CSE 592
Applications of Artificial
Intelligence

Henry Kautz
Winter 2003

Today’'s Agenda

Inductive learning
e Decision trees
break

» Bayesian learning

¢ Neura nets

Inductive Learning

Supervised Learning

« Given: Training examples (x, f(x)) for some unknown function f.

o Find: A good approximation to f.

Example Applications

o Credit risk assessment
x: Propertics of customer and proposed purchase.
f(x): Approve purchase or not.

« Disease diagnosis

x: Properties of patient (symptoms, lab tests)
F(x): Discase (or maybe, recommended therapy)

© Face recognition

x: Bitmap picture of person’s face

f(x): Name of the person.

o Automatic Steering

x: Bitmap picture of road surface in front of car.
f(x): Degrees to turn the steering wheel.

Appropriate Applications for Supervised Learning

o Situations where there is no human expert
x: Bond graph for a new molecule
f(x): Predicted binding strength to AIDS protease molecule.

o Situations where humans can perform the task but can’t describe how
they do it.
x: Bitmap picture of hand-written character
f(x): Ascii code of the character

« Situations where the desired function is changing frequently
x: Description of stock prices and trades for last 10 days.
F(): Recommended stock transactions

« Situations where each user needs a customized function f
x: Incoming email message.

F(x): Tmportance score for presenting to user (or deleting without presenting)

Xl ——>
2 —>
3 ——>f

A Learning Problem

Unknown

Function

Example o1 7 33 o1y
1 001 00
2 01000
3 00 1 11
4 100 11
5 01100
6 110 00
7 010 1o




Hypothesis Spaces

« Complete Ignorance. There arc 2'6 = 65536 possible boolean functions over four
input features. We can’t figure out which one is correct until we've seen every possible
input-output pair. After 7 examples, we still have 2° possibilitics.

Z1 T2 T3 Ta|Y
000 0|7
000 17
00 1 00
4 0 &t 1|1
0 10 00
010 10
011 00
611 1]?
100 of?
100 11
101 0f?
101 1|?
110 ofo
118 %r
1101 o0f?
111 1]?

Hypothesis Spaces (2)
 Simple Rules. There are only 16 simple conjunctive rules.

Rule Counterexample
>y 1
Ty
T3>y
Ty
=y

@ Am=>y
z Azg=y
T ATy

ATy

@ ATy

@3 Az =y

T Az ATy

T AT ATy

z Az ATy
AT ATy

T AT AT ATy

W W A e s e e N m N W

No simple rule explains the data. The same is true for simple clauses.

Hypothesis Space (3)
© m-of-n rules. There are 32 possible rules (includes simple conjunctions and clauses).

Counterexample

variables  1-of 2-of 3-of d-of
{1} 3

{z2} 2 - -

{zs} 1

{za} 7

{enz} 3

{z1,25} 1

{enz) 6

{eaz} 2

2

1

1

2

1

1

1

Bingo!
Isit necessarily the

answer?
{z2, 21}

{zs, 4}
{e1, 22,23}
{e1, 22,24}
{z1, 23,21}
{z2, 23,24}

{z1, 22,25, 24}

woffounoenso
“

Hypothesis Space (3)
© m-of-n rules. There are 32 possible rules (includes simple conjunctions and clauses).

Counterexample
variables  1-of 2-of 3-of 4-of
{z1}
{z2}
{zs}
{1}
{z1,22}
{2123}
{z1,24}
{2,235}
{z2, 21}
{zs,24}
{e1, 22,23}
{z1, 72,24}
{z1. 23,24}
{z2,25,24}
{1, 72,23, 24}

Bingo!
Isit necessarily the
answer?

Xy A=K

A U

woffounoenso
“

Biasin Learning

» Hypothesis space
* Preferences over hypothesis
* Other prior knowledge

Without bias learning isimpossible!

Terminology

o Training example. An example of the form (x, f(x))
o Target function (target concept). The true function f
« Hypothesis. A proposed function h believed to be similar to f.

o Concept. A boolean function. Examples for which f(x) = 1 arc called positive ex-
amples or positive instances of the concept. Examples for which £(x) = 0 are called

8 or neg;

o Classifier. A discrete-valued function. The possible values f(x) € {1, ..., K } are called

the classes or class labels.
« Hypothesis Space. The space of all hypotheses that can, in principle, be output by a
learning algorithm

o Version Space. The space of all hypotheses in the hypothesis space that have not yet
been ruled out by a training example.




Decision Trees

Training Examples

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2  Sunny Hot High  Strong No
D3 Overcast Hot High  Weak Yes
D4  Rain Mild High  Weak Yes
D5  Rain Cool Normal = Weak Yes
D6  Rain Cool Normal = Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High  Weak No
D9  Sunny Cool Normal Weak Yes
D10  Rain Mild Normal =~ Weak Yes
D11  Sunny Mild Normal = Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High  Strong No

Decision Tree Hypothesis Space

o Internal nodes test the value of particular features z; and branch according to the
results of the test.

o Leaf nodes specify the class h(x).

Sunny  Overcast Rain
Hu chs
High  Normal Sirong  Weak
" ® £ n

Suppose the features are Outlook (z1), Temperature (z), Humidity (z3), and Wind
(@4). Then the feature vector x = (Sunny, Hot, High, Strong) will be classified as No. The
Temperature feature s irrelevant,

Decision Tree Hypothesis Space

Tf the features are continuous, internal nodes may test the value of a feature against a threshold.

Sunny Overcast Rain
|
>75% <=15% >20 <=20
/ \ / \
No Yes No Yes

Decision Tree Decision Boundaries

Decision trees divide the feature space into axis-parallel rectangles, and label each rectangle
with one of the K classes.

x2<3
x2 .
1
6 xl<4 x1<3
1 1 I /\ /\
0 0 1 x2<4 1
4 0 /\
0 1
0 1
0
s ol
0 1
0 1
0
0 2 4 6 x1

Decision Trees Can Represent Any Boolean Function

x2
x1<05

x2<0.5 x2<05

The tree will in the worst case require exponentially many nodes, however.

Variable-sized hypothesis space

Number of possible hypotheses grows with
depth of tree




Top-Down Induction of Decision Trees

Main loop:
1. A + the “best” decision attribute for next node
2. Assign A as decision attribute for node

3. For each value of A, create new descendant of
node

4. Sort training examples to leaf nodes

5.1f training examples perfectly classified, Then
STOP, Else iterate over new leaf nodes

Which attribute is best?
A1=? [29+,35-1 A2=?

[29+,35-]

1 f f

121%,5-1  8+,30-1 18+, 33-1  [11+,2-]

How can this
algorithm be viewed
as a state-space
search problem?

Entropy

Entcopy(S)

e S is a sample of training examples

© py, is the proportion of positive examples in S
© p, is the proportion of negative examples in S
o Entropy measures the impurity of S

Entropy(S) = —py logyps, — pology pe

Entropy

Entropy(S) = expected number of bits needed to
encode class (& or &) of randomly drawn
member of S (under the optimal, shortest-length

code)

Why?

Information theory: optimal length code assigns
—log, p bits to message having probability p.

So, expected number of bits to encode & or & of

random member of S:

po(—logypp) + po(—logy po)

Entropy(S) = —pqg10gs py — pologa poy

Information Gain

Gain(S, A) = expected reduction in entropy due to
sorting on A

Gain(S, A) = Entropy(S) — ¥ @Entmpy(sf)
veValues(4) |S|

A1=? [29+,35-] A2=?

[29+,35-]

1 f f

[21%,5-]  [8+,30-] [18+,33-]  [11+,2-]

Training Examples

Selecting the Next Attribute

‘Which attribute is the best classifier?

5 [9+.5] S P45

Day Outlook Temperature Humidity Wind PlayTennis
D1  Sunny Hot High  Weak No
D2 Sunny Hot High  Strong No
D3 Overcast Hot High Weak Yes
D4  Rain Mild High  Weak Yes
D5  Rain Cool Normal =~ Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak Yes
D10  Rain Mild Normal Weak Yes
D11  Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal =~ Weak Yes
D14 Rain Mild High  Strong No

Gain (S, Humidity )
= 940+ (7/14)985 - (7/14)592
51

Gain (s, Wind)
=940 (3/14)811 - (6114)1.0
S




(DL.D2,....DL4]
[9+5-]

/Sunm‘ 0\'el|r1m Rmn\
{D1.D2,D8,D9,D11} {D3,D7.D12.D13} {D4,D5.D6.D10.D14}

[2+ [4+.0-]

&

Which attribute should be tested here?

[3+:

Ssunny = (DLD2,DSDIDLL]
Gain (Sgyppy - Humidity) = 970 ~ (3/5)00 ~ (2/5)00 = 970
Gaint (Ssunny » Temperature) = 970 — (2/5)00 — (2/5) 1O = (1/5)0.0 = 570
Gain (Sgyunys Wind) = 970 - (25) 1.0 - (3/5) 918 = 019

Hypothesis Space Search by ID3

Hypothesis Space Search by ID3

o Hypothesis space is complete!
— Target function surely in there...

e Outputs a single hypothesis (which one?)
— Can’t play 20 questions...

® No back tracking
— Local minima...

e Statisically-based search choices
—Robust to noisy data...

e Inductive bias: approx “prefer shortest tree”

Occam’s Razor

Why prefer short hypotheses?
Argument in favor:
o Fewer short hyps. than long hyps.

— a short hyp that fits data unlikely to be
coincidence

— a long hyp that fits data might be coincidence

Argument opposed:
e There are many ways to define small sets of hyps
ee.g., all trees with a prime number of nodes that
use attributes beginning with “Z”

e What’s so special about small sets based on size
of hypothesis??

Overfitting in Decision Trees

Consider adding noisy training example #15:
Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

S»wny Overcast Rain

% %

H:gh Nanmn sir w WmA

No )’r: No y;:

Overfitting

Consider error of hypothesis h over
e training data: erroryqin(h)
e entire distribution D of data: errorp(h)

Hypothesis h € H overfits training data if there is
an alternative hypothesis ' € H such that

erroriin(h) < erroryain(h)

and
errorp(h) > errorp(h')




Overfitting in Decision Tree Learning

Accuracy

06 On taining data —
ntest data -

0 1o 20 30 40 0 6 70 8 5 100
Size ofteee (nurabert of nodes)

Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically

significant

o grow full tree, then post-prune

How to select “best” tree:

o Measure performance over training data

o Measure performance over separate validation

data set

o MDL: minimize
size(tree) + size(misclassifications(tree))

Reduced-Error Pruning

Split data into training and validation set
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

o What if data is limited?

Effect of Reduced-Error Pruning

Accutacy

06 Ontaining data.
test

On test data (during pruning)

Size of uee (number of nodes)

100

Attributes with Costs

Consider

o medical diagnosis, BloodTest has cost $150

e robotics, Width_from_1ft has cost 23 sec.
How to learn a consistent tree with low expected

cost?
One approach: replace gain by

e Tan and Schlimmer (1990)
Gain®(S, A)
Cost(A)
o Nunez (1988)
9Gain(S.4) _ 1
(Cost(4) +1)*

where w € [0,1] determines importance of cost

Scaling Up

e ID3, C4.5, etc. assume data fits in main memory
(OK for up to hundreds of thousands of examples)

e SPRINT, SLIQ: multiple sequential scans of data

(OK for up to millions of examples)

e VEFDT: at most one sequential scan
(OK for up to billions of examples)




Ensembles of Classifiers

* ldea: instead of training one classifier
(decision tree)
 Train k classifiers and let them vote

— Only helpsif classifiers disagree with each
other

— Trained on different data
— Use different learning methods
» Amazing fact: can help alot!

How voting helps

* Assume errors are independent
¢ Assume mgority vote

* Probability majority iswrong = area under bionomial dist

Prob 0.2

Number of classifiersin error
« If individual areais 0.3

* Areaunder curvefor 211 wrongis 0.026

* Order of magnitude improvement!

Constructing Ensembles

* Bagging
— Run classifier k times on m examples drawn randomly with
replacement from the original set of n examples
» Cross-validated committees
— Divide examplesinto k digoint sets
— Train on k sets corresponding to origina minus 1/k-th
* Boosting (shapire)

— Maintain aprobability distribution over set of training
examples
— On each iteration, use distribution to sample
— Use error rate to modify distribution
« Create harder and harder learning problems

Summary

* Inductive learning
e Decision trees
— Representation
— Tree growth
— Heuristics
— Ovefitting and pruning
— Scaling up
¢ Ensembles

Break!

Bayesian Learning




Preview

Bayes’ theorem

MAP learners

Bayes optimal classifier
Naive Bayes learner
Example: text classification
Bayesian networks

EM algorithm

Two Roles for Bayesian Methods

Practical learning algorithms:
e Naive Bayes learning
e Bayesian network learning
o Combine prior knowledge with observed data

e Require prior probabilities

Useful conceptual framework:
e “Gold standard” for evaluating other learners

e Tools for analysis

Bayes’ Theorem

P(D|R)P(h)
P(h|D) = — "=
(kD) = ZES
P(h) = prior probability of hypothesis h
P(D) = prior probability of training data D
P(h|D) = probability of h given D
P(D|h) = probability of D given h

Choosing Hypotheses

Find most probable hypothesis given training data
Mazimum a posteriori hypothesis hpysap:
h = P(h|D
MAP arg 1)5153131‘ (h|D)

P(D|h)P(h)
TN T P(D)
= argmax P(D|h)P(h)

Assuming P(h;) = P(h;) we can further simplify,
and choose the Mazimum likelihood (ML) hypothesis

harr = arg max P(D]hi)

Example

Does patient have cancer or not?

A patient takes a lab test and the result comes
back positive. The test returns a correct positive
result in only 98% of the cases in which the disease
is actually present, and a correct negative result in
only 97% of the cases in which the disease is not
present. Furthermore, 0.008 of the entire
population have this cancer.

P(cancer) =

P(—cancer)
P(+|cancer)

P(—|cancer

)

P(+|~cancer)

P(—|-cancer) =
P(cancer|+)




Brute-Force MAP Hypothesis Learner

1. For each hypothesis h in H, calculate the posterior
probability

P(D|h)P(R)
P(D)

2. Output the hypothesis hprap with the highest
posterior probability

P(h|D) =

hmap = argmax P(h|D)
heH

Evolution of Posterior Probabilities

I} I} )
P(h) P(hID1) P(hiD1,D2)

hypotheses hypotheses hypotheses
(a) (b) (c)

Learning a Real-Valued Function

Consider any real-valued target function f
Training examples (z;, d;), where d; is noisy training value
o di = f(zi) +e

e ¢; is random variable (noise) drawn independently for
each z; according to some Gaussian distribution with
mean=0

Then the maximum likelihood hypothesis sy, is the one
that minimizes the sum of squared errors:

-
hyi = arg hmE“I} Z (di — h(=:))?
=1

Most Probable Classification
of New Instances

So far we’ve sought the most probable hypothesis given the
data D (i.e., hprap)

Given new instance z, what is its most probable
classification? Not harap(z)!

Consider:
e Three possible hypotheses:
P(hy|D) = 4, P(hy|D) = .3, P(h3|D)=.3
e Given new instance z,
hi(z) =+, ha(z) = =, ha(z) = —
e What’s most probable classification of z?

Bayes Optimal Classifier
Bayes optimal classification:

argmax 3 P(v;|hi)P(hi| D)

hi€H

Example:

P(hi|D) =4, P(=|h1) =0, P(+h)=1
P(ho|D) = .3, P(—|h2) =1, P(+]h2) =0
P(h3|D) =.3, P(—|h3)=1, P(+|h3)=0

Classify instance D as:




Naive Bayes Classifier

Assume target function f: X — V, where each instance =
described by attributes (a1, az ... a,).

Most probable value of f(z) is:

vmap = argmaxP(vjlai,az...a,)
v EV
P )P (v;
VA argmax (a1,a2 .. .. an|v;)P(v))
vEeV P(ai,az...an)
= argmax P(a1,az...a,|v;)P(v;)
v EV

Naive Bayes assumption:
P(ay,az...a,|v5) = HP(ai\Uj)
i
which gives

Naive Bayes classifier:

vy = argmax P(v;) H P(a;|vj)
v EV :

i

Naive Bayes Algorithm

Naive_Bayes_Learn(ezamples)
For each target value v;
o P(v;) « estimate P(v;)
e For each attribute value a; of each attribute a

P(ai\vj) «— estimate P(a;|v;)

Classify_New_Instance(z)

vnp = argmax P(v;) [] Plailv;)
vV

ai€x

Naive Bayes: Example
Consider PlayTennis again, and new instance

(Outlk = sun, Temp = cool, Humid = high, Wind = strong)
‘Want to compute:
vy p = argmax P(v;) H P(a;|v;)
v;EV ;

i

P(y) P(sunly) P(coolly) P(highly) P(strongly) = .005
P(n) P(sun|n) P(cool|n) P(high|n) P(strong|n) = .021

— UNB =T

Learning to Classify Text

Why?
e Learn which news articles are of interest

e Learn to classify web pages by topic
Naive Bayes is among most effective algorithms

‘What attributes shall we use to represent text documents?

Learning to Classify Text

Target concept Interesting? : Document — {+, —}

1. Represent each document by vector of words:
one attribute per word position in document

2. Learning: Use training examples to estimate

e P(+)
o P(—)
e P(doc|+)
o P(doc|—-)

10



Naive Bayes conditional independence assumption
length(doc)

P(doclv;) = H P(a; = wg|vj)
i=1

where P(a; = wi|v;) is probability that word in position i
is wg, given v;

One more assumption:
P(a; = wg|v;) = P(am = wilv;), Vi, m

LEARN_NAIVE_BAYES_TEXT(Ezamples,V)
1. Collect all words & tokens that occur in Examples
e Vocabulary < all distinct words & tokens in Ezamples

2. Compute all probabilities P(v;) and P(w|v;)

For each target value v; in V' do

— docs; < Examples for which the target value is v;

- P(v;) < ﬁ,ﬁz‘e—s‘

— Text; « concatenate all members of docs;

— n « total number of words in Text; (counting
duplicate words multiple times)

— for each word wy, in Vocabulary
* ny, < number of times word wy, occurs in Text;

2 — _netl
* P(wg|vj) — n+\v7;cabulary|

CLASSIFY _NAIVE_BAYES_TEXT(Doc)

® positions « all word positions in Doc that contain
tokens found in Vocabulary

e Return vy p, where

vy p = argmax P(v;) H P(a;|v;)
v €V

i€positions

Example: 20 Newsgroups
Given 1000 training documents from each group
Learn to classify new documents according to which
newsgroup it came from
comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware rec.sport.baseball

comp.windows.x rec.sport.hockey
alt.atheism sci.space
soc.religion.christian sci.crypt
talk.religion.misc sci.electronics
talk.politics.mideast sci.med
talk.politics.misc talk.politics.guns

Naive Bayes: 89% classification accuracy

Learning Curve for 20 Newsgroups
20News

100 T
90
80 -
70
60
50
40
30
20 A
10 b

! 1 1

100 1000 10000

Bayes —o—
TFIDF -
PRTFIDF <+

Accuracy vs. Training set size (1/3 withheld for test)

Learning Bayesian Networks

Several variants of this learning task
o Network structure might be known or unknown
e Training examples might provide values of all network

variables, or just some

If structure known and no missing values,
it’s as easy as training a Naive Bayes classifier

11



The EM Algorithm

Suppose structure known, variables partially observable

E.g., observe ForestFire, Storm, BusTourGroup, Thunder,
but not Lightning, Campfire ...

Initialize parameters ignoring missing information
Repeat until convergence:

E step: Calculate expected vals of unobserved variables,
assuming current parameter values

M step: Calculate new parameter values to maximize
probability of data (observed & estimated)

Examples: 0 1 1
1 0 0
1 1 1
i) ? 0
Initialization: P(B|A) = P(C|B) =
P(4) = P(B|-4) = P(C|-B) =
E-step: P(?=1) = P(B|4,~C) = S3:£720 = .
M-step: P(B|A) = P(C|B) =
P(4) = P(B|-4) = P(C|-B) =

Example

O—CE—©

E-step: P(? =1) =0 (converged)

=0

Unknown Structure

Search:
o Initial state: empty network, prior network
e Operators: Add arc, delete arc, reverse arc

e Evaluation: Posterior probability

Bayesian Learning: Summary

e Optimal prediction

e Naive Bayes learner

o Text classification

e Bayesian networks

o EM algorithm

Neural Networks

Preview

e Perceptrons

e Gradient descent

e Multilayer networks

e Backpropagation

12



Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10'°
e Connections per neuron ~ 1042
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

=> Much parallel computation

Properties of neural nets:
e Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed process

o Emphasis on tuning weights automatically

Straight Sharp
‘Ahead Right

30 Output
Units

30x32 Sensor
Input Retina

Perceptron

0 :.:
2 w;x; U 5

it Lif v; x;>0
i=0 17={ |,:E()u,x,

-1 otherwise

if wo + w1z + -+ +wpz, >0

o(z1,... X
otherwise.

Sometimes we’ll use simpler vector notation:

@) 1 fw-£>0
o(Z) =
—1 otherwise.

Decision Surface of a Perceptron

)

Represents some useful functions
e What weights represent g(z1,z2) = AND(z1,22)7?
But some functions not representable

e All not linearly separable

e Therefore, we’ll want networks of these...

13



Perceptron Training Rule

w; — w; + Aw;
where
Aw; =1(t — o)z;
‘Where:
o t = ¢(Z) is target value
e 0 is perceptron output

e 7 is small constant (e.g., 0.1) called learning rate

Perceptron Training Rule

Can prove it will converge if
e Training data is linearly separable

e 7 sufficiently small

Gradient Descent
To understand, consider simpler linear unit, where
0=wy+wiZ1 + -+ WpTp

Let’s learn w;’s that minimize the squared error

Bla] = 5 3 (ta— od)?

deD

Where D is set of training examples

Gradient Descent

77
2
22,
7
ﬂ;”
5
>
55
S
¢S
XKL
NS
X

5
o
X
R

X
X

N OOCTISOS SIS
LTRSS SSRGS A S S
s

5
‘
S
X

XX

X
\“:\

\:3\~

e
N SSSSSS
TS
S

5

X
N
\

=

w:::
XXX
N

XX

=

X
N

N

wo

Gradient:
VE[@] = :—i,g—i,---%
Training rule:
AW = —nVE(w)]
bes oE
Aw; = 7”6711)1-

Gradient Descent

OFE o1

ow; t')14)-§z(t'7170d)2
i i 2 4
1 1}

= Iy 0
2 5 Ow;

= %Zz(tdfod)%(tdfod)
o i
= Z(td—od)%(td—'u}"z})
- i
gu}i = > (ta—0a)(~wia)

d

14



Gradient Descent

GRADIENT-DESCENT(training_examples, n)
Initialize each w; to some small random value
Until the termination condition is met, Do
o Initialize each Aw; to zero.
e For each (Z,t) in training_ezamples, Do
— Input instance # to unit and compute output o
— For each linear unit weight w;, Do
Aw; — Aw; +n(t — o)z;
e For each linear unit weight w;, Do

w; — w; + Aw;

Summary

Perceptron training rule guaranteed to succeed if
e Training examples are linearly separable

o Sufficiently small learning rate

Linear unit training rule uses gradient descent

e Guaranteed to converge to hypothesis with minimum
squared error

o Given sufficiently small learning rate 7
o Even when training data contains noise

e Even when training data not separable by H

Batch vs. Incremental Gradient Descent

Batch Mode Gradient Descent:
Do until convergence
1. Compute the gradient VEp (]
2. W W —nVEp[w]

Incremental Mode Gradient Descent:
Do until convergence
For each training example d in D
1. Compute the gradient VE4[]
2. W — @ — nVE4[w]

Epld] = 5 Y (ta - oa)?
deD

Buli) = L (ta ~ 04)?

Incremental Gradient Descent can approximate Batch
Gradient Descent arbitrarily closely if 7 made small enough

Multilayer Networks of Sigmoid Units

Sigmoid Unit

o(z) is the sigmoid function

1
1+e~%

Nice property: d‘;ﬁf’ =o(z)(1 — o(x))

15



‘We can derive gradient descent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

Error Gradient for a Sigmoid Unit

OFE 0 1
= 55> (ta—o0a)?
Ow; ow; 2 dezz:)
1 7%
= 52y, (a0’
- Ow;
1 17}
=3 ; 2(tq — 04) aTu(td —04)
_ Bod
= g(td —04) (‘m)

_ *Z“ i) dog Onety
- % 4 d Onety Ow;

But we know:

dog _ Do(netq)
Onety  Onetq = 04(1 - 0d)

Onety _ 6(’(1}' .'fd)

ow;  Ow; =i
So:
OF
T e _ _ 1— 5
%% ;(td 04)04(1 — 04)Ti,a
Let: 6;6:—%

OFE _ OFE Onety
Onet; SEOmal Onety Onet;
Onety,
= Z ~S Onet;
k€Outs(j) J
Onety, Ooj
= Z O do; Onet;
k€Outs(j) 7 g
60/c
- S w2
keOuts(s) Onet;
= D> —Srwgoi(l-oy)
k€Outs(j)
OF
6 = Pty = 0j(l—0;) > Owwny
keOuts(j)

Backpropagation Algorithm

Initialize all weights to small random numbers
Until convergence, Do
For each training example, Do
1. Input it to network and compute network outputs
2. For each output unit k&
61, — 0 (1 — o) (tk — o)

3. For each hidden unit A
6h—on(l—0n) D whbk

k€outputs
4. Update each network weight w; ;
w5 — wij + Awgj

where Aw; ; = nb;z;;

More on Backpropagation

Gradient descent over entire network weight vector
Easily generalized to arbitrary directed graphs

Will find a local, not necessarily global error minimum
— In practice, often works well
(can run multiple times)

Often include weight momentum o

Aw; j(n) =z j + alw; j(n —1)
Minimizes error over training examples
— Will it generalize well to subsequent examples?
Training can take thousands of iterations — slow!

Using network after training is very fast

16



Learning Hidden Layer Representations .
A target function:

Inputs Outputs Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned?

Learned hidden layer representation: Training
Input Hidden Output 09 Sum of squared errors for each output unit
Values 0.8 | -
10000000 — .89 .04 .08 — 10000000 0>7 |
01000000 — .01 .11 .88 — (01000000 06 L
00100000 — .01 .97 .27 — 00100000 05 -
00010000 — .99 97 .71 — 00010000 04 |
00001000 — .03 .05 .02 — 00001000 03 |
00000100 — .22 .99 .99 — 00000100 02 b
00000010 — .80 .01 .98 — 00000010 o1 F
00000001 — .60 .94 .01 — 00000001 0
0
Training Training
Hidden unit encoding for input 01000000 Weights from inputs to one hidden unit

1 T T T

JESUPP——

L L
500 1000 1500 2000 2500




Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...

o Add momentum

e Stochastic gradient descent

e Train multiple nets with different inital weights
Nature of convergence

o Initialize weights near zero

e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as training

progresses

Expressiveness of Neural Nets

Boolean functions:

e Every Boolean function can be represented by network
with single hidden layer

e But might require exponential (in number of inputs)
hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error,
by network with one hidden layer

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers

Overfitting in Neural Nets

Error versus weight updates (example 1)

N s

0009 | Training set error «
Validation set error i

0.008 [

.
0007 4

1
0.006 ’\\m 4
0005 |
0004
0003 |
0002 - -

0

0.01

Error

5000 10000 15000 20000

Number of weight updates

Error versus weight updates (example 2)
0.08 T T r
.‘.\0 Py
007 ’. Trammg set error *
Validation set error +
006 [ ™

005
004
003 *
.
0.02 %
’.0

001 [

Error

0 1000 2000 3000 4000 5000 6000
Number of weight updates

Overfitting Avoidance

Penalize large weights:

< 1
B@) =5 > (ka—oxa)’ +7) ul
d€eD k€outputs @]

Train on target slopes as well as values:

B =13 ¥ |tu-otn Y (% _ 9ok

J J
2 oz
deD keoutputs Oz a

j€inputs

‘Weight sharing

Early stopping

)]

Neural Networks: Summary

e Perceptrons
e Gradient descent
e Multilayer networks

e Backpropagation

18



