
1

Search Algorithms

Backtrack Search
1. DFS
2. BFS / Dijkstra’s Algorithm
3. Iterative Deepening
4. Best-first search
5. A*

Constraint Propagation
1. Forward Checking
2. k-Consistency
3. DPLL & Resolution

Local Search
1. Hillclimbing
2. Simulated annealing
3. Walksat

Guessing versus Inference

All the search algorithms we’ve seen so far are
variations of guessing and backtracking

But we can reduce the amount of guesswork by
doing more reasoning about the
consequences of past choices

• Example: planning a trip

Idea:
• Problem solving as constraint

satisfaction
• As choices (guesses) are made,

propagate constraints

Map Coloring CSP

• V is a set of variables v1, v2, …, vn
• D is a set of finite domains D1, D2, …, Dn
• C is a set of constraints C1, C2, …, Cm

Each constraint specifies a restriction over
joint values of a subset of the variables

E.g.:
v1 is Spain, v2 is France,

v3 is Germany, …
Di = { Red, Blue, Green} for all i

For each adjacent vi, vj
there is a constraint Ck

(vi,vj) ∈∈∈∈ { (R,G), (R,B), (G,R), (G,B), (B,R), (B,G) }

Variations

• Find a solution that satisfies all constraints
• Find all solutions
• Find a “tightest form” for each constraint

(v1,v2) ∈∈∈∈ { (R,G), (R,B), (G,R), (G,B), (B,R), (B,G) }

!

(v1,v2) ∈∈∈∈ { (R,G), (R,B), (B,G) }

• Find a solution that minimizes some
additional objective function

Chinese Dinner Constraint Network

Soup

Total Cost
< $30

Chicken
Dish

Vegetable

RiceSeafood

Pork Dish

Appetizer

Must be
Hot&Sour

No
Peanuts

No
Peanuts

Not
Chow Mein

Not Both
Spicy

2

Exploiting CSP Structure

Interleave inference and guessing
• At each internal node:

• Select unassigned variable
• Select a value in domain
• Backtracking: try another value

– Branching factor?

• At each node:
• Propagate Constraints

Running Example: 4 Queens

Variables:

Q1 ∈∈∈∈ {1,2,3,4}
Q2 ∈∈∈∈ {1,2,3,4}
Q3 ∈∈∈∈ {1,2,3,4}
Q3 ∈∈∈∈ {1,2,3,4} Q

Q

Q

Q

24

14

13

31

42

41

Q2Q1

Constraints:

Constraint Checking

Q xQ

x

Q

xxQ

xx

xQ

x

xQ

x

x

Q

xxQ

Qx

x

Q

xxxQ

xQx

xx

xQ

Takes 5 guesses to determine first guess was wrong

Forward Checking

xxxQ

x

x

x

xxxQ

xxx

xxQ

xx

xxxQ

xx

xx

xxQ

xxxQ

xQx

xxx

xxQ

Takes 3 guesses to determine first guess was wrong

When variable is set,
immediately remove
inconsistent values from
domains of other variables

Arc Consistency

xxxQ

x

x

x

xxxQ

x

x

x

xxQ

xx

x

x

xxQ

xx

xx

xx

Iterate forward checking

Propagations:

1. Q3=3 inconsistent with Q4 ∈∈∈∈ {2,3,4}

2. Q2=1 and Q2=2 inconsistent with Q3 ∈∈∈∈ {1}

Inference alone determines first guess was wrong!

Huffman-Clowes
Labeling

++
++

++
-

3

Waltz’s Filtering: Arc-
Consistency

•Lines: variables

•Conjunctions: constraints

•Initially Di = {+,-, """", ####)

•Repeat until no changes:

Choose edge (variable)

Delete labels on edge not
consistent with both
endpoints

No labeling!

Path Consistency

Path consistency (3-consistency):
• Check every triple of variables
• More expensive!
• k-consistency:

• n-consistency: backtrack-free search

1

| | k-tuples to check

Worst case: each iteration eliminates 1 choice

| || | iterations

| || | steps! (But usually not this bad)

k

k

V

D V

D V +

Variable and Value Selection

• Select variable with smallest domain
– Minimize branching factor
– Most likely to propagate: most constrained variable

heuristic

• Which values to try first?
– Most likely value for solution
– Least propagation! Least constrained value

• Why different?
– Every constraint must be eventually satisfied
– Not every value must be assigned to a variable!

• Tie breaking?
– In general randomized tie breaking best – less likely to

get stuck on same bad pattern of choices

CSPs in the real world

• Scheduling Space Shuttle Repair

• Transportation Planning

• Computer Configuration
– AT&T CLASSIC Configurator

• #5ESS Switching System

• Configuring new orders: 2 months # 2 hours

CPGomes - AAAI00

Quasigroup Completion
Problem (QCP)

Given a partial assignment of colors (10 colors in
this case), can the partial quasigroup (latin square)
be completed so we obtain a full quasigroup?

Example:

32% preassignment

(Gomes & Selman 97)

4

CPGomes - AAAI00

QCP Example Use: Routers in
Fiber Optic Networks

Dynamic wavelength routing in Fiber Optic Networks can be
directly mapped into the Quasigroup Completion Problem.

(Barry and Humblet 93, Cheung et al. 90, Green 92, Kumar et al. 99)

•each channel cannot be repeated in the same input port
(row constraints);
• each channel cannot be repeated in the same output
port (column constraints);

CONFLICT FREE
LATIN ROUTER

In
p

u
t

po
rt

s
Output ports

3

1

2

4

Input Port Output Port

1

2

4
3

CPGomes - AAAI00

QCP as a CSP

• Variables -

• Constraints -

}...,,2,1{, njix ∈

....,,2,1,;,, njijicellofcolorjix =

....,,2,1);,,...,
2,

,
1,

(ni
ni

x
i

x
i

xalldiff =

....,,2,1);,,...,
,2

,
,1

(njjnx
j

x
j

xalldiff =

)2(nO

)(nO

row

column

Hill Climbing

• Idea
– Always choose best child,

no backtracking

• Evaluation
– Complete?

– Space Complexity?

– Complexity of random restart hillclimbing, with success
probability P

Simulated Annealing / Random Walk
• Objective: avoid local minima

• Technique:

– For the most part use hill climbing

– Occasionally take non-optimal step

– Annealing: Reduce probability (non-optimal) over time

• Comparison to Hill Climbing
– Completeness?

– Speed?

– Space Complexity?

Time ####

Temperature

Objective

Backtracking with Randomized
Restarts

• Idea:

– If backtracking algorithm does not find solution quickly,
it is like to be stuck in the wrong part of the search space

• Early decisions were bad!

– So kill the run after T seconds, and restart
• Requires randomized heuristic, so choices not always the same

– Why does it often work?
• Many problems have a small set of “backdoor” variables – guess them on a

restart, and your are done! (Andrew, Selman, Gomes 2003)

– Completeness?

Demos!

• N-Queens
Backtracking vs. Local Search

• Quasigroup Completion
Randomized Restarts

• Travelling Salesman
Simulated Annealing

5

Exercise

Peer interviews: Real-world constraint
satisfaction problems

1. Break into pairs
2. 7 minute interview – example of needing to

solve a CSP type problem (work or life).
Interviewer takes notes:

• Describe problem
• What techniques actually used
• Any techniques from class that could have been used?

3. Switch roles
4. A few teams present now
5. Hand in notes (MSR – have someone collect

and mail to me at dept)

Planning as CSP
• Phase 1 - Convert planning problem in a CSP

• Choose a fixed plan length

• Boolean variables
– Action executed at a specific time point
– Proposition holds at a specific time point

• Constraints
– Initial conditions true in first state, goals true in final state
– Actions do not interfere
– Relation between action, preconditions, effects

• Phase 2 - Solution Extraction
• Solve the CSP

27

Planning Graph Representation of CSP

Proposition
Init State

Action
Time 1

Proposition
Time 1

Action
Time 2

Precondition
constraints

Effect
constraints

Constructing the planning graph…

• Initial proposition layer
– Just the initial conditions

• Action layer i
– If all of an action’s preconditionss are in i-1

– Then add action to layer I

• Proposition layer i+1
– For each action at layer i

– Add all its effects at layer i+1

29

Mutual Exclusion

• Actions A,B exclusive (at a level) if

– A deletes B’s precondition, or

– B deletes A’s precondition, or

– A & B have inconsistent preconditions

• Propositions P,Q inconsistent (at a level) if

– All ways to achieve P exclude all ways to achieve Q

• Constraint propagation (arc consistency)

– Can force variables to become true or false

– Can create new mutexes

30

Solution Extraction

• For each goal G at last time slice N:

• Solve(G, N)

• Solve(G, t):
CHOOSE action A making G true @t that is not

mutex with a previously chosen action

If no such action, backtrack to last choice point

For each precondition P of A:
Solve(P, t-1)

6

31

Graphplan

• Create level 0 in planning graph

• Loop
– If goal ⊆ contents of highest level (nonmutex)

– Then search graph for solution
• If find a solution then return and terminate

– Else Extend graph one more level

A kind of double search: forward direction checks necessary

(but insufficient) conditions for a solution, ...

Backward search verifies...

Dinner Date

Initial Conditions: (:and (cleanHands) (quiet))

Goal: (:and (noGarbage) (dinner) (present))

Actions:
(:operator carry :precondition

:effect (:and (noGarbage) (:not (cleanHands)))
(:operator fire :precondition

:effect (:and (noGarbage) (:not (paper)))
(:operator cook :precondition (cleanHands)

:effect (dinner))
(:operator wrap :precondition (paper)

:effect (present))

Planning Graph
noGarb

cleanH

paper

dinner

present

carry

fire

cook

wrap

cleanH

paper

0 Prop 1 Action 2 Prop 3 Action 4 Prop

Are there any exclusions?
noGarb

cleanH

paper

dinner

present

carry

noop
fire

noop
cook

wrap

cleanH

paper

0 Prop 1 Action 2 Prop 3 Action 4 Prop

Do we have a solution?
noGarb

cleanH

paper

dinner

present

cleanH

paper

0 Prop 1 Action 2 Prop 3 Action 4 Prop

carry

noop
fire

noop
cook

wrap

Extend the Planning Graph
noGarb

cleanH

paper

dinner

present

noop
carry

noop
fire

noop
cook

noop
wrap

noop

cleanH

paper

noGarb

cleanH

paper

dinner

present

0 Prop 1 Action 2 Prop 3 Action 4 Prop

carry

noop
fire

noop
cook

wrap

7

One (of 4) Solutions
noGarb

cleanH

paper

dinner

present

noop
carry

noop
fire

noop
cook

noop
wrap

noop

cleanH

paper

noGarb

cleanH

paper

dinner

present

0 Prop 1 Action 2 Prop 3 Action 4 Prop

carry

noop
fire

noop
cook

wrap

Search Algorithms

Backtrack Search
1. DFS
2. BFS / Dijkstra’s

Algorithm
3. Iterative Deepening
4. Best-first search
5. A*

Constraint Propagation
1. Forward Checking
2. k-Consistency
3. DPLL & Resolution

Local Search
1. Hillclimbing
2. Simulated

annealing
3. Walksat

Representing Knowledge in
Propositional Logic

R&N Chapter 7

Basic Idea of Logic

By starting with true assumptions, you can
deduce true conclusions.

Truth

Francis Bacon (1561-1626)
No pleasure is comparable to
the standing upon the
vantage-ground of truth.

Thomas Henry Huxley (1825-
1895)
Irrationally held truths may be
more harmful than reasoned
errors.

John Keats (1795-1821)
Beauty is truth, truth beauty;
that is all
Ye know on earth, and all ye
need to know.

Blaise Pascal (1623-1662)
We know the truth, not only
by the reason, but also by the
heart.

François Rabelais (c. 1490-
1553)
Speak the truth and shame
the Devil.

Daniel Webster (1782-1852)
There is nothing so powerful
as truth, and often nothing so
strange.

Propositional Logic

Ingredients of a sentence:
1. Propositions (variables)
2. Logical Connectives ¬¬¬¬, ∧∧∧∧, ∨∨∨∨, ⊃⊃⊃⊃

literal = a variable or a negated variable

• A possible world assigns every proposition the
value true or false

• A truth value for a sentence can be derived from
the truth value of its propositions by using the truth
tables of the connectives

• The meaning of a sentence is the set of possible
worlds in which it is true

8

Truth Tables for Connectives

11
01
10
00

11
01
10
00

11
01
10
00

1

0

⊃⊃⊃⊃∨∨∨∨

¬¬¬¬ ∧∧∧∧

Special Syntactic Forms

• General PL:
((q∧¬∧¬∧¬∧¬ r) ⊃⊃⊃⊃ s)) ∧∧∧∧ ¬¬¬¬ (s ∧∧∧∧ t)

• Conjunction Normal Form (CNF)
(¬¬¬¬ q ∨∨∨∨ r ∨∨∨∨ s) ∧∧∧∧ (¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ t)
Set notation: { (¬¬¬¬ q, r, s), (¬¬¬¬ s, ¬¬¬¬ t) }
empty clause () = false

• Binary clauses: 1 or 2 literals per clause
(¬¬¬¬ q ∨∨∨∨ r) (¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ t)

• Horn clauses: 0 or 1 positive literal per clause
(¬¬¬¬ q ∨∨∨∨ ¬¬¬¬ r ∨∨∨∨ s) (¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ t)
(q∧∧∧∧r) ⊃⊃⊃⊃ s (s∧∧∧∧t) ⊃⊃⊃⊃ false

Satisfiability, Validity, & Entailment

• S is satisfiable if it is true in some world
• Example:

• S is unsatisfiable if it is false all worlds

• S is valid if it is true in all worlds

• S1 entails S2 if wherever S1 is true S2 is true

Reasoning Tasks

• Model finding
KB = background knowledge
S = description of problem
Show (KB ∧∧∧∧ S) is satisfiable
A kind of constraint satisfaction

• Deduction
S = question

Prove that KB S

Two approaches:
1. Rules to derive new formulas from old (inference)
2. Show (KB ∧∧∧∧ ¬¬¬¬ S) is unsatisfiable

Inference

• Mechanical process for computing new
sentences

• Resolution
{ (p ∨∨∨∨ αααα), (¬¬¬¬ p ∨∨∨∨ ββββ) } R (αααα ∨∨∨∨ ββββ)

• Correctness
If S1 R S2 then S1 S2

• Refutation Completeness:
If S is unsatisfiable then S R ()

Resolution

(¬¬¬¬ A ∨∨∨∨ H)

(M ∨∨∨∨ A)

(¬¬¬¬ H) (¬¬¬¬I ∨∨∨∨ H)

(¬¬¬¬ M)

(¬¬¬¬ M ∨∨∨∨ I)(¬¬¬¬I)(¬¬¬¬A)

(M)

()

If the unicorn is mythical, then it is immortal, but if it
is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

M = mythical

I = immortal

A = mammal

H = horned

9

New Variable Trick

Putting a formula in clausal form may increase its
size exponentially

But can avoid this by introducing dummy variables
(a∧b∧c)∨(d∧e∧f) ⇒ {(a∨d),(a∨e),(a∨f),

(b∨d),(b∨e),(b∨f),
(c∨d),(c∨e),(c∨f) }

(a∧b∧c)∨(d∧e∧f) ⇒ {(g∨h),
(¬¬¬¬a∨¬¬¬¬b∨¬¬¬¬c∨g),(¬¬¬¬g∨a),(¬¬¬¬g∨b),(¬¬¬¬g∨c),
(¬d∨¬e∨¬f∨h),(¬¬¬¬h∨d),(¬¬¬¬h∨e),(¬¬¬¬h∨f)}

Dummy variables don’t change satisfiability!

DPLL
Davis Putnam Loveland Logmann

• Model finding: Backtrack search over space
of partial truth assignments

DPLL(wff):

Simplify wff: for each unit clause (Y)

Remove clauses containing Y

if no clause left then return true (satisfiable)

Shorten clauses contain ¬¬¬¬ Y

if empty clause then return false

Choose a variable

Choose a value (0/1) – yields literal X

if DPLL(wff, X) return true (satisfiable)

else return DPLL(wff, ¬¬¬¬ X)

DPLL
Davis Putnam Loveland Logemann

• Backtrack search over space of partial truth
assignments

DPLL(wff):

Simplify wff: for each unit clause (Y)

Remove clauses containing Y

if no clause left then return true (satisfiable)

Shorten clauses contain ¬¬¬¬ Y

if empty clause then return false

Choose a variable

Choose a value (0/1) – yields literal X

if DPLL(wff, X) return true (satisfiable)

else return DPLL(wff, ¬¬¬¬ X)

unit propagation

= arc consistency

Horn Theories

Recall the special case of Horn clauses:
{ (¬¬¬¬ q ∨∨∨∨ ¬¬¬¬ r ∨∨∨∨ s), (¬¬¬¬ s ∨∨∨∨ ¬¬¬¬ t) }
{ ((q∧∧∧∧r) ⊃⊃⊃⊃ s), ((s∧∧∧∧t) ⊃⊃⊃⊃ false) }

Many problems naturally take the form of such
if/then rules

• If (fever) AND (vomiting) then FLU

Unit propagation is refutation complete for Horn
theories

• Good implementation – linear time!

CPGomes - AAAI00

DPLL

• Developed 1962 – still the best complete algorithm for
propositional reasoning

• State of the art solvers use:
Smart variable choice heuristics
“Clause learning” – at backtrack points, determine

minimum set of choices that caused
inconsistency, add new clause
Limited resolution (Agarwal, Kautz, Beame 2002)

Randomized tie breaking & restarts
• Chaff – fastest complete SAT solver

Created by 2 Princeton undergrads, for a summer
project!

Superscaler processor verification
AI planning - Blackbox

CPGomes - AAAI00

Exercise

• How could we represent the Quasigroup
Completion Problem as a Boolean formula in
CNF form?

(take 10 minutes to sketch solution)

10

CPGomes - AAAI00

WalkSat

Local search over space of complete truth
assignments

With probability P: flip any variable in any
unsat clause

With probability (1-P): flip best variable in
any unsat clause
Like fixed-temperature simulated annealing

• SAT encodings of QCP, N-Queens, scheduling
• Best algorithm for random K-SAT

Best DPLL: 700 variables
Walksat: 100,000 variables

Random 3-SAT

$ Random 3-SAT
%sample uniformly from

space of all possible 3-
clauses

%n variables, l clauses

$ Which are the hard
instances?
%around l/n = 4.3

Random 3-SAT

$ Varying problem size, n

$ Complexity peak
appears to be largely
invariant of algorithm
%backtracking algorithms

like Davis-Putnam
%local search procedures

like GSAT

$ What�s so special about
4.3?

Random 3-SAT

$ Complexity peak
coincides with solubility
transition

%l/n < 4.3 problems under-
constrained and SAT

%l/n > 4.3 problems over-
constrained and UNSAT

%l/n=4.3, problems on
�knife-edge� between
SAT and UNSAT

Real-World Phase Transition
Phenomena

$Many NP-hard problem distributions show
phase transitions -
%job shop scheduling problems
%TSP instances from TSPLib
%exam timetables @ Edinburgh
%Boolean circuit synthesis
%Latin squares (alias sports scheduling)

$Hot research topic: predicting hardness of a
given instance, & using hardness to control
search strategy (Horvitz, Kautz, Ruan 2001-3)

Logical Reasoning
about Time &

Change
AKA

Planning as
Satisfiability

Salvidor Dali, Persistance of Memory

11

Actions

We want to relate changes in the world over
time to actions associated with those
changes

How are actions represented?
1. As functions from one state to another
2. As predicates that are true in the state

in which they (begin to) occur

Actions as Functions:
“Situation Calculus”

On(cat, mat, S0)
Happy(cat, S0)
¬ On(cat, mat, kick(S0))
¬ Happy(cat, kick(S0))
Happy(cat, pet(kick(S0)))

Branching time:

kick
pet

kick

kick

pet

pet

S0

Actions as Predicates:
“Action Calculus”

On(cat, mat, S0) ∧ Happy(S0)
Kick(cat, S0)

¬ On(cat, mat, S1) ∧ ¬Happy(CAT99, S1)
Pet(CAT99, S1)

¬ On(CAT99, MAT37, S2) ∧ Happy(CAT99, S2)

Linear time:

kick pet

S0 S1 S2

Relating Actions to
Preconditions & Effects

Strips notation:
Action: Fly(plane, start, dest)
Precondition: Airplane(plane), City(start), City(dest),

At(plane, start)
Effect: At(plane, dest), ¬ At(plane, start)

Pure strips: no negative preconditions!

Need to represent logically:
• An action requires it’s predications
• An action causes it’s effects
• Interfering actions do not co-occur
• Changes in the world are the result of actions.

Preconditions & Effects

∀ plane, start, dest, s . Fly(plane, start, dest, s) ⊃
[At(plane, start, s) ∧
Airplane(plane,s) ∧ City(start) ∧ City(dest)]

• Note: state indexes on predicates that never change
not necessary.

∀ plane, start, dest, s . Fly(plane, start, dest, s) ⊃
At(plane, dest, s+1)

• In action calculus, the logical representation of
“requires” and “causes” is the same!

• Not a full blown theory of causation, but good
enough…

Interfering Actions

Want to rule out:
Fly(PLANE32, NYC, DETROIT, S4) ∧

Fly(PLANE32, NYC, DETROIT, S4)
Actions interfere if one changes a precondition or effect

of the other
They are mutually exclusive – “mutex”

∀ p, c1, c2, c3, c4, s .
[Fly(p, c1, c2, s) ∧ (c1 ≠ c3 ∨ c2 ≠ c4)] ⊃

¬ Fly(p, c3, c4, s)

(Similar for any other actions Fly is mutex with)

12

Explanatory Axioms

• Don’t want world to change “by magic” – only
actions change things

• If a proposition changes from true to false (or
vice-versa), then some action that can change it
must have occurred

∀ plane, start, s . [Airplane(plane) ∧ City(start)
At(plane,start,s) ∧ ¬At(plane,city,s+1)] ⊃
∃ dest . [City(dest) ∧ Fly(plane, start, dest, s)]

∀ plane, dest, s . [Airplane(plane) ∧ City(start)
¬At(plane,dest,s) ∧ At(plane,dest,s+1)] ⊃
∃ start . [City(start) ∧ Fly(plane, start, dest, s)]

The Frame Problem

General form of explanatory axioms:
[p(s) ∧∧∧∧ ¬¬¬¬p(s+1)] ⊃⊃⊃⊃ [A1(s) ∨∨∨∨ A2(s) ∨∨∨∨ … ∨∨∨∨ An(s)]

As a logical consequence, if none of these actions
occurs, the proposition does not change

[¬¬¬¬A1(s) ∧∧∧∧ ¬¬¬¬A2(s) ∧∧∧∧ … ∧∧∧∧ ¬¬¬¬An(s)] ⊃⊃⊃⊃ [p(s) ⊃⊃⊃⊃ p(s+1)]

This solves the “frame problem” – being able to
deduce what does not change when an action
occurs

Frame Problem in AI

• Frame problem identified by
McCarthy in his first paper on the
situation calculus (1969)

667 papers in researchindex !

• Lead to a (misguided?) 20 year effort
to develop non-standard logics
where no frame axioms are required
(“non-monotonic”)

7039 papers!

• 1990 - Haas and Schubert
independently pointed out that
explanatory axioms are pretty easy to
write down

Planning as Satisfiability

• Idea: in action calculus assert that initial state holds at
time 0 and goal holds at some time (in the future):

• Axioms ∧∧∧∧ Initial ∧∧∧∧ ∃∃∃∃ s . Goal(s)
• Any model that satisfies these assertions and the

axioms for actions corresponds to a plan
• Bounded model finding, i.e. satisfiability testing:

1. Assert goal holds at a particular time K
2. Ground out (instantiate) the theory up to time K
3. Try to find a model; if so, done!
4. Otherwise, increment K and repeat

Reachability Analysis

• Problem: many irrelevant propositions, large
formulas

• Reachability analysis: what propositions
actually connect to initial state or goal in K
steps?

• Graphplan’s plan graph computes reachable
set!

• Blackbox (Kautz & Selman 1999)

• Run graphplan to generate plan graph
• Translate plan graph to CNF formula
• Run any SAT solver

Translation of Plan Graph

Fact ⊃⊃⊃⊃ Act1 ∨∨∨∨ Act2
Act1 ⊃⊃⊃⊃ Pre1 ∧∧∧∧ Pre2

¬Act1 ∨∨∨∨ ¬Act2

Act1

Act2

Fact

Pre1

Pre2

13

Improved Encodings

Translations of Logistics.a:
STRIPS →→→→ Axiom Schemas →→→→ SAT

• 3,510 variables, 16,168 clauses
• 24 hours to solve

STRIPS →→→→ Plan Graph →→→→ SAT
(Blackbox)

• 2,709 variables, 27,522 clauses
• 5 seconds to solve!

Model-Based Diagnosis

Idea:
• Create a logical model

of the correct
functioning of a device

• When device is broken,
observations + model is
inconsistent

• Create diagnosis by
restoring consistency

Simplified KB

Knowledge Base:
SignalValueA ∧ ValveAok ⊃ ValveAopen
SignalValueB ∧ ValveBok ⊃ ValveBopen
SignalValueC ∧ ValveCok ⊃ ValveCopen
ValveAopen∧ ⊃ EngineHasFuel
ValveBopen∧ ⊃ EngineHasFuel
ValveCopen ⊃ EngineHasOxy
EngineHasFuel ∧ EngineHasOxy ⊃ EngineFires

Normal Assumptions:
ValveAok, ValveBok, ValveCok

Direct Actions (cannot fail):
SignalValveA, SignalValveB, SignalValveC

Observed:
¬¬¬¬ EngineFires

Diagnosis: 1

Knowledge Base:
SignalValueA ∧ ValveAok ⊃ ValveAopen
SignalValueB ∧ ValveBok ⊃ ValveBopen
SignalValueC ∧ ValveCok ⊃ ValveCopen
ValveAopen∧ ⊃ EngineHasFuel
ValveBopen∧ ⊃ EngineHasFuel
ValveCopen ⊃ EngineHasOxy
EngineHasFuel ∧ EngineHasOxy ⊃ EngineFires

Normal Assumptions:
ValveAok, ValveBok, ValveCok

Direct Actions (cannot fail):
SignalValveA, SignalValveB, SignalValveC

Observed:
¬¬¬¬ EngineFires Inconsistent by Unit

Propagation

Diagnosis: 2

Knowledge Base:
SignalValueA ∧ ValveAok ⊃ ValveAopen
SignalValueB ∧ ValveBok ⊃ ValveBopen
SignalValueC ∧ ValveCok ⊃ ValveCopen
ValveAopen∧ ⊃ EngineHasFuel
ValveBopen∧ ⊃ EngineHasFuel
ValveCopen ⊃ EngineHasOxy
EngineHasFuel ∧ EngineHasOxy ⊃ EngineFires

Normal Assumptions:
ValveAok, ValveBok, ValveCok

Direct Actions (cannot fail):
SignalValveA, SignalValveB, SignalValveC

Observed:
¬¬¬¬ EngineFires Still Inconsistent

Diagnosis: 3

Knowledge Base:
SignalValueA ∧ ValveAok ⊃ ValveAopen
SignalValueB ∧ ValveBok ⊃ ValveBopen
SignalValueC ∧ ValveCok ⊃ ValveCopen
ValveAopen∧ ⊃ EngineHasFuel
ValveBopen∧ ⊃ EngineHasFuel
ValveCopen ⊃ EngineHasOxy
EngineHasFuel ∧ EngineHasOxy ⊃ EngineFires

Normal Assumptions:
ValveAok, ValveBok, ValveCok

Direct Actions (cannot fail):
SignalValveA, SignalValveB, SignalValveC

Observed:
¬¬¬¬ EngineFires Consistency Restored!

Diagnosis: Valve A and Valve
B broken (double fault)

14

Diagnosis: 4

Knowledge Base:
SignalValueA ∧ ValveAok ⊃ ValveAopen
SignalValueB ∧ ValveBok ⊃ ValveBopen
SignalValueC ∧ ValveCok ⊃ ValveCopen
ValveAopen∧ ⊃ EngineHasFuel
ValveBopen∧ ⊃ EngineHasFuel
ValveCopen ⊃ EngineHasOxy
EngineHasFuel ∧ EngineHasOxy ⊃ EngineFires

Normal Assumptions:
ValveAok, ValveBok, ValveCok

Direct Actions (cannot fail):
SignalValveA, SignalValveB, SignalValveC

Observed:
¬¬¬¬ EngineFires A different way to restore

consistency

Diagnosis: Valve C broken
(single fault)

Diagnostic Engine for
NASA’s Deep Space One

•2,000 variable CNF formula

•Real-time planning and diagnosis

Beyond Logic

• Often you want most likely diagnosis rather
than all possible diagnoses

• Can assign probabilities to sets of fault, and
search for most likely way to restore
consistency

• But suppose observations and model of the
device are also uncertain?

• Next: Probabilistic Reasoning in Bayesian
Networks

