CSE 592 Applications of Artificial Intelligence

Henry Kautz Winter 2003

Today's Agenda

- Inductive learning
- Decision trees *break*
- Bayesian learning
- Neural nets

Inductive Learning

Appropriate Applications for Supervised Learning

- Situations where there is no human expert
- ${\bf x}:$ Bond graph for a new molecule. $f({\bf x}):$ Predicted binding strength to AIDS protease molecule.
- Situations where humans can perform the task but can't describe how
- they do it.
- $\mathbf{x}:$ Bitmap picture of hand-written character $f(\mathbf{x}):$ Ascii code of the character
- Situations where the desired function is changing frequently
- **x**: Description of stock prices and trades for last 10 days. $f(\mathbf{x})$: Recommended stock transactions
- Situations where each user needs a customized function *f*
- **x**: Incoming email message. $f(\mathbf{x})$: Importance score for presenting to user (or deleting without presenting).

Hypoth	ies	is	Sp	aces
 Complete Ignorance. There are 2 input features. We can't figure out wh input-output pair. After 7 examples, we 	nich e sti	= 6 one ll ha	i553 e is ave	6 possible boolean functions over four correct until we've seen every possible 2 ⁹ possibilities.
x_1	x_2	x_3	x_4	y
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	?
1	0	0	0	?
1	0	0	1	1
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0
1	1	0	1	?
1	1	1	0	?
1	1	1	1	?

н	Hypothesis Spaces (2)						
imple Rules. There are o	only 16 simple conjunc	tive rules.					
Rule	Cou	nterexample					
$\Rightarrow y$		1					
$x_1 \Rightarrow$	y	3					
$x_2 \Rightarrow$	y	2					
$x_3 \Rightarrow$	y	1					
$x_4 \Rightarrow$	y	7					
$x_1 \wedge$	$x_2 \Rightarrow y$	3					
$x_1 \wedge$	$x_3 \Rightarrow y$	3					
$x_1 \wedge$	$x_4 \Rightarrow y$	3					
$x_2 \wedge$	$x_3 \Rightarrow y$	3					
$x_2 \wedge$	$x_4 \Rightarrow y$	3					
$x_3 \wedge$	$x_4 \Rightarrow y$	4					
$x_1 \wedge$	$x_2 \land x_3 \Rightarrow y$	3					
$x_1 \land$	$x_2 \land x_4 \Rightarrow y$	3					
$x_1 \wedge$	$x_3 \land x_4 \Rightarrow y$	3					
$x_2 \wedge$	$x_3 \land x_4 \Rightarrow y$	3					
$x_1 \wedge$	$x_2 \land x_3 \land x_4 \Rightarrow y$	3					

Bias in Learning

- Hypothesis space
- Preferences over hypothesis
- Other prior knowledge

Without bias learning is impossible!

Terminology

- Training example. An example of the form $\langle \mathbf{x}, f(\mathbf{x}) \rangle$.
- Target function (target concept). The true function f.
- Hypothesis. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which f(x) = 1 are called positive examples or positive instances of the concept. Examples for which f(x) = 0 are called negative examples or negative instances.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in \{1, \dots, K\}$ are called the classes or class labels.
- Hypothesis Space. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Dav	Outlook	Temperature	Humidity	Wind	PlavTenni
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Hypothesis Space Search by ID3

- Hypothesis space is complete! – Target function surely in there...
- Outputs a single hypothesis (which one?) – Can't play 20 questions...
- No back tracking
- Local minima...
- \bullet Statisically-based search choices
- Robust to noisy data...
- \bullet Inductive bias: approx "prefer shortest tree"

Occam's Razor

Why prefer short hypotheses?

- Argument in favor:
- \bullet Fewer short hyps. than long hyps. \rightarrow a short hyp that fits data unlikely to be
- coincidence
- \rightarrow a long hyp that fits data might be coincidence

Argument opposed:

- \bullet There are many ways to define small sets of hyps
- e.g., all trees with a prime number of nodes that use attributes beginning with "Z"
- What's so special about small sets based on *size* of hypothesis??

Consider error of hypothesis \boldsymbol{h} over

• training data: $error_{train}(h)$

and

- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$
- Hypothesis $h\in H$ overfits training data if there is an alternative hypothesis $h'\in H$ such that

 $error_{train}(h) < error_{train}(h')$

 $error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$

Split data into $training \mbox{ and } validation$ set

- Do until further pruning is harmful:
- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves $validation\ {\rm set}\ {\rm accuracy}$
- \bullet produces smallest version of most accurate subtree
- What if data is limited?

Consider

- \bullet medical diagnosis, BloodTest has cost \$150
- \bullet robotics, $Width_from_1ft$ has cost 23 sec.

How to learn a consistent tree with low expected

cost? One approach: replace gain by

- Tan and Schlimmer (1990)
- $rac{Gain^2(S,A)}{Cost(A)}$
- Nunez (1988)

 $\frac{2^{Gain(S,A)}-1}{(Cost(A)+1)^w}$

where $w \in [0,1]$ determines importance of cost

Ensembles of Classifiers

- Idea: instead of training one classifier (decision tree)
- Train k classifiers and let them vote
 - Only helps if classifiers disagree with each other
 - Trained on different data
 - Use different learning methods
- Amazing fact: can help a lot!

How voting helps

- Assume errors are independent
- Assume majority vote
- · Probability majority is wrong = area under bionomial dist

- If individual area is 0.3
- Area under curve for ≥11 wrong is 0.026
- Order of magnitude improvement!

Constructing Ensembles

- Bagging
 - Run classifier *k* times on m examples drawn randomly with replacement from the original set of n examples
- Cross-validated committees
 - Divide examples into k disjoint sets
 - Train on k sets corresponding to original minus 1/k-th
- Boosting (Shapire)
 - Maintain a probability distribution over set of training examples
 - On each iteration, use distribution to sample
 - Use error rate to modify distribution
 - Create harder and harder learning problems

Summary

- Inductive learning
- Decision trees
- Representation
- Tree growth
- Heuristics
- Overfitting and pruning
- Scaling up
- Ensembles

Break!

Bayesian Learning

- Example: text classificat
- Bayesian networks
- EM algorithm

Two Roles for Bayesian Methods

Practical learning algorithms:

- Naive Bayes learning
- Bayesian network learning
- Combine prior knowledge with observed data
- Require prior probabilities

Useful conceptual framework:

- "Gold standard" for evaluating other learners
- Tools for analysis

Bayes' Theorem

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P(h) = prior probability of hypothesis h
- P(D) = prior probability of training data D
- P(h|D) = probability of h given D
- P(D|h) =probability of D given h

Choosing Hypotheses

Find most probable hypothesis given training data Maximum a posteriori hypothesis h_{MAP} :

$$\begin{split} h_{MAP} &= \arg\max_{h\in H} P(h|D) \\ &= \arg\max_{h\in H} \frac{P(D|h)P(h)}{P(D)} \\ &= \arg\max_{h\in H} P(D|h)P(h) \end{split}$$

Assuming $P(h_i) = P(h_j)$ we can further simplify, and choose the *Maximum likelihood* (ML) hypothesis

 $h_{ML} = \arg \max_{h_i \in H} P(D|h_i)$

Example

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only 98% of the cases in which the disease is actually present, and a correct negative result in only 97% of the cases in which the disease is not present. Furthermore, 0.008 of the entire population have this cancer.

P(cancer) =

- $P(\neg cancer) =$ P(+|cancer) =
- P(-|cancer) =
- $P(+|\neg cancer) =$
- $P(-|\neg cancer) =$
- P(cancer|+) =

So far we've sought the most probable hypothesis given the data D (i.e., $h_{MAP})$

Given new instance x, what is its most probable classification? Not $h_{MAP}(x)$!

Consider:

$$P(h_1|D) = .4, \ P(h_2|D) = .3, \ P(h_3|D) = .3$$

Given new instance
$$x$$
,
 $h_1(x) = +, h_2(x) = -, h_3(x) = -$

• What's most probable classification of x?

Naive Bayes Algorithm

Naive_Bayes_Learn(examples)

For each target value v_j

- $\hat{P}(v_j) \leftarrow \text{estimate } P(v_j)$
- For each attribute value a_i of each attribute a $\hat{P}(a_i|v_j) \leftarrow \text{estimate } P(a_i|v_j)$

 $Classify_New_Instance(x)$

 $v_{NB} = \operatorname*{argmax}_{v_j \in V} \hat{P}(v_j) \prod_{a_i \in x} \hat{P}(a_i | v_j)$

Naive Bayes: Example

Consider *PlayTennis* again, and new instance

 $\langle Outlk = sun, Temp = cool, Humid = high, Wind = strong \rangle$ Want to compute:

 $v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \prod_i P(a_i | v_j)$

 $\begin{array}{l} P(y) \ P(sun|y) \ P(cool|y) \ P(high|y) \ P(strong|y) = .005 \\ P(n) \ P(sun|n) \ P(cool|n) \ P(high|n) \ P(strong|n) = .021 \end{array}$

 $\rightarrow v_{NB} = n$

Learning to Classify Text

Why?

- Learn which news articles are of interest
- Learn to classify web pages by topic

Naive Bayes is among most effective algorithms

What attributes shall we use to represent text documents?

Learning to Classify Text Target concept Interesting? : Document → {+, -} Represent each document by vector of words: one attribute per word position in document Learning: Use training examples to estimate P(+) P(-) P(doc|+) P(doc|-)

$$P(doc|v_j) = \prod_{i=1}^{length(doc)} P(a_i = w_k|v_j)$$

where $P(a_i = w_k | v_j)$ is probability that word in position *i* is w_k , given v_j

One more assumption: $P(a_i = w_k | v_j) = P(a_m = w_k | v_j), \forall i, m$

- 1. Collect all words & tokens that occur in Examples
- $Vocabulary \leftarrow$ all distinct words & tokens in Examples
- 2. Compute all probabilities $P(v_j)$ and $P(w_k|v_j)$
- For each target value v_j in V do
 - $docs_j \leftarrow Examples$ for which the target value is v_j $\begin{array}{l} -P(v_j) \leftarrow \frac{|docsj|}{|Examples|} \\ - Text_j \leftarrow \text{concatenate all members of } docs_j \end{array}$
- $-n \leftarrow \text{total number of words in } Text_j$ (counting
- duplicate words multiple times)
- for each word w_k in *Vocabulary*
- * $n_k \leftarrow$ number of times word w_k occurs in $Text_j$
- * $P(w_k|v_j) \leftarrow \frac{n_k+1}{n+|Vocabulary|}$

Learn to classify new documents according to which newsgroup it came from

> comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x alt.atheism soc.religion.christian talk.religion.misc talk.politics.mideast talk.politics.misc

Naive Bayes: 89% classification accuracy

The EM Algorithm

Suppose structure known, variables partially observable

E.g., observe ForestFire, Storm, BusTourGroup, Thunder, but not Lightning, Campfire \dots

Initialize parameters ignoring missing information

Repeat until convergence:

- **E step:** Calculate expected vals of unobserved variables, assuming current parameter values

Unknown Structure

Search:

- $\bullet\,$ Initial state: empty network, prior network
- $\bullet\,$ Operators: Add arc, delete arc, reverse arc
- Evaluation: Posterior probability

Bayesian Learning: Summary

- Optimal prediction
- Naive Bayes learner
- Text classification
- Bayesian networks
- EM algorithm

Connectionist Models

Consider humans:

- Neuron switching time \sim .001 second
- Number of neurons $\sim 10^{10}$
- + Connections per neuron $\sim 10^{4-5}$
- Scene recognition time \sim .1 second
- 100 inference steps doesn't seem like enough
- \Rightarrow Much parallel computation

Properties of neural nets:

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically

Can prove it will converge if

- Training data is linearly separable
- η sufficiently small

Gradient Descent To understand, consider simpler *linear unit*, where $o = w_0 + w_1 x_1 + \dots + w_n x_n$ Let's learn w_i 's that minimize the squared error $E[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$ Where D is set of training examples

Gradient Descent

GRADIENT-DESCENT(training_examples, η) Initialize each w_i to some small random value Until the termination condition is met, Do

- Initialize each Δw_i to zero.
- For each $\langle \vec{x},t\rangle$ in $training_examples,$ Do
 - Input instance \vec{x} to unit and compute output o
 - For each linear unit weight w_i , Do

 $\Delta w_i \leftarrow \Delta w_i + \eta (t-o) x_i$

• For each linear unit weight $w_i,$ Do $w_i \leftarrow w_i + \Delta w_i$

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule uses gradient descent

- Guaranteed to converge to hypothesis with minimum squared error
- + Given sufficiently small learning rate η
- Even when training data contains noise
- $\bullet\,$ Even when training data not separable by H

Batch vs. Incremental Gradient Descent

Batch Mode Gradient Descent: Do until convergence 1. Compute the gradient $\nabla E_D[\vec{w}]$

2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_D[\vec{w}]$

Incremental Mode Gradient Descent:
Do until convergence
For each training example
$$d$$
 in D
1. Compute the gradient $\nabla E_d[\vec{w}]$
2. $\vec{w} \leftarrow \vec{w} - \eta \nabla E_d[\vec{w}]$

$$E_D[\vec{w}] \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$
$$E_d[\vec{w}] \equiv \frac{1}{2} (t_d - o_d)^2$$

Incremental Gradient Descent can approximate Batch Gradient Descent arbitrarily closely if η made small enough

Error Gradient for a Sigmoid Unit

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2$$

$$= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$$

$$= \sum_d (t_d - o_d) \left(-\frac{\partial o_d}{\partial w_i}\right)$$

$$= -\sum_d (t_d - o_d) \frac{\partial o_d}{\partial net_d} \frac{\partial net_d}{\partial w_i}$$

$$\begin{split} \frac{\partial E}{\partial net_j} &= \sum_{k \in Outs(j)} \frac{\partial E}{\partial net_k} \frac{\partial net_k}{\partial net_j} \\ &= \sum_{k \in Outs(j)} -\delta_k \frac{\partial net_k}{\partial net_j} \\ &= \sum_{k \in Outs(j)} -\delta_k \frac{\partial net_k}{\partial o_j} \frac{\partial o_j}{\partial net_j} \\ &= \sum_{k \in Outs(j)} -\delta_k w_{kj} \frac{\partial o_k}{\partial net_j} \\ &= \sum_{k \in Outs(j)} -\delta_k w_{kj} o_j(1-o_j) \\ \delta_j &= -\frac{\partial E}{\partial net_j} = o_j(1-o_j) \sum_{k \in Outs(j)} \delta_k w_{kj} \end{split}$$

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Input	Input Hidden				Output			
	Values							
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Convergence of Backpropagation

Gradient descent to some local minimum

- Perhaps not global minimum...
- Add momentum
- Stochastic gradient descent
- Train multiple nets with different inital weights

Nature of convergence

- Initialize weights near zero
- Therefore, initial networks near-linear
- Increasingly non-linear functions possible as training progresses

Expressiveness of Neural Nets

Boolean functions:

- Every Boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers

