iterated:
! Tit-For-Tat

! With chaos: 
! Tit-For-2-Tat
! Generous Tit-For-Tat (p): 

p: cooperates
1-p: tit for tat

! Pavlov (n):
P <- 1/n
p += 1/n if the other agent cooperates
P: cooperates; 1-p: defects

Implementation and Simulation

! Implemented in C++ for fast simulation
! Iteration
! Tournament: two agents per strategy
! Chaos
! Evolution

Self-tuning GTFT and Pavlov

! At the very beginning, the parameter for each agent 
obey normal distribution

! For every generation, the value of the parameter of 
most successful agents is used as the median value 
for distribution

Balanced 3SAT ProblemsBalanced 3SAT Problems and and 
Instance GeneratorInstance Generator

CSE592 Artificial Intelligence

University of Washington

Dajun Xu
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IntroductionIntroduction

% Hard satisfiable 3SAT problems can be 
used to benchmark and fine tune new 
algorithms.

% How to generate hard 3SAT formula has 
always been a challenging topic.

% Problems become hard at critical point
% Claimed that problems even harder when 

the “signs” are balanced for each variable

Project GoalsProject Goals

% Create a generator for this type of 
3SAT formula.

% Study the phase transition behavior 
and look for the critical point if there 
is one.

% Find out if this type of problems is 
really hard in comparison to the 
regular random 3SAT problems

Traditional ApproachTraditional Approach

% Generate a random truth assignment 
T 

% Construct a formula with N variables 
and M random clauses

% Throw away any clause that violates 
T 

% For 3SAT hard problems,  set M = 
4.25N

Traditional Approach cont.Traditional Approach cont.

% In principle generate all possible 
satisfiable formulas with a clause-to-
variable ratio of 4.25 that have T among 
their solution

% Somewhat surprising result is that the 
sampling of these formulas is far from 
uniform, biased towards formulas with 
many assignments, clustered around T
and easy for Walksat

Seeding ApproachSeeding Approach

% A “Forced” approach, namely start with a 
random truth assignment

% Use “equivalent literals” as seeds to plant 
in clauses / sentences
For example,
(A, -B, -C) is the equivalent literals to an assignment (1, -1, -1) 

% Generator controls randomness of 
variables and balance of signs

% Easy implementation
% Efficient enough to construct some hard 

problems in comparison to random 3SAT

AssumptionsAssumptions

% Each variable must appear at least once in 
a sentence, but can be either positive or 
negative or both

% No same variable, regardless of sign, in 
each clause
For example,

(A, -A, B) or (A, A, B) are considered to have same variable

% Each clause has exactly three literals, this 
just for easy implementation. 
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Assumptions, cont.Assumptions, cont.

% No two clauses have exact same 
constructs, regardless the appearing 
order
For example, 

(A, B, C) and (C, B, A) are considered to have the exact same constructs

% The number of clauses M is not less than 
the number of variables N
We are only interested in generating hard problems. All satisfiable

problems are easy for Walksat when M is small.

Generator DetailsGenerator Details

% Generate a random truth assignment 
of size N. 

% Generate the equivalent literals of 
size N from the truth assignment as 
the seeding literals.

% Randomly assign each of equivalent 
literals exactly once to N of  M 
clauses. 

Generator Details, cont.Generator Details, cont.

% Fill each of rest clauses with one 
randomly selected equivalent literals
Since each clause has at least one equivalent literal. The sentence 
can be guaranteed satisfiable.

% From now on, keep track of the 
number of positive and negative sign 
for each variable including those 
from those created in previous steps. 

Generator Details, cont.Generator Details, cont.

% If any variable is not balanced, repeatedly 
select the variable with negated sign and 
put it to a randomly selected clause, until 
this variable balanced.

% If all variables are balanced, randomly 
select one from 2*N literals, regardless 
equivalent to truth assignment or not, to a 
randomly selected clause such that 
- No same variable
- Less than 3 literals
- No same clauses exist in the sentence

Searching for Critical PointSearching for Critical Point

% Basically a binary search
% Look for point (number of clause) at which 

Walksat has the max runtime 
% Measure runtime by the median number of 

flips
% Sample 100 points in search range each 

time
% 15 Sentences for each point
% 10 runs Walksat for each sentence due to 

stochastic nature of Walksat

Comparison of HardnessComparison of Hardness

% Generate 1000 sentences for the 
critical points found by the balanced 
3SAT generator

% Load the benchmark sentences 
downloaded from www.satlib.org

% Run both against Walksat and 
compare results. 
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Results: 50 VariablesResults: 50 Variables

% Balanced 3SAT
% 50 variables
% 46200 sentences
% Critical point found 

at 184
% Clause-Variable 

ratio = 3.68

Results: 100 VariablesResults: 100 Variables

% Balanced 3SAT
% 100 Variables
% 64800 sentences
% Critical point found 

at 355
% Clause-Variable 

ratio = 3.55

Results: Balanced Results: Balanced vsvs RandomRandom

Clause-Var
Ratio

Critical PointClause-Var
Ratio

Critical Point

4.278543.38676200
4.286423.40510150
4.295363.43429125
4.304303.55355100
4.323243.6727575
4.362183.6818450
4.481124.1610425

RandomBalanced

Results: Hardness ComparisonResults: Hardness Comparison

3656.3778031.563100

653.9171445.095 50

Random 
Avg Flips

Balanced 
Avg Flips
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Introduction of Introduction of RoboCodeRoboCode

% What it is?
It is a programming game which lets 
you create virtual "Robots," real Java 
objects that battle against other 
robots.

% How to play?
– 2D movement and fire
– Rules

How to predicate movement?How to predicate movement?

% 3 possible methods
– Move straight
– Acceleration
– Curve

% Using Bayesian learning

When to fire?When to fire?
% Factors to be considered

– Correctness of predication
– Bullet hit/missing ratio
– Distance to object
– Energy status of all opponents

DemoDemo


