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Natural Language Processing

Speech Recognition
Parsing

Semantic Interpretation

CSE 592 Applications of AI
Winter 2003
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NLP Research Areas

� Speech recognition: convert an acoustic signal to 
a string of words
� Parsing (syntactic interpretation): create a parse 

tree of a sentence
� Semantic interpretation: translate a sentence into 

the representation language.
� Disambiguation: there may be several interpretations. 

Choose the most probable
� Pragmatic interpretation: incorporate current situation 

into account.
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Some Difficult Examples

� From the newspapers:
� Squad helps dog bite victim.
� Helicopter powered by human flies.
� Levy won�t hurt the poor.
� Once-sagging cloth diaper industry saved by full 

dumps. 

� Ambiguities:
� Lexical: meanings of  �hot�, �back�.
� Syntactic: I heard the music in my room.
� Referential: The cat ate the mouse. It was ugly.
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Overview

• Speech Recognition:
– Markov model over small units of sound

– Find most likely sequence through model
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Overview

• Speech Recognition:
– Markov model over small units of sound

– Find most likely sequence through model

• Parsing:
– Context-free grammars, plus agreement of syntactic 

features

• Semantic Interpretation:
– Disambiguation: word tagging (using Markov models 

again!)

– Logical form: unification
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Speech Recognition

! Human languages are limited to a set of about
40 to 50 distinct sounds called phones: e.g.,
– [ey] bet
– [ah] but
– [oy] boy
– [em] bottom
– [en] button

! These phones are characterized in terms of 
acoustic features, e.g., frequency and amplitude, 
that can be extracted from the sound waves
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Difficulties

! Why isn't this easy?
– just develop a dictionary of pronunciation

e.g., coat = [k] + [ow] + [t] = [kowt]
– but: recognize speech ≈ wreck a nice beach

! Problems:
– homophones: different fragments sound the same

! e.g., rec and wreck
– segmentation: determining breaks between words

! e.g., nize speech and nice beach
– signal processing problems
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Speech Recognition Architecture
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Signal Processing

! Sound is an analog energy source resulting from 
pressure waves striking an eardrum or microphone

! A device called an analog-to-digital converter can 
be used to record the speech sounds
– sampling rate: the number of times per second that 

the sound level is measured
– quantization factor: the maximum number of bits of 

precision for the sound level measurements
– e.g., telephone: 3 KHz (3000 times per second)
– e.g., speech recognizer: 8 KHz with 8 bit samples

so that 1 minute takes about 500K bytes
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Signal Processing

! Wave encoding:
– group into ~10 msec frames (larger blocks) that

are analyzed individually
– frames overlap to ensure important acoustical 

events at frame boundaries aren't lost
– frames are analyzed in terms of features, e.g.,

! amount of energy at various frequencies
! total energy in a frame
! differences from prior frame

– vector quantization further encodes by mapping 
frame into regions in n-dimensional feature space
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Signal Processing

• Goal is speaker independence so that 
representation of sound is independent of a 
speaker's specific pitch, volume, speed, etc.
and other aspects such as dialect

! Speaker identification does the opposite,
i.e. the specific details are needed to decide
who is speaking

! A significant problem is dealing with background 
noises that are often other speakers
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Speech Recognition Model

! Bayes‘s Rule is used break up the problem into 
manageable parts:

P(words|signal) = P(words)P(signal| words)
P(signal)

– P(signal): is ignored (normalizing constant)
– P(words): Language model

! likelihood of words being heard
! e.g. "recognize speech" more likely than "wreck a nice beach"

– P(signal|words): Acoustic model
! likelihood of a signal given words
! accounts for differences in pronunciation of words
! e.g. given "nice", likelihood that it is pronounced [nuys] etc. 14

Language Model (LM)

" P(words) is the joint probability that a sequence
of words = w1 w2 ... wn is likely for a specified natural 
language

! This joint probability can be expressed using the 
chain rule (order reversed):
P(w1 w2 … wn) = P(w1) P(w2 | w1) P(w3 | w1 w2) ... P(wn| w1 ... wn-1)

! Collecting the probabilities is too complex; it requires 
statistics for mn-1 starting sequences for
a sequence of n words in a language of m words

! Simplification is necessary
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Language Model (LM)

! First-order Markov Assumption says the probability 
of a word depends only on the previous word: 

P(wi| w1 ... wi-1)  ≈  ≈  ≈  ≈  P(wi| wi-1)

! The LM simplifies to
P(w1 w2 … wn) = P(w1) P(w2 | w1) P(w3 | w2) ... P(wn| wn-1)

– called the bigram model
– it relates consecutive pairs of words
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Language Model (LM)

! More context could be used, such as the two words 
before, called the trigram model, but it's difficult to 
collect sufficient data to get accurate probabilities

! A weighted sum of unigram, bigram, trigram models 
could be used as a good combination:
P(w1 w2 … wn) = c1 P(wi) + c2 P(wi| wi-1) + c3  P(wi| wi-1 wi-2)

! Bigram and trigram models account for:
– local context-sensitive effects

! e.g. "bag of tricks" vs. "bottle of tricks"
– some local grammar

! e.g. "we was" vs. "we were"
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Language Model (LM)

! Probabilities are obtained by computing statistics 
of the frequency of all possible pairs of words in a 
large training set of word strings :
– if "the" appears in training data 10,000 times

and it's followed by "clock" 11 times then
P(clock| the) = 11/10000 = .0011

! These probabilities are stored in:
– a probability table
– a probabilistic finite state machine

! Good-Turing estimator: 
– total mass of unseen events ≈ total mass of events 

seen a single time
18

Language Model (LM)

! Probabilistic finite state
machine: a (almost) fully 
connected directed graph:

! nodes (states): all possible words
and a START state

! arcs: labeled with a probability
– from START to a word is the

prior probability of the destination word
– from one word to another is the probability

of the destination word given the source word

START

tomato

attack

the

killer

of
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Language Model (LM)

! Probabilistic finite state
machine: a (almost) fully 
connected directed graph:

– joint probability is estimated for
bigram model by starting at START
and multiplying the probabilities of the
arcs that are traversed for a given
sentence/phrase

– P("attack of the killer tomato") = 
P(attack) P(of| attack) P(the| of) P(killer| the) P(tomato| killer)

START

tomato

attack

the

killer

of
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Acoustic Model (AM)

! P(signal| words) is the conditional probability that
a signal is likely given a sequence of words for a
particular natural language

! This is divided into two probabilities:
– P(phones| word):  probability of a sequence of phones

given word

– P(signal| phone):  probability of a sequence of vector 
quantization values from the acoustic signal given phone 
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Acoustic Model (AM)

! P(phones| word) can be specified as a Markov model, 
which is a way of describing a process that goes 
through a series of states, e.g. tomato:

! nodes (states): corresponds to the production of a phone
– sound slurring (co-articulation) typically from quickly 

pronouncing a word
– variation in pronunciation of words typically due to dialects

! arcs: probability of transitioning from current state to another

[t]

[ow]

[ah]

[m]

[ey]

[aa]

[t] [ow]

.5

.5

.2

.8

1

1

1
1

1
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Acoustic Model (AM)

! P(phones| word) can be specified as a Markov model, 
which is a way of describing a process that goes 
through a series of states, e.g., tomato:

! P(phones| word) is a path through the diagram, i.e.,
– P([towmeytow] | tomato) = 0.2*1*0.5*1*1 = 0.1
– P([towmaatow] | tomato) = 0.2*1*0.5*1*1 = 0.1
– P([tahmeytow] | tomato) = 0.8*1*0.5*1*1 = 0.4
– P([tahmaatow] | tomato) = 0.8*1*0.5*1*1 = 0.4

[t]

[ow]

[ah]

[m]

[ey]

[aa]

[t] [ow]

.5

.5

.2

.8

1

1

1
1

1
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Acoustic Model (AM)

! p(signal|phone) can be specified as a hidden Markov 
model (HMM), e.g. [m]:

– nodes (states): probability distribution over a set of vector 
quantization values

– arcs: probability of transitioning from current state to another
– phone graph is technically a HMM since states aren't unique

Onset Mid End FINAL
0.60.10.7

0.3 0.9 0.4

C1: 0.5
C2: 0.2
C3: 0.3

C3: 0.2
C4: 0.7
C5: 0.1

C4: 0.1
C6: 0.5
C7: 0.4
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Acoustic Model (AM)

! P(signal| phone) can be specified as a hidden Markov 
model (HMM), e.g., [m]:

! P(signal| phone) is a path through the diagram, i.e.,
– P([C1,C4,C6] | [m]) = (0.7*0.1*0.6)* (0.5*0.7*0.5) = 0.00735
– P([C1,C4,C4,C6] | [m]) = (0.7*0.9*0.1*0.6)* (0.5*0.7*0.7*0.5)

+ (0.7*0.1*0.4*0.6)* (0.5*0.7*0.1*0.5)  = 0.0049245
" This allows for variation in speed of pronunciation

Onset Mid End FINAL
0.60.10.7

0.3 0.9 0.4

C1: 0.5
C2: 0.2
C3: 0.3

C3: 0.2
C4: 0.7
C5: 0.1

C4: 0.1
C6: 0.5
C7: 0.4



CSE 473 Artificial Intelligence 2003-2-27

5

25

Combining Models

START

tomato

attack

the

killer

of

tomato

[t]

[ow]

[ah]

[m]

[ey]

[aa]

[t] [ow]

.5

.5

.2

.8

1

1

1
1

1

Onset Mid End FINAL
0.60.10.7

0.3 0.9 0.4

C1: 0.5
C2: 0.2
C3: 0.3

C3: 0.2
C4: 0.7
C5: 0.1

C4: 0.1
C6: 0.5
C7: 0.4

[m]

Create one large HMM

26

Virterbi Algorithm
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Summary

! Speech recognition systems work best if
– good signal (low noise and background sounds)
– small vocabulary
– good language model
– pauses between words
– trained to a specific speaker

! Current systems
– vocabulary of ~200,000 words for single speaker
– vocabulary of <2,000 words for multiple speakers
– accuracy in the high 90%

28

Break

29

Parsing

30

Parsing

� Context-free grammars:

EXPR -> NUMBER
EXPR -> VARIABLE
EXPR -> (EXPR + EXPR)
EXPR -> (EXPR * EXPR)

� (2 + X) * (17 + Y)  is in the grammar.
� (2 + (X))  is not.
� Why do we call them context-free?
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Using CFG�s for Parsing

� Can natural language syntax be captured using a 
context-free grammar?
� Yes, no, sort of, for the most part, maybe.

� Words:
� nouns, adjectives, verbs, adverbs.
� Determiners: the, a, this, that
� Quantifiers: all, some, none
� Prepositions: in, onto, by, through
� Connectives: and, or, but, while.
� Words combine together into phrases: NP, VP

32

An Example Grammar

� S -> NP VP

� VP -> V NP

� NP -> NAME

� NP -> ART  N

� ART -> a | the

� V -> ate | saw

� N -> cat | mouse

� NAME -> Sue | Tom

33

Example Parse

� The mouse saw Sue.

34

Ambiguity

� S -> NP VP
� VP -> V NP 
� VP -> V NP NP
� NP -> N
� NP -> N N
� NP -> Det NP
� Det -> the
� V -> ate | saw | bought
� N -> cat | mouse |biscuits | Sue | Tom

“Sue bought the cat biscuits”

35

Chart Parsing

• Efficient data structure & algorithm for 
CFG’s – O(n3)

• Compactly represents all possible parses
– Even if there are exponentially many!

• Combines top-down & bottom-up approach
– Top down: what categories could appear next?

– Bottom up: how can constituents be combined 
to create a instance of that category?

36

Augmented CFG’s

• Consider:
– Students like coffee.

– Todd likes coffee.

– Todd like coffee.
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Augmented CFG’s

• Consider:
– Students like coffee.

– Todd likes coffee.

– Todd like coffee.
S -> NP[number] VP[number]

NP[number] -> N[number]

N[number=singular] -> “Todd”

N[number=plural] -> “students”

VP[number] -> V[number] NP

V[number=singular] -> “likes”

V[number=plural] -> “like” 38

Augmented CFG’s

• Consider:
– I gave hit John.

– I gave John the book.

– I hit John the book.

• What kind of feature(s) would be useful?

39

Semantic Interpretation

� Our goal: to translate sentences into a 
logical form.
� But: sentences convey more than true/false:
� It will rain in Seattle tomorrow.
�Will it rain in Seattle tomorrow?

� A sentence can be analyzed by:
� propositional content, and
� speech act: tell, ask, request, deny, suggest

40

Propositional Content

� Target language: precise & unambiguous
� Logic: first-order logic, higher-order logic, SQL, �

� Proper names # objects (Will, Henry)
� Nouns  # unary predicates (woman, house)
� Verbs #
� transitive: binary predicates (find, go)
� intransitive: unary predicates (laugh, cry)

� Determiners most, some # quantifiers
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Semantic Interpretation by 
Augmented Grammars

• Bill sleeps.
S -> NP VP   {  VP.sem(NP.sem) }

VP -> “sleep”   { λx . sleep(x) }

NP -> “Bill” { BILL_962 }
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Semantic Interpretation by 
Augmented Grammars

• Bill hits Henry.
S -> NP VP   {  VP.sem(NP.sem) }

VP -> V NP   {  V.sem(NP.sem) }

V -> “hits”   { λy,x . hits(x,y) }

NP -> “Bill” { BILL_962 } 

NP ->  “Henry” { HENRY_242}
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Montague Grammar

If your thesis is quite indefensible
Reach for semantics intensional.
Your committee will stammer

Over Montague grammar
Not admitting it's incomprehensible.
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Coping with Ambiguity:
Word Sense Disambiguation

• How to choose the best parse for an ambiguous 
sentence?

• If category (noun/verb/…) of every word were 
known in advance, would greatly reduce number 
of parses
– Time flies like an arrow.

• Simple & robust approach: word tagging using a 
word bigram model & Viterbi algorithm
– No real syntax! 

– Explains why “Time flies like a banana” sounds odd
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Experiments

� Charniak and Colleagues did some experiments 
on a collection of documents called the �Brown 
Corpus�, where tags are assigned by hand.
� 90% of the corpus are used for training and the 

other 10% for testing
� They show they can get 95% correctness with 

HMM�s.
� A really simple algorithm: assign t to w by the 

highest probability tag P(t|w) # 91% correctness!
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Ambiguity Resolution

• Same approach works well for word-sense 
ambiguity

• Extend bigrams with 1-back bigrams:
– John is blue.
– The sky is blue.

• Can try to use other words in sentence as well –
e.g. a naïve Bayes model

• Any reasonable approach gets about 85-90% of 
the data
– Diminishing returns on “AI-complete” part of the 

problem

47

Natural Language Summary

� Parsing:
� Context free grammars with features.

� Semantic interpretation:
� Translate sentences into logic-like language
� Use statistical knowledge for word tagging, can 

drastically reduce ambiguity � determine which parses 
are most likely

� Many other issues!
� Pronouns
� Discourse � focus and context


