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Neural Networks

Preview

Perceptrons
Gradient descent
Multilayer networks

Backpropagation

Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
o Number of neurons ~ 10'©
o Connections per neuron ~ 1045
e Scene recognition time ~ .1 second
o 100 inference steps doesn’t seem like enough

= Much parallel computation

Properties of neural nets:

Many neuron-like threshold switching units
Many weighted interconnections among units
Highly parallel, distributed process

Emphasis on tuning weights automatically
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Kinds of Networks

* Feed-forward
» Single layer
o Multi-layer

¢ Recurrent
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Perceptron

hrb b ”:{ Lif 2w ;>0

-1 otherwise

1 ifwo+wizi+--- +wpzy, >0
1 Tn) = :
—1 otherwise.

Sometimes we’ll use simpler vector notation:

@) 1 f@d-Z>0
o(%) =
—1 otherwise.

Decision Surface of a Perceptron
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Represents some useful functions

e What weights represent g(z1,z2) = AN D(z1,z2)?

But some functions not representable
e All not linearly separable

e Therefore, we’ll want networks of these...




Perceptron Training Rule

Basic |dea:
w; — w; + Aw;
h Use error between
where target and actual
Aw; =n(t — o)z; .
output to adjust
Where: weights

o t = (%) is target value
e 0 is perceptron output

e 7 is small constant (e.g., 0.1) called learning rate

Perceptron Training Rule

Can prove it will converge if
e Training data is linearly separable

o 7 sufficiently small

Gradient Descent
To understand, consider simpler linear unit, where
0=wo +wW1T1 +* + WpTn

Let’s learn w;’s that minimize the squared error

Bl@] = 5 Y (ta— 0d)”

deD

Where D is set of training examples

Gradient Descent

958
SRS
‘:‘:\‘:‘"
ét:"
XX
{s“

XS
$%
:‘“
X

Y

s

X
X
X

99
“Q
N

(f
6
555
5

0

X
N
N

X
W

\

\
\
\

N
\
N

o

(X
X
o
0
W

N
\

S

N

\
\

e

Gradient:
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Training rule:

AW = —nV E[)]
Le.: 5
Aw; = —n5—
Ow; In other words:

take a step the
steepest downhill
direction

Gradient Descent
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Multiply by
n and you
get the
training
rule!
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Gradient Descent

GRADIENT-DESCENT(training_ezamples, n)
Initialize each w; to some small random value
Until the termination condition is met, Do
o Initialize each Aw; to zero.
e For each (Z,t) in training_ezamples, Do
— Input instance & to unit and compute output o
— For each linear unit weight w;, Do

Aw; — Aw; +1(t — o)z,
e For each linear unit weight w;, Do

w; — w; + Aw;

Summary

Perceptron training rule guaranteed to succeed if
e Training examples are linearly separable

o Sufficiently small learning rate 7

Linear unit training rule uses gradient descent

e Guaranteed to converge to hypothesis with minimum
squared error

e Given sufficiently small learning rate 7
e Even when training data contains noise

e Even when training data not separable by H

Demos

Multilayer Networks of Sigmoid Units

head  hid [} who'd  hood
C.a Ehe

Sigmoid Unit

1
0=o(net) = ———
1+e

o(z) is the sigmoid function

1
Liter®

Nice property: d‘;—fl =o(z)(1 - o(z))

Training Rule

Deriviative

of the
Single sigmoid unit (a“soft” perceptron) sigmoid
givesthis
AW =776% part

where the error term ¢ = o(1- 0)(t — 0)

Multi-Layered network

— Compute A values for output units, using observed
outputs
— For each layer from output back:
 Propagate the A values back to previous layer
* Update incoming weights




Backpropagation Algorithm
Initialize all weights to small random numbers
Until convergence, Do
For each training example, Do
1. Input it to network and compute network outputs
2. For each output unit &
8k — ok (1 — o) (tk — ox)
3. For each hidden unit h
6p — op(1 —op) Z wh, k0k
ke€outputs
4. Update each network weight w; ;
Wi j = wij + Aw,j

where Aw; ; = né;z; ;

Backpropagation Algorithm
Initialize all weights to small random numbers
Until convergence, Do
For each training example, Do
1. Input it to network and compute network outputs
2. For each output unit &
81— o (1 — op)(tk — ox)
3. For each hidden unit h
Sn—on(l—0n) > whkb

kEoutputs

weight w; ; Weighted
wij + Awg error

4. Update Derivative

of output

where Aw; ; = 10;%;,;

More on Backpropagation

Gradient descent over entire network weight vector

Easily generalized to arbitrary directed graphs

‘Will find a local, not necessarily global error minimum
— In practice, often works well
(can run multiple times)

Minimizes error over training examples
— Will it generalize well to subsequent examples?

Training can take thousands of iterations — slow!

Using network after training is very fast

Learning Hidden Layer Representations

Inputs Outputs
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A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned?

Learned hidden layer representation:

Input Hidden Output
Values
10000000 — .89 .04 .08 — 10000000
010000000 — .01 .11 .88 — 01000000
001000000 — .01 .97 .27 — 00100000
00010000 — .99 .97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001




Training

Sum of squared errors for each output unit
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Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
e Add momentum
o Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
o Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as training
progresses

Expressiveness of Neural Nets

Boolean functions:

e Every Boolean function can be represented by network
with single hidden layer

e But might require exponential (in number of inputs)
hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error,
by network with one hidden layer

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers

Overfitting in Neural Nets

Error versus weight updates (example 1)
0.01 T T T

0.009

Training set error . 4
Validation set error +

0008 [ E
0007 4

5
0006 | ‘\\\m
0005 [
0004 [
0003 [

0.002 G ;
0 5000 10000 15000 20000
Number of weight updates

Error




Be careful not to stop too soon!

Error versus weight updates (example 2)
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Overfitting Avoidance

Penalize large weights:

E(W) = %Z Z (tka — oka)? +~/wa1

deD k€outputs i

Train on target slopes as well as values:

. 1 o, Do
B =3Y X |t eu Y (G- o

deD k€outputs j€inputs

Weight sharing
Early stopping

)]

Neural Nets for Face Recognition

left strt rght up

RN

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Hidden Unit Weights

left strt rght up

Learned Weights

Elald

Typical input images

Neural Networks: Summary

e Perceptrons
e Gradient descent
e Multilayer networks

e Backpropagation

Break!




Data Mining

» What is the difference between machine
learning and data mining?

Data Mining

= What is the difference between machine
learning and data mining?
= Scale — DM is ML in the large
= Focus — DM is more interested in finding
“interesting” patterns than in learning to
classify data

Data Mining

» What is the difference between machine
learning and data mining?

= Scale — DM is ML in the large

= Focus — DM is more interested in finding
“interesting” patterns than in learning to
classify data

= Marketing!

I
Data Mining:

Association Rules

Mining Association Rules in
Large Databases

Introduction to association rule mining

Mining single-dimensional Boolean association rules
from transactional databases

Mining multilevel association rules from transactional
databases

Mining multidimensional association rules from
transactional databases and data warehouse

Constraint-based association mining
= Summary




What Is Association Rule

{ Mining?

m Association rule mining:

m Finding frequent patterns, associations, correlations, or
causal structures among sets of items or objects in
transaction databases, relational databases, and other
information repositories.

m Applications:

m Basket data analysis, cross-marketing, catalog design, loss-

leader analysis, clustering, classification, etc.
m Examples:

m Rule form: “Body — Head [support, confidence]”.

m buys(x, “diapers”) — buys(x, “beers”) [0.5%, 60%]

m major(x, “CS”) ™ takes(x, "DB”) — grade(x, “A”) [1%, 75%]

Association Rules: Basic Concepts

Given: (1) database of transactions, (2) each transaction is
a list of items (purchased by a customer in a visit)
= Find: all rules that correlate the presence of one set of
items with that of another set of items
= E.g., 98% of people who purchase tires and auto
accessories also get automotive services done
Applications
= 7= Maintenance Agreement (What the store should
do to boost Maintenance Agreement sales)
= Home Electronics = ? (What other products should
the store stocks up?)
» Attached mailing in direct marketing

Association Rules: Definitions

» Setof items: I = {iy, iy, ..y i}

= Set of transactions: D = {d,, d,, ..., d.}
Eachd,c1

= An association rule: A = B
whereAc,BcLAnB=0O

. A e Means that to some extent A
implies B.
¢ Need to measure how strong the

I O B implication is.

Association Rules: Definitions II

= The probability of a set A:

P(A)ZZiT(Al’di) Where: C(X,Y)=
D

» k-itemset. tuple of items, or sets of items:
Example: {A,B} is a 2-itemset

. The probability of {A,B} is the probability of the set

AUB, that is the fraction of transactions that contain

both A and B. Not the same as P(AnB).

lif XcVY
Odse

Association Rules: Definitions III

» Supportof a rule A = B is the probability of the
itemset {A,B}. This gives an idea of how often
the rule is relevant.

= support(A = B ) = P({A,B})

» Confidence of a rule A = B is the conditional
probability of B given A. This gives a measure
of how accurate the rule is.

= confidence(A = B) = P(B|A)
= support({A,B}) / support(A)

Rule Measures: Support and

Confidence

B = Find all the rules X = Ygiven
thresholds for minimum confidence
and minimum support.
= support, s, probability that a

v transaction contains {X, Y}
X: Customer Customer = confidence, ¢ conditional
buys beer buys diaper probability that a transaction

having X also contains Y
Transaction ID Items Bought With minimum support 50%,
2000 AB,C and minimum confidence

1000 A,C 50%, we have
4000 AD « A= C (50%, 66.6%)
5000 B.E,F » C= A (50%, 100%)




Association Rule Mining: A Road Map

= Boolean vs. guantitative associations (Based on the types of values
handled)

m buys(x, “SQLServer”) ~ buys(x, "DMBook”) — buys(x, “DBMiner”)
[0.2%, 60%]
= age(x, “30..39”) ~ income(x, “42..48K") — buys(x, “PC") [1%, 75%]
= Single dimension vs. multiple dimensional associations (see ex. Above)
= Single level vs. multiple-level analysis
= What brands of beers are associated with what brands of diapers?
= Various extensions and analysis
= Correlation, causality analysis
m Association does not necessarily imply correlation or causality
= Maxpatterns and closed itemsets
m Constraints enforced
= E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?

Mining Association Rules in
{ Large Databases
Association rule mining

Mining single-dimensional Boolean association rules
from transactional databases

Mining multilevel association rules from transactional
databases

Mining multidimensional association rules from
transactional databases and data warehouse

= From association mining to correlation analysis
Constraint-based association mining
= Summary

Mining Association Rules—An Example

Transaction ID |Items Bought Min. support 50%
2000 AB,C Min. confidence 50%
1000 AC
4000 A,D E&;&quent Itemset) Supg)soor/t
0
5000 B,E,F (8) 50%
{C} 50%
Forrue A= C {A.C} 50%

support = support({4, C}) = 50%

confidence = support({4, C})/support({A}) = 66.6%
The Apriori principle:

Any subset of a frequent itemset must be frequent

Mining Frequent Itemsets: the
{ Key Step

= Find the frequent itemsets: the sets of items that have
at least a given minimum support
= A subset of a frequent itemset must also be a
frequent itemset
= i.e., if {4, B} is a frequent itemset, both {4} and {5}
should be a frequent itemset
= Iteratively find frequent itemsets with cardinality
from 1 to k& (kitemset)
= Use the frequent itemsets to generate association
rules.

The Apriori Algorithm

= Join Step: C, is generated by joining L with itself

= Prune Step: Any (k-1)-itemset that is not frequent cannot be
a subset of a frequent k-itemset

= Pseudo-code:
G, : Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items}
for (k= 1; L, '=0; k++) do begin
G+, = candidates generated from L,
for each transaction ¢in database do
increment the count of all candidates in G,
that are contained in ¢
Ly,; = candidates in G, with min_support
end
return U, ,;

The Apriori Algorithm — Example

Database D itemset] sup.| | [itemset[sup.
TID |ltems C,| {13 2 {1} >
100|134 {2} 3 || {2 3
200235 |SnD| (31 | 3 @ | 3
300(1235 @ |1 51 =
400|2 5 5 | 3 :
C; [itemsef sup C, [itemset
L, [itemset[sup @2t | 1| ScanD {12}
{13} | 2 {13} | 2 {13}
@23 |2 |—| @5 |1 {15}
I HBEIHEE
(351 2 {35} | 2 {3 5}
Cslitemsef]  seanp  Lslitemset|sup
{235} 2
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How to do Generate Candidates?

= Suppose the items in £, are listed in an order
= Step 1: self-joining Z,_,

insert into G,

select p.item,, p.item,, ..., p.item,_,, q.item,_,

from Ly, P Lys q

where p.item,=q.itemy, ..., p.item,_,=q.item,_, p.item, ; <

q.item,._,

= Step 2: pruning

forall itemsets c in C, do

forall (k-1)-subsets s of cdo
if (s is not in L, ,) then delete cfrom G,

Example of Generating Candidates

= L;={abc, abd, acd, ace, bcdy
= Self-joining: £;*L;
= abcd from abc and abd
= gcde from acdand ace
= Pruning:
= acdeis removed because adeis not in L,
= C={abcdy

Methods to Improve Apriori’s Efficiency

= Hash-based itemset counting: A A-itemset whose corresponding
hashing bucket count is below the threshold cannot be frequent

= Transaction reduction: A transaction that does not contain any
frequent k-itemset is useless in subsequent scans

= Partitioning: Any itemset that is potentially frequent in DB must be
frequent in at least one of the partitions of DB

= Sampling: mining on a subset of given data, lower support
threshold + a method to determine the completeness

= Dynamic itemset counting: add new candidate itemsets only when
all of their subsets are estimated to be frequent

Is Apriori Fast Enough? — Performance
Bottlenecks

= The core of the Apriori algorithm:

= Use frequent (k— 1)-itemsets to generate candidate frequent -
itemsets

= Use database scan and pattern matching to collect counts for the
candidate itemsets
= The bottleneck of Apriori: candidate generation

= Huge candidate sets:
» 10* frequent 1-itemset will generate 107 candidate 2-itemsets
» To discover a frequent pattern of size 100, e.g., {a;, a,, ...,

aj00}, ONE needs to generate 2190~ 10%° candidates.

= Multiple scans of database:

= Needs (n+1) scans, n is the length of the longest pattern

Mining Frequent Patterns Without
Candidate Generation

Compress a large database into a compact, Frequent-

Pattern tree (FP-tree) structure

= highly condensed, but complete for frequent pattern
mining

= avoid costly database scans

Develop an efficient, FP-tree-based frequent pattern
mining method

» A divide-and-conquer methodology: decompose mining
tasks into smaller ones

= Avoid candidate generation: sub-database test only!

Presentation of Association Rules
I (Table Form )

| Impies |'Supp o) [ Conft | F | 6 | W | 1 [T
n6 Il
26 B0
(x) = 0.00~100.00 5917 8404
060 000010 [ —r
2% a2m
fr -
¥ s B s
‘cost(x) = '1000.00~2000,00° 1281 1567
regont) = Urtad e Y
cost(x) = 0.00~1000 00 59.17. 7186
I
9o 2m
i
F T
2% 7w
5 Y-
ardr ) = D00-1000 F Y-
o) DO0-100 0 e s
‘cost(x) = 0.00~1000 00 2046 100
)= DO0-100 e
) = y ==, revenue(y)= 0.00~50000" AND
2 [costig = D00~ 100000 o St B a4
2 Jeosto= vco-io000m > rsty= 0050000 PR
25 oosig = D00-100000 = oty 0 7o
. 3 - 0.00-1000 0 AKD
% [eon9 = De0-1c0000 = ) S0 we 29
;) - D40 0000 A0 ==>revenue(y) = S00.00~1000 00 1857 B2 -

order_aty() = DO~
ShostT

b}




Visualization of Association Rule Using Plane Graph
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Visualization of Association Rule Using Rule Graph

£ DBMiner ol

Help

s Ele i
[CIET= N

Forbielp press £

Education Leve| = [High Sehool Degree]

) s =
Gender=F] M

Gonder= ]

Education Level= [Partal Colegef,

Forbielp press £ [ o |

Mining Association Rules in
{ Large Databases
Association rule mining

Mining single-dimensional Boolean association rules
from transactional databases

Mining multilevel association rules from transactional
databases

Mining multidimensional association rules from
transactional databases and data warehouse

= From association mining to correlation analysis
Constraint-based association mining
= Summary

Multiple-Level Association Rules

= Items often form hierarchy.
= Items at the lower level are
expected to have lower
support.

Rules regarding itemsets at
appropriate levels could be
quite useful.

Transaction database can be

encoded based on
T2 {111, 211, 222, 323}

dimensions and levels
V\II I I hv d Iti- T3 {112,122, 221, 411}
e can explore shared multi- -, (111, 121}

level mining

TID Items

T1 {111,121, 211, 221}

T5 {111,122, 211, 221, 413}

Mining Multi-Level Associations

= A top_down, progressive deepening approach:

= First find high-level strong rules:
milk — bread [20%, 60%].

= Then find their lower-level “weaker” rules:
2% milk — wheat bread [6%, 50%].

= Variations at mining multiple-level association rules.
= Level-crossed association rules:
2% milk — Wonder wheat bread

= Association rules with multiple, alternative
hierarchies:

2% milk — Wonder bread

Mining Association Rules in
{ Large Databases
Association rule mining

Mining single-dimensional Boolean association rules
from transactional databases

Mining multilevel association rules from transactional
databases

Mining multidimensional association rules from
transactional databases and data warehouse

Constraint-based association mining
= Summary
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Multi-Dimensional Association:
Concepts

= Single-dimensional rules:
buys(X, *milk”) = buys(X, “bread”)
= Multi-dimensional rules: O 2 dimensions or predicates
= Inter-dimension association rules (no repeated
predicates)
age(X,"19-25") A occupation(X,“student”) = buys(X,"coke”)
» hybrid-dimension association rules (repeated predicates)
age(X,"19-25") A buys(X, “popcorn”) = buys(X, “coke")
= Categorical Attributes
= finite number of possible values, no ordering among
values
= Quantitative Attributes
= numeric, implicit ordering among values

Techniques for Mining MD
Associations

= Search for frequent k-predicate set:
= Example: {age, occupation, buys} is a 3-predicate
set.

= Techniques can be categorized by how age are
treated.

1. Using static discretization of quantitative attributes

= Quantitative attributes are statically discretized by
using predefined concept hierarchies.

2. Quantitative association rules

= Quantitative attributes are dynamically discretized
into “bins” based on the distribution of the data.

Quantitative Association Rules

= Numeric attributes are dynamically discretized

= Such that the confidence or compactness of the rules
mined is maximized.

= 2-D quantitative association rules: Ayy,ng A Aguany = Acst

= Cluster “adjacent” T

S 040K [
association rules i
60-70K |

to form general  income I —

50-60K

rules using a 2-D [ o o

gl‘ld 40-50K

30-40K

= Example:

20-30K

<20K

age(X,” 30-34") A income(X,” 24K - 48K")
= buys(X,” high resolution TV")

Mining Association Rules in
{ Large Databases
Association rule mining

Mining single-dimensional Boolean association rules
from transactional databases

Mining multilevel association rules from transactional
databases

Mining multidimensional association rules from
transactional databases and data warehouse

Constraint-based association mining
= Summary

Mining Association Rules in
{ Large Databases
= Association rule mining

= Mining single-dimensional Boolean association rules
from transactional databases

Mining multilevel association rules from transactional
databases

Mining multidimensional association rules from
transactional databases and data warehouse

Constraint-based association mining
= Summary

Constraint-Based Mining

= Interactive, exploratory mining giga-bytes of data?
= Could it be real? — Making good use of constraints!
= What kinds of constraints can be used in mining?
= Knowledge type constraint: classification, association,
etc.
= Data constraint: SQL-like queries
= Find product pairs sold together in Vancouver in Dec.98.
= Dimension/level constraints:
= in relevance to region, price, brand, customer category.
= Rule constraints
= small sales (price < $10) triggers big sales (sum > $200).

= Interestingness constraints:
= strong rules (min_support > 3%, min_confidence > 60%).

13



Rule Constraints in Association Mining

= Two kind of rule constraints:
= Rule form constraints: meta-rule guided mining.
= P(x,y) ~ Q(x, w) — takes(x, “database systems”).
= Rule (content) constraint: constraint-based query
optimization (Ng, et al., SIGMOD98).

= sum(LHS) < 100 ~ min(LHS) > 20 ~ count(LHS) > 3 ~ sum(RHS) >
1000

= 1-variable vs. 2-variable constraints (Lakshmanan, et al.
SIGMOD'99):

= 1-var: A constraint confining only one side (L/R) of the
rule, e.g., as shown above.

= 2-var: A constraint confining both sides (L and R).
= sum(LHS) < min(RHS) ~ max(RHS) < 5* sum(LHS)

Constrained Association Query
Optimization Problem

= Given a CAQ ={ (853, &) / C}, the algorithm should be :

= sound: It only finds frequent sets that satisfy the
given constraints C

= complete: All frequent sets satisfy the given
constraints C are found

= A naive solution:
= Apply Apriori for finding all frequent sets, and then
to test them for constraint satisfaction one by one.
= More advanced approach:
= Comprehensive analysis of the properties of
constraints and try to push them as deeply as
possible inside the frequent set computation.

Summary

= Association rules offer an efficient way to mine
interesting probabilities about data in very large
databases.

= Can be dangerous when misinterpreted as signs
of statistically significant causality.

= The basic Apriori algorithm and it's extensions
allow the user to gather a good deal of
information without too many passes through
data.

b

Data Mining:
Clustering

Preview

= Introduction

= Partitioning methods

» Hierarchical methods

» Model-based methods
= Density-based methods

What is Clustering?

Cluster: a collection of data objects

= Similar to one another within the same cluster
= Dissimilar to the objects in other clusters
Cluster analysis

= Grouping a set of data objects into clusters

Clustering is unsupervised classification:
no predefined classes

Typical applications

= As a stand-alone tool to get insight into data
distribution

= As a preprocessing step for other algorithms

14



Examples of Clustering Applications

= Marketing: Help marketers discover distinct groups in their
customer bases, and then use this knowledge to develop
targeted marketing programs

Land use: Identification of areas of similar land use in an
earth observation database

Insurance: Identifying groups of motor insurance policy
holders with a high average claim cost

= Urban planning: Identifying groups of houses according to
their house type, value, and geographical location
Seismology: Observed earth quake epicenters should be
clustered along continent faults

What Is a Good Clustering?

= A good clustering method will produce
clusters with

» High intra-class similarity
» Low inter-class similarity
= Precise definition of clustering quality is difficult
= Application-dependent
» Ultimately subjective

Requirements for Clustering
{ in Data Mining

Scalability
Ability to deal with different types of attributes
Discovery of clusters with arbitrary shape

= Minimal domain knowledge required to determine
input parameters

Ability to deal with noise and outliers
Insensitivity to order of input records

= Robustness wrt high dimensionality
Incorporation of user-specified constraints
Interpretability and usability

Similarity and Dissimilarity
Between Objects

= Properties of a metric d(ij):
= d(ij)=0
wd(i)=0
= d(ij) = dg;i)
= d(ij) < d(ik) + d(k,j)

Major Clustering Approaches

= Partitioning: Construct various partitions and then evaluate
them by some criterion

= Hierarchical: Create a hierarchical decomposition of the set
of objects using some criterion

= Model-based: Hypothesize a model for each cluster and
find best fit of models to data

= Density-based: Guided by connectivity and density
functions

Partitioning Algorithms

= Partitioning method: Construct a partition of a database D
of nmobjects into a set of k clusters

= Given a &, find a partition of & clusters that optimizes the
chosen partitioning criterion

= Global optimal: exhaustively enumerate all partitions

= Heuristic methods: k-means and k-medoids algorithms

= k-means (MacQueen, 1967): Each cluster is
represented by the center of the cluster

= k-medoids or PAM (Partition around medoids)
(Kaufman & Rousseeuw, 1987): Each cluster is
represented by one of the objects in the cluster

15



{ K-Means Clustering

= Given &, the k-means algorithm consists of
four steps:

= Select initial centroids at random.

= Assign each object to the cluster with the
nearest centroid.

= Compute each centroid as the mean of the
objects assigned to it.

= Repeat previous 2 steps until no change.

= Example

K-Means Clustering (contd.)

K-Means Clustering (contd.)

= Example

e

= Example

K-Means Clustering (contd.)

e

K-Means Clustering (contd.)

= Example

|

= Example

K-Means Clustering (contd.)
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Comments on the K-Means Method

= Strengths
= Relatively efficient. (tkn), where nis # objects, kis
# clusters, and ¢ is # iterations. Normally, &, ¢ << n.

= Often terminates at a /ocal optimum. The global optimum
may be found using techniques such as simulated
annealing and genetic algorithms

= Weaknesses

= Applicable only when mean is defined (what about
categorical data?)

= Need to specify &, the number of clusters, in advance

= Trouble with noisy data and outliers

= Not suitable to discover clusters with non-convex shapes

Hierarchical Clustering

= Use distance matrix as clustering criteria. This method
does not require the number of clusters & as an input,
but needs a termination condition
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AGNES (Agglomerative Nesting)

= Produces tree of clusters (nodes)
= Initially: each object is a cluster (leaf)
= Recursively merges nodes that have the least dissimilarity

= Criteria: min distance, max distance, avg distance, center
distance

= Eventually all nodes belong to the same cluster (root)
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DIANA (Divisive Analysis)

= Inverse order of AGNES
= Start with root cluster containing all objects
= Recursively divide into subclusters

= Eventually each cluster contains a single object
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Other Hierarchical Clustering Methods

= Major weakness of agglomerative clustering methods

= Do not scale well: time complexity of at least (%),
where n7is the number of total objects

= Can never undo what was done previously
= Integration of hierarchical with distance-based clustering
= BIRCH: uses CF-tree and incrementally adjusts the
quality of sub-clusters
= CURE: selects well-scattered points from the cluster and
then shrinks them towards the center of the cluster by a
specified fraction

Model-Based Clustering

= Basic idea: Clustering as probability estimation
= One model for each cluster
» Generative model:

= Probability of selecting a cluster

= Probability of generating an object in cluster
= Find max. likelihood or MAP model
= Missing information: Cluster membership

= Use EM algorithm
= Quality of clustering: Likelihood of test objects
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l http://ic.arc.nasa.gov/ic/projects/bayes-group/autoclass/ ‘
AutoClass

n unsupervised Bayesian classification system that seeks a
maximum posterior probability classification.

Key features:
= determines the number of classes automatically;
= can use mixed discrete and real valued data;

= can handle missing values — uses EM (Expectation
Maximization)

processing time is roughly linear in the amount of the
a;

cases have probabilistic class membership;

allows correlation between attributes within a class;

generates reports describing the classes found; and

predicts "test" case class memberships from a "training"
classification

| o—

rom subtle differences between their infrared spectra, two
subgroups of stars were distinguished, where previously no
difference was suspected.

The difference is confirmed by looking at their positionson
this map of the galaxy.

Clustering: Summary

= Introduction

= Partitioning methods

= Hierarchical methods

= Model-based methods

b

= Next week: Making Decisions
= From utility theory to reinforcement learning

» Finish assignments!
» Start (or keep rolling on project) —

= Today's status report in my mail ASAP (next
week at the latest)
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