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Solving the Solving the QuasigroupQuasigroup
problem using Simulated problem using Simulated 

AnnealingAnnealing
Samuel AminSamuel Amin

QuasigroupQuasigroup Problem DefinitionProblem Definition

!! Given a partial assignment of colors, can the Given a partial assignment of colors, can the 
partial partial quaisgroupquaisgroup be completed to obtain a full be completed to obtain a full 
quasigroupquasigroup??

!! No color should be repeated in any row or No color should be repeated in any row or 
columncolumn

!! 10 by 10 Grid with 10 possible colors for each 10 by 10 Grid with 10 possible colors for each 
squaresquare

Simulated AnnealingSimulated Annealing

!! An approach that resembles simple hill climbing, An approach that resembles simple hill climbing, 
but occasionally a non optimal step is taken to but occasionally a non optimal step is taken to 
avoid local minima.avoid local minima.

!! The probability of taking a non optimal step The probability of taking a non optimal step 
decreases over time.decreases over time.

AlgorithmAlgorithm
!! Function SIMULATEDFunction SIMULATED--ANNEALING( problem, schedule) returns a ANNEALING( problem, schedule) returns a 

solution statesolution state
current<current<-- initial state of probleminitial state of problem
for t <for t <-- 1 to infinity do 1 to infinity do 

T<T<-- schedule[tschedule[t]]
if T = 0 then return currentif T = 0 then return current
next<next<-- randomly selected successor of currentrandomly selected successor of current
E <E <-- VALUE[nextVALUE[next] ] �� VALUE [current ]VALUE [current ]
if E > 0 then current<if E > 0 then current<-- nextnext
else current<else current<-- next only with probability next only with probability eeEE/T/T

Adjusting Adjusting QuasigroupQuasigroup problem for problem for 
Simulated AnnealingSimulated Annealing

!! Initial StateInitial State
!! Set the predefined values to the grid, and mark them as Set the predefined values to the grid, and mark them as 

predefined.  These squares will not be alteredpredefined.  These squares will not be altered
!! Randomly fill out remaining squares on grid while ensuring Randomly fill out remaining squares on grid while ensuring 

that there are exactly 10 instances of each color.that there are exactly 10 instances of each color.

!! To get the next state, randomly swap two squares on To get the next state, randomly swap two squares on 
grid that are not predefinedgrid that are not predefined

!! Value of Grid is 100 Value of Grid is 100 �� Number of repeated squaresNumber of repeated squares

Progress and Problems facedProgress and Problems faced

!! Tweaking schedule of TTweaking schedule of T
!! Local MinimaLocal Minima
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Handwritten Character Handwritten Character 
Recognition using Neural Recognition using Neural 

NetworksNetworks

CSE 592 ProjectCSE 592 Project
Samer ArafehSamer Arafeh

System ArchitectureSystem Architecture

�� Image (bitmap) ObjectImage (bitmap) Object
�� 16x16 bitmap scaling16x16 bitmap scaling
�� I/OI/O

�� Neural network objectNeural network object
�� Training and learningTraining and learning
�� RecognitionRecognition

�� User interfaceUser interface
�� HandHand--write characterswrite characters
�� Controls learning rateControls learning rate
�� Save learned dataSave learned data

Neural NetworkNeural Network

�� MultiMulti--layer: 3 Layers neural networklayer: 3 Layers neural network
-- 256 Input nodes (node for each for each 256 Input nodes (node for each for each 
input pixel)input pixel)
-- variable number of hidden nodes variable number of hidden nodes 
(currently set to 25)(currently set to 25)
-- 36 output nodes (036 output nodes (0--9 and �A� to �Z�)9 and �A� to �Z�)

Network nodes evaluationNetwork nodes evaluation

�� 256 input nodes: 0.5 if pixel is on, 256 input nodes: 0.5 if pixel is on, 
otherwise otherwise --0.5.0.5.

�� Hidden nodes and output nodes are Hidden nodes and output nodes are 
calculated using the sigmoid threshold unit calculated using the sigmoid threshold unit 
as:as:

o = 1/(1+eo = 1/(1+e--netnet) where ) where 
net = ∑net = ∑wwiixxii (over all incoming edges)(over all incoming edges)

BackpropagationBackpropagation

�� Hidden and Output weights are initialized to Hidden and Output weights are initialized to 
random values between [random values between [--0.5,0.5]0.5,0.5]

�� For each output node, calculate the error term For each output node, calculate the error term 
δδkk as:as:

δδkk = (t= (tkk �� ookk))
�� Back propagate the error term to the hidden Back propagate the error term to the hidden 

nodes such that, for each hidden node, calculate nodes such that, for each hidden node, calculate 
the error term the error term δδhh as:as:

δδhh = ∑w= ∑wkhkhδδkk (over all hidden node edges)(over all hidden node edges)

TrainingTraining

�� For each hidden node, reFor each hidden node, re--evaluate each of evaluate each of 
the output node weight edges (wthe output node weight edges (wnewonewo) as:) as:

wwnewonewo = w= woldooldo + (+ (η δη δkkhh) ; ) ; h is the hidden node value, h is the hidden node value, ηη is the learning rateis the learning rate

�� For each input node, reFor each input node, re--evaluate each of evaluate each of 
the hidden node weight edges (wthe hidden node weight edges (wnewhnewh) as:) as:

wwnewhnewh = w= woldholdh + (+ (η δη δhhxx) ; ) ; x is the input node value, x is the input node value, ηη is the learning rateis the learning rate
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RecognitionRecognition

�� Run the reRun the re--evalaution algorithm again with evalaution algorithm again with 
the new set of weighted edges and find the new set of weighted edges and find 
the output node with the largest which the output node with the largest which 
would correspond to the recognized would correspond to the recognized 
character.character. DemoDemo

by Diana Bullion

Robocode an AI Playground

! IBM’s RoboCode
! Virtual platform to test AI concepts
! Little tanks battle each other

! Each tank has a gun and radar
! Each tank is allotted the same 

resources (energy, ammunition)

IBM
’s 
Rob
ocod
e 

! Built 5 Robots with different strategies
– Diana’s First …simple tutorial-like robot
– BumperBot …brute force tank

– ThirdTimeCharmer …focused attack

– TheGreatX …stays out of the way
– MasterEvader … predicts aiming point

! Implement multiple robots with varying 
levels of intelligence 

! Wanted to prove intelligence and 
strategy wins over brute force

Robots Battle
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! Basic robot scans for other robots
! Bumps into them and repeatedly shoots
! Brute force - low intelligence

– Does not predict where robot will be

– Does not stay focused on closest robot 
when different robot is scanned

! Results were surprising - original 
objective was for the more intelligent 
robots to win against BumperBot 

BumperBot 

! Advanced Robot 
! Evasive Movements … random     

figure-eightish pattern 
! Predicts best path to fire bullet … taking 

into account future speed and location 
of both target and source robots, time to 
turn gun, time for bullet to travel

! Fire power relative to target distance 

MasterEvader 

! ThirdTimeCharmer
– Advanced Robot 

– Maintains a focused attack

– Standard movement pattern

! TheGreatX
– Travels great distances
– Rarely shoots

– Lets others run out of energy

! Diana’s First
– My first robot … modified tutorial

The Rest Results

! Survival – 50 pts for everyone that died before it
! Last Survivor – 10 pts for every robot in battle
! Bullet Damage – 1 pt for each pt of inflicted damage
! Bullet Damage Bonus – 20% kill bonus of all the 

damage it did
! Ram Damage – 2 pts for every pt of ram damage
! Ram Damage Bonus – 30% kill bonus of all ram 

damage it did

! Evironment loop
– Robot code executed, time incremented, 

bullets move, robots move, robots scan 

! Bullets
– Bullet damage = 4*firepower (plus  

2*(firepower-1) if firepower > 1) 

– Bullet speed = 20 – 3*firepower

– Energy returned on hit =  3 * firepower

! Robot Collision = .6 damage each

! Advanced Robots take Wall Collision 
penalty

Robocode Rules

Learning Go with TD(λ)

Todd Detwiler
CSE 592

Winter 2003
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What is GO?

• One of the oldest and most popular board 
games in the world (around 4000 yrs old)

• A game of territory acquisition

• Deterministic, perfect-information, zero-
sum, 2 player strategy game

• A “grand challenge” in AI (Rivest 1993)

The Rules

• Players alternate placing stones on open 
intersections of the board (a 19x19 grid)

• Adjacent stones form groups
• Empty intersections adjacent to groups form its 

liberties
• A group is captured when all of its liberties are 

removed
• 2 passes signify the end of the game
• Ko

Captures

If white plays at 
the location 
indicated by the 
red circle, they 
will capture the 
black stone by 
removing its last 
liberty.

Why is Go so Hard?

• Pspace-complete
– Average branching factor of game tree around 

200

– Size of game tree on the order of 10170

(compared to around 1050 for Chess)

– Too large for look-ahead evaluation

• No good evaluation function for game 
states

TD(λ) Approach

• Learn an evaluation function
– Use neural network as a function estimator

• Temporal credit assignment

The Pieces that I Started With

• OpenGo 5.1 beta
– A set of pre-written Go objects as well as an 

environment for playing in
• Very buggy, not as useful as I initially suspected

• Nonlinear TD/Backprop pseudo C-code
– Allen Bonde Jr. and Richard Sutton

– I have extended this to be an actual C++ object
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Player Design

• Like TD-Gammon, games (state 
sequences) are generated by pitting  my Go 
player against itself

• Unlike TD-Gammon, I am using off-line 
learning

• Initially give player rules only, no strategy
• Later augmented with one rudimentary 

extension to reduce plies/game

One Problem

The Extension

• Don’t fill in simple, size 1 eyes

• Super Ko

Current Status

• Player 
– Identifies all legal moves
– Plays against itself
– Detects win
– Black tracks game states for learning

• TD(λ) network is implemented, but not fully 
tested
– Currently testing load/save functionality

• Learning has not yet been achieved

Questions?
Letter Recognition by Using 
Multi-Layer Neural Network 

Meng Tat Fong
03/13/2003
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Problem Domain

! Create a classifier to identity the 26 
capital letters in the English Alphabet

! Extensible
! Create electronic document from 

scanned documents, newspapers, etc.

Data Set

! David Slate donated to UCI machine 
learning repository

! 20,000 samples
! letter images from black-and-white 

displays
! 20 different fonts 
! randomly distorted (all unique samples)

Data Set

! 16 integer attributes
! Normalize to 0.0 � 1.0
! 26 output classes (A-Z)
! 750-800 samples each

! 2,4,4,3,2,7,8,2,9,11,7,7,1,8,5,6,Z
! 4,7,5,5,5,5,9,6,4,8,7,9,2,9,7,10,P

Backgrounds

! Not using any existing Machine 
Learning libraries

! Java

Algorithms

! Separate the sample data set into two sets 
(~16,000 and ~4,000)

! Network is trained and then verified
! Stochastic gradient descent version of the 

BackPropagation algorithm
! Unit weight is updated after each sample
! Sigmoid Units to learn non-linear functions

Algorithms

! Wji = Wji + ∆Wji

! ∆Wji = µEjXji

! Based on the idea that each unit is partially 
responsible for the error of its parent.

J

I

Level N

Level N - 1
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Network Topology

Input Layer

16 units

A

B

C

Hidden Layer

45 units

Z

Output Layer

26 units

Improvements

! Momentum -- nth weight update 
partially depending on the previous 
update
! ∆Wji(N) = µEjXji + α ∆Wji(N-1)
! Help to escape local minima
! Move along flat region during the search
! Increase my network accuracy by 2.2% 
! Momentum 0.58 (75.1% to 77.3%)

Improvements

! Learn from mistakes
! Train the network with all the training 

samples once
! Feed the same samples to train the 

network, but only use incorrectly classify 
samples

! Give the network chances to correct its 
mistakes

! Accuracy improved from 72.0% to 77.3%

Improvements

! Ensemble
! Use multiple networks to perform 

classification
! Each network will predict an outcome and 

the majority will win
! Improved the accuracy to >80%

Results

! Slate�s Adaptive Classifiers (1990)-- ~80%
! Weka�s J48 Decision Tree -- 87.75%
! Weka�s Naive network -- 64.23%
! Weka�s neural network � no result after 10 

hours
! My network � up to 85%, alpha 0.60, 

momentum 0.58, hidden layer 1, 45 hidden 
units, >300,000 training examples

Results

! Start small
! Build a small network to solve a simple 

problem. (no hidden unit, one output 
class, trivial problem domain)

! Add more output classes
! Add more hidden layers  
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Results

! Hard to create a generic neural network
! Need to adjust the network topology, 

learning rates, momentum, etc
! Once you have a working network, it 

will perform very well

Thank You!

Random Sampling in Mixtures 
of Bayes Nets

Manish Goyal

Basic Idea

• Bayesian networks serve as compact 
representations of data

• The data is represented in terms of 
conditional distributions

• Draw random samples from these 
conditional distributions to generate data 
which can then be used for a variety of 
purposes

Base system

• Random sampling has been applied to a 
problem relating to recognition of single 
characters

• The base system consists of a model for 
each character

Explanation of Base System

• The model for each 
character consists of a 
mixture of Bayes
nets(BN1,….BNn) with 
weighting factors 
w1,….wn

• Models have been trained 
for each of the 99 
supported characters

• The training set consists 
of approximately 200 
samples of each 
character

w1 w2 w3

BN1 BN2 BN3
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Explanation of Bayesian Nets 
within each model

• For each handwritten character we extract 
64 features

• These features are a mixture of
Fourier Transforms
OCR features
Contour Features

• For the purpose of this talk the exact nature 
of these features is not important

• Each of these features is represented as a 
node in a graph. Hence given that there are 
64 features, there are 64 nodes in each 
Bayesian Network

• Each node is represented in terms of the 
conditional distribution. ie. P( node/all the 
parents of the node)

….…….

Method of sampling
• First randomly select which Bayesian 

Network you will select. The bayesian
networks are selected with 
Probability(w1,….wn)

• Once the Bayesian network is selected we 
now need to generate observations from the 
network

• For this we need to traverse the graph in 
order. For ex. In the figure ,the correct order 
of traversal would be 1,2,…n

• Each node is specified in terms of its 
conditional mean and covariance given by 
Mean=M=µc+∑p(Xp-µp)

• Covariance=C=σc
• As you traverse the graph, generate the 

observation for the particular node by 
sampling from a Gaussian distribution with 
Mean=M and Covariance=C

• Once the observations of all the parents are 
known, the conditional mean can be 
computed for that node and hence an 
observation can be made for that node

• Do this for all the nodes
• Iterate through this generating as many 

samples as are required.

1

2

3
4

5

6 7

w1
w2

wn

Verification

• Use the generated data to train a feed 
forward neural network (fully connected,1 
hidden layer)

• Compare the error rate using the 
generated data to a net trained using 
original data

• See if these two error rates are 
comparable

Results

• Original training set 
contains approx 200 
samples per code point

• Generated 200 and 500 
samples for each code 
point using the random 
sampling method

• Test set used consists of 
17000 samples

23.97 % NN trained 
using generated 
data(500 
samp/code pt)

24.30 % NN trained 
using generated 
data(200 
samp/code pt)

20.32 % NN trained used 
original data

Error on test set

Results contd.
• The previous results were all 

when we were sampling from a 
distribution with mean=M and 
covariance=C

• We can increase or decrease 
the randomness of the 
generated data by using a 
covariance given by h*C where 
h is a heuristic

• Different nets have been 
trained for different values of 
the heuristic factor

• As can be seen h=1 gives the 
best result (as would be 
expected theoretically).

• Samples generated per code 
point=200

24.45 % NN trained 
using h=2

41.96 % NN trained 
using h=0.1

24.30 % NN trained 
using h=1

Error on test set

Pipe dream

• Rather than using the 
generated data 
separately, could we 
use it to supplement 
the original training 
data ? If used in this 
manner will we be 
able to improve the 
base accuracy of the 
neural network ?

BN NN

S

G

22.26 %NN trained using 200 
generated samples 
per code pt +original 
data

20.8 % NN trained using 200 
generated samples 
per code pt +original 
data

20.32 %NN trained using 
original data

Error on test set

G+S
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Conclusions

• Random sampling can be used to 
generate the original data

• Classifiers trained on this synthesized data 
have accuracy close to that obtained by 
using the original data

Possible uses

• Font generation
• Compact representation of data
• Other uses ?

MultiSat – A PDDL Problem Solver

CS 592 Project
Rui Jiang

What is MultiSat

" A SAT solver that accepts PDDL files as input
" Supports STRIPS and part of numeric (multivalued) 

functions
" Currently has WalkSat and Breadth First Search 

implemented
" Output plan steps and final state

WorkFlow

PDDL 
Parser

Domain 
Definition

Problem 
Definition

Internal 
Problem 

Representation

WalkSat
Solver

Breadth 
First

Final State

Plan

PDDL Revisited

" Domain Definition:
– Predicates
– Functions (Multivalued)
– Actions

" Precondition
" Effects

" Problem Definition:
– Objects
– Initial State
– Goal
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Function in PDDL

" Actually represents a value of an object (or  objects).
" Predicate can be viewed as a function that has only 

true/false value.

Example of Function

Queens Problem Domain
(define (domain queens)

(:requirements :strips :equality :fluents :negative-preconditions)
(:functions (position ?row) (positionmax) )

…

(:action moveright

:parameters ( ?row)
:precondition (< (position ?row) (positionmax))

:effect (and (increase (position ?row) 1))
)

)

Example of Function

" Queens Problem
(define (problem queensprob4)
(:domain queens)
(:objects  q0 q1 q2 q3)
(:init
(= (position q0) 0)
(= (position q1) 1)
(= (position q2) 2)
(= (position q3) 3)
(= positionmax 3)

)
(:goal (and

(not (= (position q0) (position q1)))
(not (= (position q0) (position q2)))
(not (= (position q0) (position q3)))
(not (= (+ (position q0) 1) (position q1)))
(not (= (- (position q0) 1) (position q1)))
(not (= (+ (position q0) 2) (position q2))) …)) )

State in MultiSat

" Collection of predicate and function values
" A state in Queens problem:

position q0  4
position q1  2

position q2  0
position q3  5

position q4  7
position q5  1

position q6  3
position q7  6

positionmax 7

How does WalkSat work?

" Start with the problem initial state.
" While not solved

– Create an empty queue
– For each action, generate all possible combination of parameters

" Evaluate precondition against the current state. If true, do the action and 
evaluate how many propositions in the goal valid. If all propositions in the 
goal are valid, the problem is solved and we exit. Otherwise put this action 
and its result state into the queue.

– Select the action and parameters that will have the largest number of 
valid propositions in the goal. With a small probability, randomly 
select any action from the queue. Replace the current state.

Breadth First Search in MultiSat

" Just the usual breadth first search
" With Dynamic Programming – exclude similar state in 

the search
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Example output – Sokoban

..\bin\multisat -o sokoban\sokoban.pddl -f sokoban\sokoban2.pddl -bf -notree
…
Actions: 

1: push_left p33 p32 p31 ==> ValidCount 0
2: push_down p21 p31 p41 ==> ValidCount 0
3: move_up p31 p21 ==> ValidCount 0
4: move_up p21 p11 ==> ValidCount 0
5: push_up p31 p21 p11 ==> ValidCount 0
6: push_up p21 p11 p01 ==> ValidCount 2

Time used: 2.824 seconds

Example output - Queens

F:\CS592\project\test>..\bin\multisat -o queens\queensdomain4.pddl -f queens\queens4.pddl -
notree

…
Problem is not solved yet. Let me try try...
Goal's maximum propositions: 18

1: moveleft1 q2 ==> ValidCount 14
2: moveright1 q1 ==> ValidCount 16
3: moveright2 q0 ==> ValidCount 16
4: moveleft2 q1 ==> ValidCount 17
5: moveright2 q2 ==> ValidCount 17
6: moveleft2 q3 ==> ValidCount 18

Haha, we have solved the problem! Final state:
position q0 2
position q1 0
position q2 3
position q3 1
positionmax 3

Time used: 0.000 seconds
Search steps: 6

Performance

" Examples are run on a Dell Inspiron 4150 with 1.8 GHz 
CPU, 512 MB

" Sokoban problem is run using breadth first search
" Queens problem and quasigroup problem are run with 

WalkSat

Performance - Sokoban

Time used (in seconds)

0.171.932Problem 3 (16 
steps)

0.052.794Problem 2 (6 
steps)

17.787.801Problem 1 (33 
steps)

BlackBoxMultiSat

Here are the 3 sokoban problems from homework 1

Performance - Queens

" Time Used (seconds)

18013912130 queens

73604825 queens

28201720 queens

0.10.050.01Random 
Factor

Performance – Quasigroup with 
Holes

Time Used(seconds)Problem

9012X12, 40 holes

5511X11, 40 holes

12.710X10, 30 holes

2.29X9, 20 holes
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Hierarchical Text Classification 
and the Open Directory 

Project

Will Kallander
CSE592

Series of directories and flat files: Project Goal

Use automated methods of hierarchical 
text classification to facilitate editing.

Use Cases
Editor is not 
knowledgeable WRT 
the placement of a 
site that has been 
incorrectly  
submitted to a 
category.

Automated QC �
Alleviation of the 
�Bait and Switch� 
attack.
E.g.: As in the case 
of Adult content in 
Kids_and_Teens

Approach
Recreate hierarchical 
structure at every 
node.
Classifiers for all 
internal nodes.
Cascade 
classifications in RT
N-ary classifications

Binary classifier:
Adult or Non-Adult 
content?
Use same data as 
hierarchical approach
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Feature Selection
Use data from ODP itself as definition 
for classifiers:

Human generated � contains intelligence 
about ontology
Not as noisy as web data
Much smaller than web data
Faster � crawling is �S L O W�
RDF (type of XML) is easy to parse

The Guts
Perl approach:

Rolled my own.
Ken Williams� 
AI::Categorizer 
module
CGI wrapper around 
C command-line 
front end to libbow

C command line:
Andrew McCallum's 
libbow
Rainbow � front end 
interface for indexing
Use undocumented 
(and/or unstable) 
features

Reinforcement 
Learning

Playing Checkers
" Machine plays against itself.
" No prior knowledge on strategy.
" Uses a neural network with a hidden layer.
" Reward wins and back-propagate weights.
" Uses TD-λ propagation.

The Game

Red moves first

Moves diagonally forward

The Game

Red moves first

Moves diagonally forward

Followed by white

The Game

Red moves first

Moves diagonally forward

Followed by white

Captures by jumping over to empty
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The Game

Red moves first

Moves diagonally forward

Followed by white

Captures by jumping over to empty

Main components

" Trainer - trains using TD-λ
" The weights represent knowledge
" Weights can be serialized
" The trained net is used as player

" Player – plays with opponent algorithm

Trainer

" A neural network
" Initially randomized weights

" ∆wt = α(Pt+1 - Pt) ∑t
k=1λt-k ▼w Pk

" Inputs – state of squares, number of discs

" Chooses move that maximizes net output
" Updates weights using change in output

Input representation

" Boolean inputs preferred vs Multivariate for 
reinforcement learning

" Total of 154 inputs
" 4 inputs per square (2 – color, 2 – type of piece)

" 8 inputs per player representing piece advantage

" 2 inputs for who started the game

" 2 inputs for who the current player is

" 6 inputs for the number of moves

Strategies

" Randomization to avoid local minima
" Randomly pick among the best moves
" With a low probability pick a completely random 

move
" Increase above probability with the number of 

moves

" Evaluate the next move using lookahead

Strategies …

" Breaking ties based on piece advantage
" 3 * Man  = = 2 * King
" Punishing the player with considerable piece 

advantage

" Training with end games to speed up learning
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Player

" GUI that accepts 2 player engines

" Play smart Vs trained player

" Smart player uses mini-max algorithm with 
some set of features

Lessons learnt

" Initial weights play crucial role
" Use learning parameters that have been 

known to work

" Weight update is easy to get wrong

" Co-evaluation techniques are not very useful

" The input representation matters

Acknowledgements

" Martin Fierz - checkerboard program
" Rich Sutton – pseudo code for TD-λ
" Cliff Kotnik – pointers into SNNS & TD-λ
" SNNS – initial experimentation

Algorithmic Composition
& Artificial Intelligence

By Brian McNaboe

Outline

#Objective
#Approach
#Results
#Examples/Demo
#References

Objective

#Write a program that can generate 
�pleasant� sounding harmonized melodies 
autonomously.

DISCLAIMER:  I do not consider myself a musician, nor do I 
have any formal training in music theory.
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Composer

$  Generates
musical
compositions

$ Guidelines
Based /
Random

Critic

$ Critiques
composer's
compositions

$ Uses neural net w/
back-propagation
learning

Conductor
Directs Effort

Training Set
Contains training

exm. (comp/
goodness)

Composition
Stores musical

elements

MIDIMgr
Abstracts MIDI

interface

MIDI File

Approach - Composer

#Uses guidelines from music theory to limit 
state space.

#Randomly chooses chords and melody 
notes w/ in bounds.

#Surprisingly good results w/ few simple 
constraints. 

Approach - Critic

#2-layer feedforward neural net of sigmoid 
threshold units.

#Configurable # of hidden units.
#Configurable between full and stochastic 

gradient decent back-propagation 
learning.

Approach - Critic (cont.)

#Back-propagation loop termination based 
on combo. of max_iters & 
max_acceptable % weight change (more 
on this later).

#Network inputs composed of 14 numerical 
quantifications of composition
%total number of notes
%note/chord tension
%etc.

Results

#Rules based approach alone worked 
better than expected.

#So far, critic has been trained to critique 
w/ up to 80% accuracy for single training 
set.

#However, not enough training to 
successfully generalize yet (best case so 
far 60% train/ 60% validation).

Results (cont.)

#Still tweaking critic parameters
%Loop termination criteria
%Learning rate
%Number of hidden units

#Haven�t found magic formula yet...
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Examples & Demo References

#Mitchell, Machine Learning.
#Widmer, Qualitative Perception Modeling 

and Intelligent Musical Learning.
#Jacob, Algorithmic Composition as a 

Model of Creativity.
#Cope, Computer Modeling of Musical 

Intelligence in EMI.
#Various books on music theory.

Player Move Prediction

• 3 games:
– Penny Matching

– Rock Paper Scissors

– Position Tracking

• N-Gram Method

• Sequential Prediction Method

• Note: Random = Unpredictable

The Games

• Penny Matching
– Computer tries to 

predict your choice

– Game introduced in 
SEER paper

The Games (cont.)

• Rock Paper Scissors
– Traditional game

– Tie is possible

– Human randomness 
more difficult

The Games (cont.)

• Position Tracking
– 16 choices

– Movement 
representation

– Option to restrict 
movement
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N-Gram Method

• From speech recognition research; shown in class:
– Unigram, Bigram, Trigram

• General case: N-Gram
• Tally occurrences of permutations of N moves.
• Example of N-Gram(4):

– Player’s last 3 moves: H-T-T
– H-T-T occurred 4 times in past followed by T
– H-T-T occurred 2 times in past followed by H
– Computer predicts player’s move will be T

N-Gram Results

• Tested games with N from 1 to 6
• Preliminary Testing:

– Penny Matching best with 4
– Rock Paper Scissors best with 3 (2 & 4 close)
– Positional Tracking best with 2

• Experimented with summing all N-Grams, with 
each weighted by its confidence
– Generally performs in top 25%
– Avoids picking a specific N-Gram that could 

underperform

Sequential Prediction Method

• Search for longest substring that matches 
tail of sequence.

• Optimization
– For each move, maintain list of positions of 

occurrences

– Generate match size for list & select longest

– Runs in O(N) vs. O(N²)

Sequential Prediction Results

• Good performance in general
– Consistently over 50%

– Somewhat worse than best-performing           
N-Grams

• Outperforms N-Grams on restricted  
movement position tracking
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.Net Terrarium Animal as a 
Reactive Agent

Jack Richins
CSE 592

Motivation

• Creatures need to move to a plant or 
animal to eat.

• Sometimes, they get blocked by other 
creatures or other plants.

• Animals only get 2 to 5 milliseconds a turn
• Best First Search was too slow

• Community Astar implementation faster, 
but still failed to find path sometimes.
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Reactive or Simple Reflex Agent

• Reactive agents react to input from 
sensors with simple actions based on 
simple rules.

• Sensor: Output of scan() is list of all 
creatures, plant or animal, in the world.

• Rule: Try different angles off of direct path 
until un-obstructed path is found

Example

Direct path is obstructed

Example Method of Evaluation

• Evaluated by success in controlled 
Terrarium world.
– not hooked up to network where creatures 

from other Terrarium’s can be transported in 
or out

• Tested exactly 2 animals at a time
• Tested until population showed a clear 

winner and loser, or 45 minutes.

Results

434102minobstaclesherb

28013greedymoveherb

23258plant

39 Minutes

1010minobstaclesherb

1010greedymoveherb

1111plant

Start - 12:57

BirthsPopulation

Example

Ignored, if it’s moving
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Exclude Moving Creatures from 
Obstacles List

25916excludemovers

2014minobstaclesherb

13319plant

47 minutes

1010excludemovers

1010minobstaclesherb

1010plant

BirthsPopulation

Best Reactive Agent versus A*

15521plant

30520excludemovers

18022astar

42 minutes

1010plant

1010excludemovers

1010astar

BirthsPopulation

Conclusion

• Reactive agent show considerable 
improvement over no reaction at all

• For this problem space, comparable to A* 
performance. 

• For such a simple implementation 
compared to A*, this seems impressive to 
me.

Bayesian Inference in Double 
Six Dominos

Carlos Garcia Jurado Suarez
03/13/2003

Outline

• Game description
• Approach
• Performance measurements

• Remaining and future work

Game Description
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Game Description …

• There are 2 teams of 2 players each. Team mates sit 
across from each other in a squared table.

• There are 7 numbers and 28 dominos (from 0:0 to 6:6)
• The goal is for either of the team players to get rid of all 

his/her dominos (before the other team does).
• A domino can be played by matching the number of dots 

with the ones in either end of the game.
• When somebody finishes the team is awarded a number 

of points equal to the sum of the points that the other 
team had in their remaining dominos.

• The first team to reach 100 points wins the match.

Approach

• To win in dominos the basic strategy is: 
avoid skipping turns and force your 
opponents to skip.

• Dominos should be played such that the 
probability of the team members to skip is 
low and the probability of opponents to 
skip is high.

• We need a way to infer such probabilities

Approach … Bayesian net
7 networks, each with a CPT. The CPTs were calculated by 
simulating 106 games (all observations are complete).
Example:

Approach … MinMax

• MinMax is used to select a move. Each game state is 
evaluated based on the strategy previously described.

Performance measurements

• 800 matches played against a “Dummy” team (dummy players 
pick moves randomly). Depth=3 seems optimal

Remaining and future work / QA

• Further improvements may include:
– Better approximations to the probability of 

non-deterministic moves.

– Implementing Alfa-Beta pruning

– Learning the utility function (genetic 
programming or neural network?)

• Questions?
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Studying the Effects 
of Parallelism on 
Current Planners

James Welle

Overview

! Study several different state of the art 
planners (FF, IPP, and Blackbox) on 
variations of the Sokoban world, where the 
amount of parallelism can be controlled by 
having different numbers of Sokoban

Purpose and Goals

! How will these planners be affected by 
introducing multiple Sokobans into the 
problem?

! Will adding resource bounds to the 
Sokoban domain affect these planners?

! How will these planners scale as the 
number of Sokobans grows.

Measuring planners

! Speed in Plan Creation
! Plan Quality

&Plan Length

&Time
&Resources (fuel, energy, $, etc.)

What’s the best plan?
! Plan Length = 5
! Time Steps = 5
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! Plan Length = 5
! Time Steps = 3

Resource Bounded Logistics

(:action MOVE-SOKOBAN
:parameters
( … ?r)
:precondition
(and …
(resource ?r)
(can-use ?sokoban ?r))
:effect
(and …
(not (resource ?r)))

Planners Considered

! FF
& FF is a forward chaining heuristic state space planner. 
& Generate a heuristic by generating an explicit solution to a 

relaxed problem (using GRAPHPLAN) and  using the number of 
actions in the relaxed solutions is used as a goal distance 
estimate. 

& Use enforced hill-climbing: uses breadth first search to find a 
strictly better, possibly indirect, successor. 

& If local search fails, then skip everything done so far and switch 
to a complete best-first algorithm that simply expands all search 
nodes by increasing order of goal distance evaluation. 

Planners Considered (cont.)

! IPP
& Based on GRAPHPLAN – builds the planning graph starting 

from initial facts
& RIFO – Removing Irrelevant Facts and Operators
& RIFO tries to determine such irrelevant information (ground 

operators and initial facts) using a "backchaining" process and 
removes them from the planning task. 

& Depending on the heuristic and union method chosen, different 
kinds of "possibility sets" of relevant objects and facts are 
created. These sets can be used in different ways to decide over
relevance or irrelevance of ground operators and initial facts

Planners Considered (cont.)

! BLACKBOX
&Uses GRAPHLAN to create satisfiability 

problems from planning problems
&Can invoke a number of different satisfiability 

solvers on the problem
! WALKSAT, SATZ, etc.
! I focused specifically on the CHAFF solver

! Run the planners on the modified Sokoban 
domain and compare results

! Introduce resource bounds into the 
domains from AIPS 2002 and compare 
results

! Experiment with how the planners scale as 
the number of Sokobans grows

Approach
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Results

! IPP and BLACKBOX, much better than FF 
on parallelism
&Expected, as they have a sense of time and 

FF does not

! Introducing resource bounds into AIPS 
domains

! Experimenting with scalability

Mining the WeatherMining the Weather

Using AI Techniques to Make Weather PredictionsUsing AI Techniques to Make Weather Predictions

Reid WilkesReid Wilkes
CSE 592CSE 592

University of WashingtonUniversity of Washington
February 13, 2003February 13, 2003

MotivationMotivation

'' Prediction normally done by modeling physical Prediction normally done by modeling physical 
processes. processes. 

'' Even powerful computer models are much less Even powerful computer models are much less 
than perfect, and require a deep understand of the than perfect, and require a deep understand of the 
science of Meteorology.science of Meteorology.

'' Can machine learning be used to identify patterns Can machine learning be used to identify patterns 
in historical data and make predictions as well as in historical data and make predictions as well as 
the computer models?the computer models?

'' Chance to experiment with various machine Chance to experiment with various machine 
learning techniques.learning techniques.

Problem StatementProblem Statement

'' Try to use machine learning methods to analyze Try to use machine learning methods to analyze 
historical data and make predictions of what the historical data and make predictions of what the 
weather conditions will be at a given location at weather conditions will be at a given location at 
some time in the future.some time in the future.

'' In practice, focused on predicting the conditions in In practice, focused on predicting the conditions in 
Seattle (Boeing Field) 6 or 12 hours in the future.Seattle (Boeing Field) 6 or 12 hours in the future.

'' Output of system is probability for each possible Output of system is probability for each possible 
condition (Rain, Sun, Cloudy, etc…)condition (Rain, Sun, Cloudy, etc…)

Approach Approach –– Collecting DataCollecting Data

'' Picked 12 Locations Across State of WashingtonPicked 12 Locations Across State of Washington
–– BellinghamBellingham
–– Boeing Field (Renton)Boeing Field (Renton)
–– EverettEverett
–– ForksForks
–– HoquiamHoquiam
–– OlympiaOlympia
–– Port AngelesPort Angeles
–– SheltonShelton
–– Stampede PassStampede Pass
–– Vancouver (WA)Vancouver (WA)
–– WenatcheeWenatchee
–– YakimaYakima

'' The 1The 1stst of many informed but arbitrary decisions!of many informed but arbitrary decisions!

Approach Approach –– Collecting DataCollecting Data

'' Collected 6 data points for each location.Collected 6 data points for each location.
–– Current Conditions (Rain, Cloudy, etc…)Current Conditions (Rain, Cloudy, etc…)
–– TemperatureTemperature
–– HumidityHumidity
–– Barometric PressureBarometric Pressure
–– Wind SpeedWind Speed
–– Wind DirectionWind Direction

'' Data taken every hour from Data taken every hour from 
http://iwin.nws.noaa.gov/iwin/wa/hourly.htmlhttp://iwin.nws.noaa.gov/iwin/wa/hourly.html

'' Small utility parses HTML page every hour and inserts new Small utility parses HTML page every hour and inserts new 
readings into SQL Server database.readings into SQL Server database.

'' Collected data starting on Feb 10. Collected data starting on Feb 10. 
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Approach Approach –– Preparing DataPreparing Data

'' Once data was collected, it had to be worked into a usable Once data was collected, it had to be worked into a usable 
form.form.

'' To make life easier, data was To make life easier, data was discretizeddiscretized..
–– Temperature, Humidity, Pressure were divided into 5 Temperature, Humidity, Pressure were divided into 5 –– unit unit 

buckets.buckets.
–– Conditions are aggregated into 9 condition types.Conditions are aggregated into 9 condition types.

'' Sunny/ClearSunny/Clear
'' CloudyCloudy
'' Partly CloudyPartly Cloudy
'' RainRain
'' Freezing RainFreezing Rain
'' FogFog
'' SnowSnow
'' Mix snow/rainMix snow/rain
'' HailHail

Approach Approach –– Preparing DataPreparing Data

'' In addition to absolute conditions, condition changes were also In addition to absolute conditions, condition changes were also used.used.
–– DTemperatureDTemperature
–– DWindDWind
–– DHumidityDHumidity
–– DPressureDPressure

'' There was no There was no DConditionsDConditions value value –– only current conditions considered.only current conditions considered.
'' Wind Speed and Wind Direction were Wind Speed and Wind Direction were discretizeddiscretized together in a way that together in a way that 

takes into account both the change in Speed and Direction as weltakes into account both the change in Speed and Direction as well as l as 
the current state (56 total possible values).the current state (56 total possible values).

'' The systems written were designed to take a parameter which The systems written were designed to take a parameter which 
determines how big an interval over which to calculate the diffedetermines how big an interval over which to calculate the differentials.rentials.

First Analysis Method First Analysis Method –– Naïve Naïve BayesBayes

'' Naïve Naïve BayesBayes seemed to be a good first shot at seemed to be a good first shot at 
predicting.predicting.
–– Deals with probabilities, which is really what we’d like Deals with probabilities, which is really what we’d like 

the system to output in the end.the system to output in the end.

–– Not too hard to be naïve enough to claim that the all of Not too hard to be naïve enough to claim that the all of 
the data collected at one point in time is conditionally the data collected at one point in time is conditionally 
independent given the conditions in Seattle in the future.independent given the conditions in Seattle in the future.

–– It’s much, much harder to try to understand conditional It’s much, much harder to try to understand conditional 
dependencies between the data points, if we were to try dependencies between the data points, if we were to try 
a more structured Bayesian Network.a more structured Bayesian Network.

Naïve Naïve BayesBayes -- ImplementationImplementation

'' C# application uses stored procedures in SQL C# application uses stored procedures in SQL 
Server to do some of the counting, and uses Server to do some of the counting, and uses 
ADO.NET data sets in memory to do the rest of ADO.NET data sets in memory to do the rest of 
the counting.the counting.

'' All floating point computations done in the C# app All floating point computations done in the C# app 
–– SQL Server returns nothing but integers.SQL Server returns nothing but integers.

'' Basically, build a giant SQL temporary table that Basically, build a giant SQL temporary table that 
has all the data we need already has all the data we need already discretizeddiscretized and and 
work from there.work from there.

Naïve Naïve BayesBayes –– Better Better 
ImplementationImplementation

'' Keep tables around with counts of different Keep tables around with counts of different 
values and update them when data is values and update them when data is 
inserted into master table.inserted into master table.

'' Helps offset the cost of the counting at Helps offset the cost of the counting at 
prediction time.prediction time.

'' Would be absolutely necessary with more Would be absolutely necessary with more 
historical data.historical data.

Naïve Naïve BayesBayes -- ResultsResults

'' At first, didn’t perform so well… ~70% for six hour At first, didn’t perform so well… ~70% for six hour 
forecast with 6 hour interval.forecast with 6 hour interval.

'' Problem was that the artificial sample (used to Problem was that the artificial sample (used to 
prevent 0 terms in product) was WAY too high prevent 0 terms in product) was WAY too high 
(100).(100).

'' When artificial sample size was reduced to 1, When artificial sample size was reduced to 1, 
accuracy shot up to ~85% for 6 hour and ~83% for accuracy shot up to ~85% for 6 hour and ~83% for 
12 hour forecasts!12 hour forecasts!

'' Accuracy calculated as number of the most likely Accuracy calculated as number of the most likely 
condition the system predicts is correct.condition the system predicts is correct.
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Naïve Naïve BayesBayes Net ResultsNet Results

'' Calculated accuracy over same data set Calculated accuracy over same data set 
used to make predictions!!! (there just used to make predictions!!! (there just 
wasn’t enough data to go around)wasn’t enough data to go around)

Other Possible ApproachesOther Possible Approaches

'' Experimented with hybrid Neural net Experimented with hybrid Neural net –– Probabilistic Probabilistic 
inference method.inference method.
–– Treat each location as Treat each location as perceptronperceptron. Weight inputs ( . Weight inputs ( P(CondP(Cond | input)) | input)) 

and aggregate predictions.and aggregate predictions.
–– Have 1 Have 1 perceptronperceptron that aggregates input from each location. Apply that aggregates input from each location. Apply 

weights to each input.weights to each input.
–– Inputs/Outputs from each Inputs/Outputs from each perceptronperceptron was a vector of probabilities was a vector of probabilities 

for each possible conditions.for each possible conditions.
–– Without training, it ALWAYS forecast cloudy conditions.Without training, it ALWAYS forecast cloudy conditions.
–– Train using variant of stochastic gradient descent Train using variant of stochastic gradient descent –– because we are because we are 

dealing with vectors the math and logic get pretty weird.dealing with vectors the math and logic get pretty weird.
–– Actually was successful in training the network! Unfortunately iActually was successful in training the network! Unfortunately in the n the 

wrong direction….wrong direction….

Other Possible ApproachesOther Possible Approaches

'' True Bayesian Network.True Bayesian Network.
–– Final prediction is dependant on locations.Final prediction is dependant on locations.

–– Each location is dependant on the data from Each location is dependant on the data from 
that location.that location.

–– Could possibly also introduce dependencies Could possibly also introduce dependencies 
from time of day to certain variables like from time of day to certain variables like 
temperature.temperature.

SummarySummary

'' Was it successful?Was it successful?
–– Naïve Naïve BayesBayes was more successful than was more successful than 

expected.expected.

–– Neural Network Idea bombed so far, but I still Neural Network Idea bombed so far, but I still 
have hope it could yield positive results.have hope it could yield positive results.

Bottom Line Bottom Line –– Data was insufficient to make any Data was insufficient to make any 
conclusive statements!conclusive statements!

Applying AI to Network Applying AI to Network 
Intrusion ResponseIntrusion Response

Brett M. Wilson

BackgroundBackground

" IDS witnesses patterned or anomalous 
behavior and categorizes it as an attack

" Traceback determines the final source and 
destination of the network traffic involved

" Temporary blocking rules are inserted for 
immediate response

" Human operator fine tunes the rules and 
takes any other necessary precautions
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DesignDesign

" Didn’t easily fall into the realm of one tool
" Split into different tasks for different tools

– Knowledge base for collecting data and deducing new 
statements from it

• Prolog

– Bayesian network to determine the probabilities of 
events in question, given evidence

• EBayes (programmatic interface to JavaBayes)

– Utility theory to weigh the tradeoff of letting an attack 
spread versus blocking off part of the network or 
service

• TBD

Pretty PicturesPretty Pictures
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Service

Latest
Patches

Weak
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Pretty GraphsPretty Graphs
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Low 0.01% 19.99% 71.43% 99.98%

Normal 0.03% 39.98% 86.96% 99.99%

Medium 0.05% 54.98% 92.44% 100.00%

High 0.13% 74.98% 96.77% 100.00%

Extreme 0.81% 95.00% 99.48% 100.00%

Neither IDS1 IDS2 Both

Threat

Attack

IDS1 IDS2

Match 99.9% attacks
30% false positive

Match 70% attacks
.01% false positive

Future IdeasFuture Ideas

" More inputs, more inputs, more 
inputs....

" Applying machine learning or game 
theory to predicting an adversary’s 
next move or final goal

FLIPFLIP

FirstFirst--order Logic Inference Proverorder Logic Inference Prover

Jonathan WrayJonathan Wray

CSE 592 Winter 2003CSE 592 Winter 2003

FirstFirst--Order LogicOrder Logic

• Extends Propositional logic to include objects, relations, 
and functions.

• Similar in some respects to how humans reason.
• Predicates: King(x) Λ Greedy(x) → Evil(x).
• Functions: Sibling(Son(x), Daughter(x)).
• Universal Instantiation: @x Likes(x, IceCream).
• Existential Instantiation: #x Killed(x, Tuna).
• Chapter 8 in R&N
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Inference in FOLInference in FOL

• Forward Chaining
– deductive databases, production systems

• Backward Chaining
– logic programming (e.g. Prolog)

Both are restricted to Horn Clauses

• Resolution
– theorem provers
– “refutation-complete”

• Chapter 9 in R&N

UnificationUnification

• Generalized Modus Ponens:
– For atomic sentences pi, pi′, and q, where there is a substitution 
θ s.t. SUBST(θ, pi′) = SUBST(θ,q), for all i,

p1′, p2′, …, pn′, (p1 Λ p1 Λ p1 → q)
_______________________________________________________________________________________

SUBST(θ, q)

• Example:
@x King(x) Λ Greedy(x) → Evil(x).
King(John).

Greedy(John). {x/John} → Evil(John)

Conversion toConversion to
Conjunctive Normal FormConjunctive Normal Form

• “Everyone who loves all animals is loved by someone.”

@x (@y Animal(y) -> Loves(x,y)) -> (#y Loves(y,x)).

• Eliminate implications, move negation inwards, standardize 
variables, skolemize, drop universal qualifiers, distribute Λ over V:

Animal(F:0(x:0)) | Loves((F:1(x:0)), x:0) &

!Loves(x:0, (F:0(x:0))) | Loves((F:1(x:0)), x:0)

• Skolem function: “arguments are all universally quantified variables 
in whose scope the existential quantifier appears” (Say what?)

Resolution Inference RuleResolution Inference Rule

• Binary resolution:
– For each pair of clauses, try to eliminate two 

complementary literals (where one unifies with 
negation of other)

– Apply substitution to remaining literals
– Remaining literals form the resolvent clause

• Factoring:
– For each clause, try to remove redundant literals 

(those which unify)
– Apply substitutions to other literals

Did Curiosity kill the Cat?Did Curiosity kill the Cat?

• Knowlege Base: “Everyone who loves all animals is loved by someone.

Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.”

@x (@y Animal(y) -> Loves(x,y)) -> (#y Loves(y,x)).

@x (#y Animal(y) & Kills(x,y)) -> (@z !Loves(z,x)).

@x Animal(x) -> Loves(%Jack, x).

Kills(%Jack, %Tuna) | Kills(%Curiosity, %Tuna).

Cat(%Tuna).

@x Cat(x) -> Animal(x).

• Query: “Curiosity killed the Cat.”

Kills(%Curiosity, %Tuna).

Yes, and here’s the proof:Yes, and here’s the proof:
Animal(F:0(%Jack))

!Loves(z:5, %Jack)
Animal(%Tuna)

Cat(%Tuna)
Animal(x:7) | !Cat(x:7)

!Animal(%Tuna) | !Loves(z:5, %Jack)
Kills(%Jack, %Tuna)

!Kills(%Curiosity, %Tuna)
Kills(%Curiosity, %Tuna) | Kills(%Jack, %Tuna)

!Animal(y:4) | !Kills(x:3, y:4) | !Loves(z:5, x:3)
Animal(F:0(x:0)) | Loves((F:1(x:0)), x:0)

!Animal(F:0(%Jack))
!Loves(%Jack, (F:0(%Jack)))

!Loves(z:5, %Jack)
Animal(%Tuna)

Cat(%Tuna)
Animal(x:7) | !Cat(x:7)

!Animal(%Tuna) | !Loves(z:5, %Jack)
Kills(%Jack, %Tuna)

!Kills(%Curiosity, %Tuna)
Kills(%Curiosity, %Tuna) | Kills(%Jack, %Tuna)

!Animal(y:4) | !Kills(x:3, y:4) | !Loves(z:5, x:3)
Loves((F:1(x:0)), x:0) | !Loves(x:0, (F:0(x:0)))

Loves(%Jack, x:6) | !Animal(x:6)
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Is West a criminal?Is West a criminal?
• Knowledge Base:

@x,y,z American(x) & Weapon(y) & Sells(x,y,z) & Hostile(z) -> Criminal(x).
@x Missile(x) & Owns(%Nono, x) -> Sells(%West, x, %Nono).
@x Enemy(x, %America) -> Hostile(x).
@x Missile(x) -> Weapon(x).
Owns(%Nono, %M1).    Missile(%M1).
American(%West).     Enemy(%Nono, %America).

• Query: Kills(%Curiosity, %Tuna).

American(%West)
!American(%West)

Weapon(%M1)
Missile(%M1)
Weapon(x:3) | !Missile(x:3)

!American(%West) | !Weapon(%M1)
Sells(%West, %M1, %Nono)

Missile(%M1)
Sells(%West, %M1, %Nono) | !Missile(%M1)

Owns(%Nono, %M1)
Sells(%West, x:1, %Nono) | !Missile(x:1) | !Owns(%Nono, x:1)

!American(%West) | !Sells(%West, y:0, %Nono) | !Weapon(y:0)
Hostile(%Nono)

Enemy(%Nono, %America)
Hostile(x:2) | !Enemy(x:2, %America)

!American(%West) | !Hostile(z:0) | !Sells(%West, y:0, z:0) | !Weapon(y:0)
!Criminal(%West)
Criminal(x:0) | !American(x:0) | !Hostile(z:0) | !Sells(x:0, y:0, z:0) | !Weapon(y:0)

Implementation DetailsImplementation Details

• FOL parser written using the Spirit Parser Framework:
– “Spirit is an object oriented recursive descent parser generator framework implemented using template 

meta-programming techniques. Expression templates allow us to approximate the syntax of Extended 
Backus Normal Form (EBNF) completely in C++. Parser objects are composed through operator overloading 
and the result is a backtracking LL(∞) parser that is capable of parsing rather ambiguous grammars.”

• Conversion to CNF, Unification, etc. were implemented as recursive 
operations on an abstract syntax tree (AST) representation.

• The AST was sorted during resolution according to a canonical 
ordering designed to improve efficiency of various operations.

• Unit Preference: Prefer to do resolutions where one of the 
sentences is a single literal, or unit clause.

• Support for strings, including concatenation and splitting.
• Limited support for equality.

FOL GrammarFOL Grammar
Identifier = lexeme_d[token_node_d[(alpha_p | '_' | '$') >> *(alnum_p | '_' | '$')]];
Constant = lexeme_d[token_node_d[ch_p('%') >> +(alnum_p | '_' | '$')]];
String = token_node_d[confix_p('\"', *c_escape_ch_p, '\"')];
Function = Identifier;
Predicate = Identifier;
Variable = Identifier;
TermList = infix_node_d[(Plus | Term) % ','];
VariableList = infix_node_d[Variable % ','];
Term = Function >> inner_node_d['(' >> TermList >> ')']

| Constant | Variable | String | inner_node_d['[' >> Plus >> ']'];
Plus = infix_node_d[Term >> ch_p('+') >> Term];
Equal = infix_node_d[(Plus | Term) >> ch_p('=') >> (Plus | Term)];
AtomicSentence = Predicate >> inner_node_d['(' >> TermList >> ')']

| inner_node_d['[' >> Equal >> ']']
| inner_node_d['(' >> Universal >> ')'];

Negation = root_node_d[ch_p('!')] >> AtomicSentence | AtomicSentence | Equal;
Disjunction = infix_node_d[Negation % '|'];
Conjunction = infix_node_d[Disjunction % '&'];
Implication = infix_node_d[Conjunction >> !("->" >> Disjunction)];
Biconditional = infix_node_d[Implication >> !("<->" >> Implication)];
Existential = root_node_d[ch_p('#')] >> VariableList >> Biconditional | Biconditional;
Universal = root_node_d[ch_p('@')] >> VariableList >> Existential | Existential;
SentenceList = infix_node_d[*(Universal >> '.')];

ResolutionResolution
while (true)

shortcut = false
for each (Ci, Cj in clauses) // clauses are already sorted

if (size(Ci) > threshold)
shortcut = true // unit preference optimization
break

{unified, resolvent} ← Resolve(Ci, Cj) // binary resolution
if unified

if (resolvent = Ø) return true // proof succeeded
sort resolvents
Factor(resolvents) // factoring
new ← new + resolvent

if (new = Ø)
if (shortcut) ++threshold, continue
else return false

new ← new + clauses // combine clauses
sort new
unique new // removes duplicates
if (new = clauses)

if (shortcut) ++threshold, continue
else return false

clauses ← new

Did Jack run up the hill?Did Jack run up the hill?

• Extension to FOL: support for strings as a primitive type
• Knowledge Base:

@n Noun(n) -> NounPhrase(n).

@a,n Article(a) & Noun(n) -> NounPhrase([a + " "] + n).

@p Preposition(p) -> PrepositionalPhrase(p).

@p,n Preposition(p) & NounPhrase(n) -> PrepositionalPhrase([p + " "] + n).

@v Verb(v) -> VerbPhrase(v).

@v,p VerbPhrase(v) & PrepositionalPhrase(p) -> VerbPhrase([v + " "] + p).

@n,v NounPhrase(n) & VerbPhrase(v) -> Sentence([[n + " "] + v] + ".").

Noun("Jack").

Verb("ran").

Preposition("up").

Article("the").

Noun("hill").

• Query: Sentence("Jack ran up the hill.").

Jack ran up the hill.Jack ran up the hill.
PrepositionalPhrase("up the hill")

NounPhrase("the hill")

Noun("hill")

NounPhrase("the " + n:1) | !Noun(n:1)

Article("the")

NounPhrase(a:1 + " " + n:1) | !Article(a:1) | !Noun(n:1)
PrepositionalPhrase("up " + n:3) | !NounPhrase(n:3)

Preposition("up")

PrepositionalPhrase(p:3 + " " + n:3) | !NounPhrase(n:3) | !Preposition(p:3)

!PrepositionalPhrase("up the hill")

!VerbPhrase("ran up the hill")
!Sentence("Jack ran up the hill.")

Sentence("Jack " + v:6 + ".") | !VerbPhrase(v:6)

NounPhrase("Jack")

Noun("Jack")

NounPhrase(n:0) | !Noun(n:0)
Sentence(n:6 + " " + v:6 + ".") | !NounPhrase(n:6) | !VerbPhrase(v:6)

VerbPhrase("ran " + p:5) | !PrepositionalPhrase(p:5)

VerbPhrase("ran")

Verb("ran")

VerbPhrase(v:4) | !Verb(v:4)
VerbPhrase(v:5 + " " + p:5) | !PrepositionalPhrase(p:5) | !VerbPhrase(v:5)
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Past TensePast Tense

• Knowledge Base:
@s Verb(s) -> PastTense(s, s+"ed").

@s Verb(s+"y") -> PastTense(s+"y", s+"ied").

Verb("jump").

Verb("carry").

• Query: PastTense("jump", "jumped").
PastTense("jump", "jumped")

Verb("jump")

PastTense(s:0, (s:0 + "ed")) | !Verb(s:0)

!PastTense("jump", "jumped")

• Query: PastTense(“carry", “carried").
PastTense("carry", "carried")

Verb("carry")

PastTense((s:1 + "y"), (s:1 + "ied")) | !Verb(s:1 + "y")

!PastTense("carry", "carried")

Further ResearchFurther Research

• Extensions to FOL:
– sets, lists, numbers
– full support for equality
– higher-order logics

• Explore other efficiency strategies
– linear resolution
– subsumption

• Inductive Logic Programming (ILP)
– inverse resolution
– application to natural language processing

Artificial Intelligence 
Techniques to Recover Lost 

USGS Datafiles
United States Geological Survey elevation datafiles are the product 
of publicly funded development to provide terrain elevation details 

in digital form.  Until  ~ 2000, these were available through a simple 
ftp tree from a site in the mid-West.  Now, their access has been 

scattered through a thicket of for-fee products on a maze of pages 
belonging to “partners” of the USGS.

How can we recover them?

Goal
• Determine the shortest path from a common 

index page within one of the partners to the 
public datafiles.

• Accomplish this using naïve bayes approach, 
by determining from page qualities and words 
used whether a page is likely to lead to public 
datafiles.

• Use other AI techniques in the process:  the 
use of a heuristic in a depth-first search 
provides the corpus of a ‘happy’ selection 
path.

World
• The pages within which the datafiles are to be 

found are modern database driven pages, lots of 
graphics.
– Containing <img= … --> tags that break parser, 

occasional post transactions and script.
• It takes about 5 correct jumps to get to the free 

datasets.
– Index to states to detour to counties to products to 

the     green icon gateway.
• A heuristic to evaluate target URLs leading to free 

datasets is presented.  This is utilized to gather a 
teaching corpus.
– Each jump heuristic is unique to its level

Learning
• Each page will be characterized by particular 

qualities as well as the words contained.
– Number of links.

– Proportion of image links to text links.
– Link descriptions short and capitalized.

• When a fruitful leaf is found on the tree, all the 
intervening nodes will be tagged productive.  
When at branch is found without fruitful leaves at 
the fifth level the search continues past it.
– Character and words from the productive set will be compared to 

the same from the unproductive set.  Significant differences will 
considered to develop a training set of parameters.
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Link Heuristics

• Look for local files first.  If the 
context page (the page the link was 
found in) lacks a host specification, 
increment quality-index.  Same again 
for the target.

• Directories containing sublists of 
state regions have the form 
…/nnnnn/- sublist.html.  Directories 
containing sublists of counties  have 
the form …/nnnnn/nnn/index.html.  
Increment so its noticed.

• The desired elevation files will be 
designated “(DEM) - 24K” in any link 
text.  Another quality boost.

• The space examined requires 
directory searches about five 
deep to find its goal.

• A heuristic applied to get 
through the first gate is a small 
increment to the quality.

• For the subsequent gates, 
when a desirable condition is 
found, the target quality is 
increased more.

• For negative conditions, such 
as mangled URL or a file 
already read, the quality is 
taken down.

The heuristics will be turned off to gather a corpus 
from the whole space under the tree.

Corpus Examination Tool

An ordered list of unexamined links is 
presented in the top window of the central 
split pane window.

The page currently being evaluated is shown 
it the bottom window.  The green arrow is 
the gateway to file downloads.

The links are ordered according to a heuristic 
that increases near free dataset links.  

When a page is loaded, the tree element 
(ideally) turns into a branching node, listing 
the next links underneath.

Careful examination may reveal that the list of files 
shown is merely the entire ordered list shown under 
the last selected page, the presentation in a tree 
display simply coincidence.  User interface 
rationalization is secondary to the demonstration of ai.

Exploring Tree

• For learning the happy path, the link evaluation heuristic is 
turned on.
– After five ‘green’ leafs are found at a branch, the branch will pop 

control.  Link prioritization will ensure many green hits.

• The heuristic will be turned off to gather a corpus for the 
whole vocabulary.  Search depth will be limited.  Also, after 
five leaves are read at a node, the node pops control.

• Evaluation at each node goes like this
– Page (node) loaded, all links found are compared and collated into 

the ‘play-list’: A list of all links encountered through the whole run.  
Any links new to ‘play-list’ get added under the node.  If the       is 
found, all the path is marked as good.

– The first in the play list is checked, if its parent branch has fewer than 
five files examined, that file is loaded.  If more than five files have 
been examined, then unread siblings in the play-list are marked 
‘crowded out’.

• After 300 files loaded, the tree is examined

Attribute learning
• Determine the overall chance of being either green 

or red (herein, means “not green”):
– Discover the number of green/red-path documents, and 

the total number of documents in general.

• Collate all the words of all green-path nodes into 
the ‘big-green-file’, determine its population, 
similarly collate all the words from the others into 
‘big-red-file’

• For each word in the whole vocabulary, check 
green and red.
– Count the number of times it is found in big-green-

file (or on second pass, big-red-file)

– Thus determine its chances for it being in this sort of 
node:  

• P(wk |  vj ) = (# of time in red/green file + 1)/(population of red/green file + 
population of vocabulary)

Classification - the final test

• For a new document, get the chance of it being 
green from

– P green ΠΠΠΠ P (each word in the new document being 
found in a green document)

– P red  ΠΠΠΠ P (each word in the new document being 
found in a red document)

• Classify the document according to which is 
greater.

Creating a smart animal in 
Terrarium

CSE 592
Yuan Zhang
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Problem domain

! Plants
! Carnivores
! Herbivores

! Move
! Eat
! Attack

My goals

! Create a smart herbivore
! Only deal with movement
! Look for plants to eat
! Hide from Carnivores

Methodology

! TD learning based on Neural network 

… Hidden layer

Output layer

Input layer

Plant 
position

Animal 
position

…

Carnivore 
position

Plant 
food 
left

Methodology - con

!

! Input nodes: 147
! Hidden nodes: 20
! Alpha � learning rate: 0.3
! Lambda: 0.3
! Reward 1 (can eat plant)
! Punishment 0 (attacked by caniv)
! Other 0.5 (no eating in 20 ticks)

1 1
1
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k
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Issues

! No IO in Terrarium
! animal starts learning from empty every time it gets 

loaded
! Cannot save weights it got trained

! Event driven mode
! Computation only happens when animal gets a tick
! One animal gets 600 ticks in its lifetime
! Converge after hundreds of generations

! Will be wiped off if animal thinks more 
than 5 seconds in one tick

Workaround

! Wrote a Terrarium simulator
! Finished training before jumping into 

real world
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Results

! Able to learn looking for plants and hiding 
from carnivores (100,000 iterations)

0.6820.6490.5470.403Caniv

0.6930.672 0.619Animal
0.484

0.384

0.7520.7100.6440.5840.547

Plant0.7450.7150.6230.553

Lesson learned

! Terrarium is not good for algorithms 
that need heavy computation

! To control animal�s actions and 
movement is much harder than thought 

! Should use Q function (action, state) to 
search best policy

Questions?


