
1

Solving the Solving the QuasigroupQuasigroup
problem using Simulated problem using Simulated

AnnealingAnnealing
Samuel AminSamuel Amin

QuasigroupQuasigroup Problem DefinitionProblem Definition

!! Given a partial assignment of colors, can the Given a partial assignment of colors, can the
partial partial quaisgroupquaisgroup be completed to obtain a full be completed to obtain a full
quasigroupquasigroup??

!! No color should be repeated in any row or No color should be repeated in any row or
columncolumn

!! 10 by 10 Grid with 10 possible colors for each 10 by 10 Grid with 10 possible colors for each
squaresquare

Simulated AnnealingSimulated Annealing

!! An approach that resembles simple hill climbing, An approach that resembles simple hill climbing,
but occasionally a non optimal step is taken to but occasionally a non optimal step is taken to
avoid local minima.avoid local minima.

!! The probability of taking a non optimal step The probability of taking a non optimal step
decreases over time.decreases over time.

AlgorithmAlgorithm
!! Function SIMULATEDFunction SIMULATED--ANNEALING(problem, schedule) returns a ANNEALING(problem, schedule) returns a

solution statesolution state
current<current<-- initial state of probleminitial state of problem
for t <for t <-- 1 to infinity do 1 to infinity do

T<T<-- schedule[tschedule[t]]
if T = 0 then return currentif T = 0 then return current
next<next<-- randomly selected successor of currentrandomly selected successor of current
E <E <-- VALUE[nextVALUE[next]] �� VALUE [current]VALUE [current]
if E > 0 then current<if E > 0 then current<-- nextnext
else current<else current<-- next only with probability next only with probability eeEE/T/T

Adjusting Adjusting QuasigroupQuasigroup problem for problem for
Simulated AnnealingSimulated Annealing

!! Initial StateInitial State
!! Set the predefined values to the grid, and mark them as Set the predefined values to the grid, and mark them as

predefined. These squares will not be alteredpredefined. These squares will not be altered
!! Randomly fill out remaining squares on grid while ensuring Randomly fill out remaining squares on grid while ensuring

that there are exactly 10 instances of each color.that there are exactly 10 instances of each color.

!! To get the next state, randomly swap two squares on To get the next state, randomly swap two squares on
grid that are not predefinedgrid that are not predefined

!! Value of Grid is 100 Value of Grid is 100 �� Number of repeated squaresNumber of repeated squares

Progress and Problems facedProgress and Problems faced

!! Tweaking schedule of TTweaking schedule of T
!! Local MinimaLocal Minima

2

Handwritten Character Handwritten Character
Recognition using Neural Recognition using Neural

NetworksNetworks

CSE 592 ProjectCSE 592 Project
Samer ArafehSamer Arafeh

System ArchitectureSystem Architecture

�� Image (bitmap) ObjectImage (bitmap) Object
�� 16x16 bitmap scaling16x16 bitmap scaling
�� I/OI/O

�� Neural network objectNeural network object
�� Training and learningTraining and learning
�� RecognitionRecognition

�� User interfaceUser interface
�� HandHand--write characterswrite characters
�� Controls learning rateControls learning rate
�� Save learned dataSave learned data

Neural NetworkNeural Network

�� MultiMulti--layer: 3 Layers neural networklayer: 3 Layers neural network
-- 256 Input nodes (node for each for each 256 Input nodes (node for each for each
input pixel)input pixel)
-- variable number of hidden nodes variable number of hidden nodes
(currently set to 25)(currently set to 25)
-- 36 output nodes (036 output nodes (0--9 and �A� to �Z�)9 and �A� to �Z�)

Network nodes evaluationNetwork nodes evaluation

�� 256 input nodes: 0.5 if pixel is on, 256 input nodes: 0.5 if pixel is on,
otherwise otherwise --0.5.0.5.

�� Hidden nodes and output nodes are Hidden nodes and output nodes are
calculated using the sigmoid threshold unit calculated using the sigmoid threshold unit
as:as:

o = 1/(1+eo = 1/(1+e--netnet) where) where
net = ∑net = ∑wwiixxii (over all incoming edges)(over all incoming edges)

BackpropagationBackpropagation

�� Hidden and Output weights are initialized to Hidden and Output weights are initialized to
random values between [random values between [--0.5,0.5]0.5,0.5]

�� For each output node, calculate the error term For each output node, calculate the error term
δδkk as:as:

δδkk = (t= (tkk �� ookk))
�� Back propagate the error term to the hidden Back propagate the error term to the hidden

nodes such that, for each hidden node, calculate nodes such that, for each hidden node, calculate
the error term the error term δδhh as:as:

δδhh = ∑w= ∑wkhkhδδkk (over all hidden node edges)(over all hidden node edges)

TrainingTraining

�� For each hidden node, reFor each hidden node, re--evaluate each of evaluate each of
the output node weight edges (wthe output node weight edges (wnewonewo) as:) as:

wwnewonewo = w= woldooldo + (+ (η δη δkkhh) ;) ; h is the hidden node value, h is the hidden node value, ηη is the learning rateis the learning rate

�� For each input node, reFor each input node, re--evaluate each of evaluate each of
the hidden node weight edges (wthe hidden node weight edges (wnewhnewh) as:) as:

wwnewhnewh = w= woldholdh + (+ (η δη δhhxx) ;) ; x is the input node value, x is the input node value, ηη is the learning rateis the learning rate

3

RecognitionRecognition

�� Run the reRun the re--evalaution algorithm again with evalaution algorithm again with
the new set of weighted edges and find the new set of weighted edges and find
the output node with the largest which the output node with the largest which
would correspond to the recognized would correspond to the recognized
character.character. DemoDemo

by Diana Bullion

Robocode an AI Playground

! IBM’s RoboCode
! Virtual platform to test AI concepts
! Little tanks battle each other

! Each tank has a gun and radar
! Each tank is allotted the same

resources (energy, ammunition)

IBM
’s
Rob
ocod
e

! Built 5 Robots with different strategies
– Diana’s First …simple tutorial-like robot
– BumperBot …brute force tank

– ThirdTimeCharmer …focused attack

– TheGreatX …stays out of the way
– MasterEvader … predicts aiming point

! Implement multiple robots with varying
levels of intelligence

! Wanted to prove intelligence and
strategy wins over brute force

Robots Battle

4

! Basic robot scans for other robots
! Bumps into them and repeatedly shoots
! Brute force - low intelligence

– Does not predict where robot will be

– Does not stay focused on closest robot
when different robot is scanned

! Results were surprising - original
objective was for the more intelligent
robots to win against BumperBot

BumperBot

! Advanced Robot
! Evasive Movements … random

figure-eightish pattern
! Predicts best path to fire bullet … taking

into account future speed and location
of both target and source robots, time to
turn gun, time for bullet to travel

! Fire power relative to target distance

MasterEvader

! ThirdTimeCharmer
– Advanced Robot

– Maintains a focused attack

– Standard movement pattern

! TheGreatX
– Travels great distances
– Rarely shoots

– Lets others run out of energy

! Diana’s First
– My first robot … modified tutorial

The Rest Results

! Survival – 50 pts for everyone that died before it
! Last Survivor – 10 pts for every robot in battle
! Bullet Damage – 1 pt for each pt of inflicted damage
! Bullet Damage Bonus – 20% kill bonus of all the

damage it did
! Ram Damage – 2 pts for every pt of ram damage
! Ram Damage Bonus – 30% kill bonus of all ram

damage it did

! Evironment loop
– Robot code executed, time incremented,

bullets move, robots move, robots scan

! Bullets
– Bullet damage = 4*firepower (plus

2*(firepower-1) if firepower > 1)

– Bullet speed = 20 – 3*firepower

– Energy returned on hit = 3 * firepower

! Robot Collision = .6 damage each

! Advanced Robots take Wall Collision
penalty

Robocode Rules

Learning Go with TD(λ)

Todd Detwiler
CSE 592

Winter 2003

5

What is GO?

• One of the oldest and most popular board
games in the world (around 4000 yrs old)

• A game of territory acquisition

• Deterministic, perfect-information, zero-
sum, 2 player strategy game

• A “grand challenge” in AI (Rivest 1993)

The Rules

• Players alternate placing stones on open
intersections of the board (a 19x19 grid)

• Adjacent stones form groups
• Empty intersections adjacent to groups form its

liberties
• A group is captured when all of its liberties are

removed
• 2 passes signify the end of the game
• Ko

Captures

If white plays at
the location
indicated by the
red circle, they
will capture the
black stone by
removing its last
liberty.

Why is Go so Hard?

• Pspace-complete
– Average branching factor of game tree around

200

– Size of game tree on the order of 10170

(compared to around 1050 for Chess)

– Too large for look-ahead evaluation

• No good evaluation function for game
states

TD(λ) Approach

• Learn an evaluation function
– Use neural network as a function estimator

• Temporal credit assignment

The Pieces that I Started With

• OpenGo 5.1 beta
– A set of pre-written Go objects as well as an

environment for playing in
• Very buggy, not as useful as I initially suspected

• Nonlinear TD/Backprop pseudo C-code
– Allen Bonde Jr. and Richard Sutton

– I have extended this to be an actual C++ object

6

Player Design

• Like TD-Gammon, games (state
sequences) are generated by pitting my Go
player against itself

• Unlike TD-Gammon, I am using off-line
learning

• Initially give player rules only, no strategy
• Later augmented with one rudimentary

extension to reduce plies/game

One Problem

The Extension

• Don’t fill in simple, size 1 eyes

• Super Ko

Current Status

• Player
– Identifies all legal moves
– Plays against itself
– Detects win
– Black tracks game states for learning

• TD(λ) network is implemented, but not fully
tested
– Currently testing load/save functionality

• Learning has not yet been achieved

Questions?
Letter Recognition by Using
Multi-Layer Neural Network

Meng Tat Fong
03/13/2003

7

Problem Domain

! Create a classifier to identity the 26
capital letters in the English Alphabet

! Extensible
! Create electronic document from

scanned documents, newspapers, etc.

Data Set

! David Slate donated to UCI machine
learning repository

! 20,000 samples
! letter images from black-and-white

displays
! 20 different fonts
! randomly distorted (all unique samples)

Data Set

! 16 integer attributes
! Normalize to 0.0 � 1.0
! 26 output classes (A-Z)
! 750-800 samples each

! 2,4,4,3,2,7,8,2,9,11,7,7,1,8,5,6,Z
! 4,7,5,5,5,5,9,6,4,8,7,9,2,9,7,10,P

Backgrounds

! Not using any existing Machine
Learning libraries

! Java

Algorithms

! Separate the sample data set into two sets
(~16,000 and ~4,000)

! Network is trained and then verified
! Stochastic gradient descent version of the

BackPropagation algorithm
! Unit weight is updated after each sample
! Sigmoid Units to learn non-linear functions

Algorithms

! Wji = Wji + ∆Wji

! ∆Wji = µEjXji

! Based on the idea that each unit is partially
responsible for the error of its parent.

J

I

Level N

Level N - 1

8

Network Topology

Input Layer

16 units

A

B

C

Hidden Layer

45 units

Z

Output Layer

26 units

Improvements

! Momentum -- nth weight update
partially depending on the previous
update
! ∆Wji(N) = µEjXji + α ∆Wji(N-1)
! Help to escape local minima
! Move along flat region during the search
! Increase my network accuracy by 2.2%
! Momentum 0.58 (75.1% to 77.3%)

Improvements

! Learn from mistakes
! Train the network with all the training

samples once
! Feed the same samples to train the

network, but only use incorrectly classify
samples

! Give the network chances to correct its
mistakes

! Accuracy improved from 72.0% to 77.3%

Improvements

! Ensemble
! Use multiple networks to perform

classification
! Each network will predict an outcome and

the majority will win
! Improved the accuracy to >80%

Results

! Slate�s Adaptive Classifiers (1990)-- ~80%
! Weka�s J48 Decision Tree -- 87.75%
! Weka�s Naive network -- 64.23%
! Weka�s neural network � no result after 10

hours
! My network � up to 85%, alpha 0.60,

momentum 0.58, hidden layer 1, 45 hidden
units, >300,000 training examples

Results

! Start small
! Build a small network to solve a simple

problem. (no hidden unit, one output
class, trivial problem domain)

! Add more output classes
! Add more hidden layers

9

Results

! Hard to create a generic neural network
! Need to adjust the network topology,

learning rates, momentum, etc
! Once you have a working network, it

will perform very well

Thank You!

Random Sampling in Mixtures
of Bayes Nets

Manish Goyal

Basic Idea

• Bayesian networks serve as compact
representations of data

• The data is represented in terms of
conditional distributions

• Draw random samples from these
conditional distributions to generate data
which can then be used for a variety of
purposes

Base system

• Random sampling has been applied to a
problem relating to recognition of single
characters

• The base system consists of a model for
each character

Explanation of Base System

• The model for each
character consists of a
mixture of Bayes
nets(BN1,….BNn) with
weighting factors
w1,….wn

• Models have been trained
for each of the 99
supported characters

• The training set consists
of approximately 200
samples of each
character

w1 w2 w3

BN1 BN2 BN3

10

Explanation of Bayesian Nets
within each model

• For each handwritten character we extract
64 features

• These features are a mixture of
Fourier Transforms
OCR features
Contour Features

• For the purpose of this talk the exact nature
of these features is not important

• Each of these features is represented as a
node in a graph. Hence given that there are
64 features, there are 64 nodes in each
Bayesian Network

• Each node is represented in terms of the
conditional distribution. ie. P(node/all the
parents of the node)

….…….

Method of sampling
• First randomly select which Bayesian

Network you will select. The bayesian
networks are selected with
Probability(w1,….wn)

• Once the Bayesian network is selected we
now need to generate observations from the
network

• For this we need to traverse the graph in
order. For ex. In the figure ,the correct order
of traversal would be 1,2,…n

• Each node is specified in terms of its
conditional mean and covariance given by
Mean=M=µc+∑p(Xp-µp)

• Covariance=C=σc
• As you traverse the graph, generate the

observation for the particular node by
sampling from a Gaussian distribution with
Mean=M and Covariance=C

• Once the observations of all the parents are
known, the conditional mean can be
computed for that node and hence an
observation can be made for that node

• Do this for all the nodes
• Iterate through this generating as many

samples as are required.

1

2

3
4

5

6 7

w1
w2

wn

Verification

• Use the generated data to train a feed
forward neural network (fully connected,1
hidden layer)

• Compare the error rate using the
generated data to a net trained using
original data

• See if these two error rates are
comparable

Results

• Original training set
contains approx 200
samples per code point

• Generated 200 and 500
samples for each code
point using the random
sampling method

• Test set used consists of
17000 samples

23.97 % NN trained
using generated
data(500
samp/code pt)

24.30 % NN trained
using generated
data(200
samp/code pt)

20.32 % NN trained used
original data

Error on test set

Results contd.
• The previous results were all

when we were sampling from a
distribution with mean=M and
covariance=C

• We can increase or decrease
the randomness of the
generated data by using a
covariance given by h*C where
h is a heuristic

• Different nets have been
trained for different values of
the heuristic factor

• As can be seen h=1 gives the
best result (as would be
expected theoretically).

• Samples generated per code
point=200

24.45 % NN trained
using h=2

41.96 % NN trained
using h=0.1

24.30 % NN trained
using h=1

Error on test set

Pipe dream

• Rather than using the
generated data
separately, could we
use it to supplement
the original training
data ? If used in this
manner will we be
able to improve the
base accuracy of the
neural network ?

BN NN

S

G

22.26 %NN trained using 200
generated samples
per code pt +original
data

20.8 % NN trained using 200
generated samples
per code pt +original
data

20.32 %NN trained using
original data

Error on test set

G+S

11

Conclusions

• Random sampling can be used to
generate the original data

• Classifiers trained on this synthesized data
have accuracy close to that obtained by
using the original data

Possible uses

• Font generation
• Compact representation of data
• Other uses ?

MultiSat – A PDDL Problem Solver

CS 592 Project
Rui Jiang

What is MultiSat

" A SAT solver that accepts PDDL files as input
" Supports STRIPS and part of numeric (multivalued)

functions
" Currently has WalkSat and Breadth First Search

implemented
" Output plan steps and final state

WorkFlow

PDDL
Parser

Domain
Definition

Problem
Definition

Internal
Problem

Representation

WalkSat
Solver

Breadth
First

Final State

Plan

PDDL Revisited

" Domain Definition:
– Predicates
– Functions (Multivalued)
– Actions

" Precondition
" Effects

" Problem Definition:
– Objects
– Initial State
– Goal

12

Function in PDDL

" Actually represents a value of an object (or objects).
" Predicate can be viewed as a function that has only

true/false value.

Example of Function

Queens Problem Domain
(define (domain queens)

(:requirements :strips :equality :fluents :negative-preconditions)
(:functions (position ?row) (positionmax))

…

(:action moveright

:parameters (?row)
:precondition (< (position ?row) (positionmax))

:effect (and (increase (position ?row) 1))
)

)

Example of Function

" Queens Problem
(define (problem queensprob4)
(:domain queens)
(:objects q0 q1 q2 q3)
(:init
(= (position q0) 0)
(= (position q1) 1)
(= (position q2) 2)
(= (position q3) 3)
(= positionmax 3)

)
(:goal (and

(not (= (position q0) (position q1)))
(not (= (position q0) (position q2)))
(not (= (position q0) (position q3)))
(not (= (+ (position q0) 1) (position q1)))
(not (= (- (position q0) 1) (position q1)))
(not (= (+ (position q0) 2) (position q2))) …)))

State in MultiSat

" Collection of predicate and function values
" A state in Queens problem:

position q0 4
position q1 2

position q2 0
position q3 5

position q4 7
position q5 1

position q6 3
position q7 6

positionmax 7

How does WalkSat work?

" Start with the problem initial state.
" While not solved

– Create an empty queue
– For each action, generate all possible combination of parameters

" Evaluate precondition against the current state. If true, do the action and
evaluate how many propositions in the goal valid. If all propositions in the
goal are valid, the problem is solved and we exit. Otherwise put this action
and its result state into the queue.

– Select the action and parameters that will have the largest number of
valid propositions in the goal. With a small probability, randomly
select any action from the queue. Replace the current state.

Breadth First Search in MultiSat

" Just the usual breadth first search
" With Dynamic Programming – exclude similar state in

the search

13

Example output – Sokoban

..\bin\multisat -o sokoban\sokoban.pddl -f sokoban\sokoban2.pddl -bf -notree
…
Actions:

1: push_left p33 p32 p31 ==> ValidCount 0
2: push_down p21 p31 p41 ==> ValidCount 0
3: move_up p31 p21 ==> ValidCount 0
4: move_up p21 p11 ==> ValidCount 0
5: push_up p31 p21 p11 ==> ValidCount 0
6: push_up p21 p11 p01 ==> ValidCount 2

Time used: 2.824 seconds

Example output - Queens

F:\CS592\project\test>..\bin\multisat -o queens\queensdomain4.pddl -f queens\queens4.pddl -
notree

…
Problem is not solved yet. Let me try try...
Goal's maximum propositions: 18

1: moveleft1 q2 ==> ValidCount 14
2: moveright1 q1 ==> ValidCount 16
3: moveright2 q0 ==> ValidCount 16
4: moveleft2 q1 ==> ValidCount 17
5: moveright2 q2 ==> ValidCount 17
6: moveleft2 q3 ==> ValidCount 18

Haha, we have solved the problem! Final state:
position q0 2
position q1 0
position q2 3
position q3 1
positionmax 3

Time used: 0.000 seconds
Search steps: 6

Performance

" Examples are run on a Dell Inspiron 4150 with 1.8 GHz
CPU, 512 MB

" Sokoban problem is run using breadth first search
" Queens problem and quasigroup problem are run with

WalkSat

Performance - Sokoban

Time used (in seconds)

0.171.932Problem 3 (16
steps)

0.052.794Problem 2 (6
steps)

17.787.801Problem 1 (33
steps)

BlackBoxMultiSat

Here are the 3 sokoban problems from homework 1

Performance - Queens

" Time Used (seconds)

18013912130 queens

73604825 queens

28201720 queens

0.10.050.01Random
Factor

Performance – Quasigroup with
Holes

Time Used(seconds)Problem

9012X12, 40 holes

5511X11, 40 holes

12.710X10, 30 holes

2.29X9, 20 holes

14

Hierarchical Text Classification
and the Open Directory

Project

Will Kallander
CSE592

Series of directories and flat files: Project Goal

Use automated methods of hierarchical
text classification to facilitate editing.

Use Cases
Editor is not
knowledgeable WRT
the placement of a
site that has been
incorrectly
submitted to a
category.

Automated QC �
Alleviation of the
�Bait and Switch�
attack.
E.g.: As in the case
of Adult content in
Kids_and_Teens

Approach
Recreate hierarchical
structure at every
node.
Classifiers for all
internal nodes.
Cascade
classifications in RT
N-ary classifications

Binary classifier:
Adult or Non-Adult
content?
Use same data as
hierarchical approach

15

Feature Selection
Use data from ODP itself as definition
for classifiers:

Human generated � contains intelligence
about ontology
Not as noisy as web data
Much smaller than web data
Faster � crawling is �S L O W�
RDF (type of XML) is easy to parse

The Guts
Perl approach:

Rolled my own.
Ken Williams�
AI::Categorizer
module
CGI wrapper around
C command-line
front end to libbow

C command line:
Andrew McCallum's
libbow
Rainbow � front end
interface for indexing
Use undocumented
(and/or unstable)
features

Reinforcement
Learning

Playing Checkers
" Machine plays against itself.
" No prior knowledge on strategy.
" Uses a neural network with a hidden layer.
" Reward wins and back-propagate weights.
" Uses TD-λ propagation.

The Game

Red moves first

Moves diagonally forward

The Game

Red moves first

Moves diagonally forward

Followed by white

The Game

Red moves first

Moves diagonally forward

Followed by white

Captures by jumping over to empty

16

The Game

Red moves first

Moves diagonally forward

Followed by white

Captures by jumping over to empty

Main components

" Trainer - trains using TD-λ
" The weights represent knowledge
" Weights can be serialized
" The trained net is used as player

" Player – plays with opponent algorithm

Trainer

" A neural network
" Initially randomized weights

" ∆wt = α(Pt+1 - Pt) ∑t
k=1λt-k ▼w Pk

" Inputs – state of squares, number of discs

" Chooses move that maximizes net output
" Updates weights using change in output

Input representation

" Boolean inputs preferred vs Multivariate for
reinforcement learning

" Total of 154 inputs
" 4 inputs per square (2 – color, 2 – type of piece)

" 8 inputs per player representing piece advantage

" 2 inputs for who started the game

" 2 inputs for who the current player is

" 6 inputs for the number of moves

Strategies

" Randomization to avoid local minima
" Randomly pick among the best moves
" With a low probability pick a completely random

move
" Increase above probability with the number of

moves

" Evaluate the next move using lookahead

Strategies …

" Breaking ties based on piece advantage
" 3 * Man = = 2 * King
" Punishing the player with considerable piece

advantage

" Training with end games to speed up learning

17

Player

" GUI that accepts 2 player engines

" Play smart Vs trained player

" Smart player uses mini-max algorithm with
some set of features

Lessons learnt

" Initial weights play crucial role
" Use learning parameters that have been

known to work

" Weight update is easy to get wrong

" Co-evaluation techniques are not very useful

" The input representation matters

Acknowledgements

" Martin Fierz - checkerboard program
" Rich Sutton – pseudo code for TD-λ
" Cliff Kotnik – pointers into SNNS & TD-λ
" SNNS – initial experimentation

Algorithmic Composition
& Artificial Intelligence

By Brian McNaboe

Outline

#Objective
#Approach
#Results
#Examples/Demo
#References

Objective

#Write a program that can generate
�pleasant� sounding harmonized melodies
autonomously.

DISCLAIMER: I do not consider myself a musician, nor do I
have any formal training in music theory.

18

Composer

$ Generates
musical
compositions

$ Guidelines
Based /
Random

Critic

$ Critiques
composer's
compositions

$ Uses neural net w/
back-propagation
learning

Conductor
Directs Effort

Training Set
Contains training

exm. (comp/
goodness)

Composition
Stores musical

elements

MIDIMgr
Abstracts MIDI

interface

MIDI File

Approach - Composer

#Uses guidelines from music theory to limit
state space.

#Randomly chooses chords and melody
notes w/ in bounds.

#Surprisingly good results w/ few simple
constraints.

Approach - Critic

#2-layer feedforward neural net of sigmoid
threshold units.

#Configurable # of hidden units.
#Configurable between full and stochastic

gradient decent back-propagation
learning.

Approach - Critic (cont.)

#Back-propagation loop termination based
on combo. of max_iters &
max_acceptable % weight change (more
on this later).

#Network inputs composed of 14 numerical
quantifications of composition
%total number of notes
%note/chord tension
%etc.

Results

#Rules based approach alone worked
better than expected.

#So far, critic has been trained to critique
w/ up to 80% accuracy for single training
set.

#However, not enough training to
successfully generalize yet (best case so
far 60% train/ 60% validation).

Results (cont.)

#Still tweaking critic parameters
%Loop termination criteria
%Learning rate
%Number of hidden units

#Haven�t found magic formula yet...

19

Examples & Demo References

#Mitchell, Machine Learning.
#Widmer, Qualitative Perception Modeling

and Intelligent Musical Learning.
#Jacob, Algorithmic Composition as a

Model of Creativity.
#Cope, Computer Modeling of Musical

Intelligence in EMI.
#Various books on music theory.

Player Move Prediction

• 3 games:
– Penny Matching

– Rock Paper Scissors

– Position Tracking

• N-Gram Method

• Sequential Prediction Method

• Note: Random = Unpredictable

The Games

• Penny Matching
– Computer tries to

predict your choice

– Game introduced in
SEER paper

The Games (cont.)

• Rock Paper Scissors
– Traditional game

– Tie is possible

– Human randomness
more difficult

The Games (cont.)

• Position Tracking
– 16 choices

– Movement
representation

– Option to restrict
movement

20

N-Gram Method

• From speech recognition research; shown in class:
– Unigram, Bigram, Trigram

• General case: N-Gram
• Tally occurrences of permutations of N moves.
• Example of N-Gram(4):

– Player’s last 3 moves: H-T-T
– H-T-T occurred 4 times in past followed by T
– H-T-T occurred 2 times in past followed by H
– Computer predicts player’s move will be T

N-Gram Results

• Tested games with N from 1 to 6
• Preliminary Testing:

– Penny Matching best with 4
– Rock Paper Scissors best with 3 (2 & 4 close)
– Positional Tracking best with 2

• Experimented with summing all N-Grams, with
each weighted by its confidence
– Generally performs in top 25%
– Avoids picking a specific N-Gram that could

underperform

Sequential Prediction Method

• Search for longest substring that matches
tail of sequence.

• Optimization
– For each move, maintain list of positions of

occurrences

– Generate match size for list & select longest

– Runs in O(N) vs. O(N²)

Sequential Prediction Results

• Good performance in general
– Consistently over 50%

– Somewhat worse than best-performing
N-Grams

• Outperforms N-Grams on restricted
movement position tracking

21

.Net Terrarium Animal as a
Reactive Agent

Jack Richins
CSE 592

Motivation

• Creatures need to move to a plant or
animal to eat.

• Sometimes, they get blocked by other
creatures or other plants.

• Animals only get 2 to 5 milliseconds a turn
• Best First Search was too slow

• Community Astar implementation faster,
but still failed to find path sometimes.

22

Reactive or Simple Reflex Agent

• Reactive agents react to input from
sensors with simple actions based on
simple rules.

• Sensor: Output of scan() is list of all
creatures, plant or animal, in the world.

• Rule: Try different angles off of direct path
until un-obstructed path is found

Example

Direct path is obstructed

Example Method of Evaluation

• Evaluated by success in controlled
Terrarium world.
– not hooked up to network where creatures

from other Terrarium’s can be transported in
or out

• Tested exactly 2 animals at a time
• Tested until population showed a clear

winner and loser, or 45 minutes.

Results

434102minobstaclesherb

28013greedymoveherb

23258plant

39 Minutes

1010minobstaclesherb

1010greedymoveherb

1111plant

Start - 12:57

BirthsPopulation

Example

Ignored, if it’s moving

23

Exclude Moving Creatures from
Obstacles List

25916excludemovers

2014minobstaclesherb

13319plant

47 minutes

1010excludemovers

1010minobstaclesherb

1010plant

BirthsPopulation

Best Reactive Agent versus A*

15521plant

30520excludemovers

18022astar

42 minutes

1010plant

1010excludemovers

1010astar

BirthsPopulation

Conclusion

• Reactive agent show considerable
improvement over no reaction at all

• For this problem space, comparable to A*
performance.

• For such a simple implementation
compared to A*, this seems impressive to
me.

Bayesian Inference in Double
Six Dominos

Carlos Garcia Jurado Suarez
03/13/2003

Outline

• Game description
• Approach
• Performance measurements

• Remaining and future work

Game Description

24

Game Description …

• There are 2 teams of 2 players each. Team mates sit
across from each other in a squared table.

• There are 7 numbers and 28 dominos (from 0:0 to 6:6)
• The goal is for either of the team players to get rid of all

his/her dominos (before the other team does).
• A domino can be played by matching the number of dots

with the ones in either end of the game.
• When somebody finishes the team is awarded a number

of points equal to the sum of the points that the other
team had in their remaining dominos.

• The first team to reach 100 points wins the match.

Approach

• To win in dominos the basic strategy is:
avoid skipping turns and force your
opponents to skip.

• Dominos should be played such that the
probability of the team members to skip is
low and the probability of opponents to
skip is high.

• We need a way to infer such probabilities

Approach … Bayesian net
7 networks, each with a CPT. The CPTs were calculated by
simulating 106 games (all observations are complete).
Example:

Approach … MinMax

• MinMax is used to select a move. Each game state is
evaluated based on the strategy previously described.

Performance measurements

• 800 matches played against a “Dummy” team (dummy players
pick moves randomly). Depth=3 seems optimal

Remaining and future work / QA

• Further improvements may include:
– Better approximations to the probability of

non-deterministic moves.

– Implementing Alfa-Beta pruning

– Learning the utility function (genetic
programming or neural network?)

• Questions?

25

Studying the Effects
of Parallelism on
Current Planners

James Welle

Overview

! Study several different state of the art
planners (FF, IPP, and Blackbox) on
variations of the Sokoban world, where the
amount of parallelism can be controlled by
having different numbers of Sokoban

Purpose and Goals

! How will these planners be affected by
introducing multiple Sokobans into the
problem?

! Will adding resource bounds to the
Sokoban domain affect these planners?

! How will these planners scale as the
number of Sokobans grows.

Measuring planners

! Speed in Plan Creation
! Plan Quality

&Plan Length

&Time
&Resources (fuel, energy, $, etc.)

What’s the best plan?
! Plan Length = 5
! Time Steps = 5

26

! Plan Length = 5
! Time Steps = 3

Resource Bounded Logistics

(:action MOVE-SOKOBAN
:parameters
(… ?r)
:precondition
(and …
(resource ?r)
(can-use ?sokoban ?r))
:effect
(and …
(not (resource ?r)))

Planners Considered

! FF
& FF is a forward chaining heuristic state space planner.
& Generate a heuristic by generating an explicit solution to a

relaxed problem (using GRAPHPLAN) and using the number of
actions in the relaxed solutions is used as a goal distance
estimate.

& Use enforced hill-climbing: uses breadth first search to find a
strictly better, possibly indirect, successor.

& If local search fails, then skip everything done so far and switch
to a complete best-first algorithm that simply expands all search
nodes by increasing order of goal distance evaluation.

Planners Considered (cont.)

! IPP
& Based on GRAPHPLAN – builds the planning graph starting

from initial facts
& RIFO – Removing Irrelevant Facts and Operators
& RIFO tries to determine such irrelevant information (ground

operators and initial facts) using a "backchaining" process and
removes them from the planning task.

& Depending on the heuristic and union method chosen, different
kinds of "possibility sets" of relevant objects and facts are
created. These sets can be used in different ways to decide over
relevance or irrelevance of ground operators and initial facts

Planners Considered (cont.)

! BLACKBOX
&Uses GRAPHLAN to create satisfiability

problems from planning problems
&Can invoke a number of different satisfiability

solvers on the problem
! WALKSAT, SATZ, etc.
! I focused specifically on the CHAFF solver

! Run the planners on the modified Sokoban
domain and compare results

! Introduce resource bounds into the
domains from AIPS 2002 and compare
results

! Experiment with how the planners scale as
the number of Sokobans grows

Approach

27

Results

! IPP and BLACKBOX, much better than FF
on parallelism
&Expected, as they have a sense of time and

FF does not

! Introducing resource bounds into AIPS
domains

! Experimenting with scalability

Mining the WeatherMining the Weather

Using AI Techniques to Make Weather PredictionsUsing AI Techniques to Make Weather Predictions

Reid WilkesReid Wilkes
CSE 592CSE 592

University of WashingtonUniversity of Washington
February 13, 2003February 13, 2003

MotivationMotivation

'' Prediction normally done by modeling physical Prediction normally done by modeling physical
processes. processes.

'' Even powerful computer models are much less Even powerful computer models are much less
than perfect, and require a deep understand of the than perfect, and require a deep understand of the
science of Meteorology.science of Meteorology.

'' Can machine learning be used to identify patterns Can machine learning be used to identify patterns
in historical data and make predictions as well as in historical data and make predictions as well as
the computer models?the computer models?

'' Chance to experiment with various machine Chance to experiment with various machine
learning techniques.learning techniques.

Problem StatementProblem Statement

'' Try to use machine learning methods to analyze Try to use machine learning methods to analyze
historical data and make predictions of what the historical data and make predictions of what the
weather conditions will be at a given location at weather conditions will be at a given location at
some time in the future.some time in the future.

'' In practice, focused on predicting the conditions in In practice, focused on predicting the conditions in
Seattle (Boeing Field) 6 or 12 hours in the future.Seattle (Boeing Field) 6 or 12 hours in the future.

'' Output of system is probability for each possible Output of system is probability for each possible
condition (Rain, Sun, Cloudy, etc…)condition (Rain, Sun, Cloudy, etc…)

Approach Approach –– Collecting DataCollecting Data

'' Picked 12 Locations Across State of WashingtonPicked 12 Locations Across State of Washington
–– BellinghamBellingham
–– Boeing Field (Renton)Boeing Field (Renton)
–– EverettEverett
–– ForksForks
–– HoquiamHoquiam
–– OlympiaOlympia
–– Port AngelesPort Angeles
–– SheltonShelton
–– Stampede PassStampede Pass
–– Vancouver (WA)Vancouver (WA)
–– WenatcheeWenatchee
–– YakimaYakima

'' The 1The 1stst of many informed but arbitrary decisions!of many informed but arbitrary decisions!

Approach Approach –– Collecting DataCollecting Data

'' Collected 6 data points for each location.Collected 6 data points for each location.
–– Current Conditions (Rain, Cloudy, etc…)Current Conditions (Rain, Cloudy, etc…)
–– TemperatureTemperature
–– HumidityHumidity
–– Barometric PressureBarometric Pressure
–– Wind SpeedWind Speed
–– Wind DirectionWind Direction

'' Data taken every hour from Data taken every hour from
http://iwin.nws.noaa.gov/iwin/wa/hourly.htmlhttp://iwin.nws.noaa.gov/iwin/wa/hourly.html

'' Small utility parses HTML page every hour and inserts new Small utility parses HTML page every hour and inserts new
readings into SQL Server database.readings into SQL Server database.

'' Collected data starting on Feb 10. Collected data starting on Feb 10.

28

Approach Approach –– Preparing DataPreparing Data

'' Once data was collected, it had to be worked into a usable Once data was collected, it had to be worked into a usable
form.form.

'' To make life easier, data was To make life easier, data was discretizeddiscretized..
–– Temperature, Humidity, Pressure were divided into 5 Temperature, Humidity, Pressure were divided into 5 –– unit unit

buckets.buckets.
–– Conditions are aggregated into 9 condition types.Conditions are aggregated into 9 condition types.

'' Sunny/ClearSunny/Clear
'' CloudyCloudy
'' Partly CloudyPartly Cloudy
'' RainRain
'' Freezing RainFreezing Rain
'' FogFog
'' SnowSnow
'' Mix snow/rainMix snow/rain
'' HailHail

Approach Approach –– Preparing DataPreparing Data

'' In addition to absolute conditions, condition changes were also In addition to absolute conditions, condition changes were also used.used.
–– DTemperatureDTemperature
–– DWindDWind
–– DHumidityDHumidity
–– DPressureDPressure

'' There was no There was no DConditionsDConditions value value –– only current conditions considered.only current conditions considered.
'' Wind Speed and Wind Direction were Wind Speed and Wind Direction were discretizeddiscretized together in a way that together in a way that

takes into account both the change in Speed and Direction as weltakes into account both the change in Speed and Direction as well as l as
the current state (56 total possible values).the current state (56 total possible values).

'' The systems written were designed to take a parameter which The systems written were designed to take a parameter which
determines how big an interval over which to calculate the diffedetermines how big an interval over which to calculate the differentials.rentials.

First Analysis Method First Analysis Method –– Naïve Naïve BayesBayes

'' Naïve Naïve BayesBayes seemed to be a good first shot at seemed to be a good first shot at
predicting.predicting.
–– Deals with probabilities, which is really what we’d like Deals with probabilities, which is really what we’d like

the system to output in the end.the system to output in the end.

–– Not too hard to be naïve enough to claim that the all of Not too hard to be naïve enough to claim that the all of
the data collected at one point in time is conditionally the data collected at one point in time is conditionally
independent given the conditions in Seattle in the future.independent given the conditions in Seattle in the future.

–– It’s much, much harder to try to understand conditional It’s much, much harder to try to understand conditional
dependencies between the data points, if we were to try dependencies between the data points, if we were to try
a more structured Bayesian Network.a more structured Bayesian Network.

Naïve Naïve BayesBayes -- ImplementationImplementation

'' C# application uses stored procedures in SQL C# application uses stored procedures in SQL
Server to do some of the counting, and uses Server to do some of the counting, and uses
ADO.NET data sets in memory to do the rest of ADO.NET data sets in memory to do the rest of
the counting.the counting.

'' All floating point computations done in the C# app All floating point computations done in the C# app
–– SQL Server returns nothing but integers.SQL Server returns nothing but integers.

'' Basically, build a giant SQL temporary table that Basically, build a giant SQL temporary table that
has all the data we need already has all the data we need already discretizeddiscretized and and
work from there.work from there.

Naïve Naïve BayesBayes –– Better Better
ImplementationImplementation

'' Keep tables around with counts of different Keep tables around with counts of different
values and update them when data is values and update them when data is
inserted into master table.inserted into master table.

'' Helps offset the cost of the counting at Helps offset the cost of the counting at
prediction time.prediction time.

'' Would be absolutely necessary with more Would be absolutely necessary with more
historical data.historical data.

Naïve Naïve BayesBayes -- ResultsResults

'' At first, didn’t perform so well… ~70% for six hour At first, didn’t perform so well… ~70% for six hour
forecast with 6 hour interval.forecast with 6 hour interval.

'' Problem was that the artificial sample (used to Problem was that the artificial sample (used to
prevent 0 terms in product) was WAY too high prevent 0 terms in product) was WAY too high
(100).(100).

'' When artificial sample size was reduced to 1, When artificial sample size was reduced to 1,
accuracy shot up to ~85% for 6 hour and ~83% for accuracy shot up to ~85% for 6 hour and ~83% for
12 hour forecasts!12 hour forecasts!

'' Accuracy calculated as number of the most likely Accuracy calculated as number of the most likely
condition the system predicts is correct.condition the system predicts is correct.

29

Naïve Naïve BayesBayes Net ResultsNet Results

'' Calculated accuracy over same data set Calculated accuracy over same data set
used to make predictions!!! (there just used to make predictions!!! (there just
wasn’t enough data to go around)wasn’t enough data to go around)

Other Possible ApproachesOther Possible Approaches

'' Experimented with hybrid Neural net Experimented with hybrid Neural net –– Probabilistic Probabilistic
inference method.inference method.
–– Treat each location as Treat each location as perceptronperceptron. Weight inputs (. Weight inputs (P(CondP(Cond | input)) | input))

and aggregate predictions.and aggregate predictions.
–– Have 1 Have 1 perceptronperceptron that aggregates input from each location. Apply that aggregates input from each location. Apply

weights to each input.weights to each input.
–– Inputs/Outputs from each Inputs/Outputs from each perceptronperceptron was a vector of probabilities was a vector of probabilities

for each possible conditions.for each possible conditions.
–– Without training, it ALWAYS forecast cloudy conditions.Without training, it ALWAYS forecast cloudy conditions.
–– Train using variant of stochastic gradient descent Train using variant of stochastic gradient descent –– because we are because we are

dealing with vectors the math and logic get pretty weird.dealing with vectors the math and logic get pretty weird.
–– Actually was successful in training the network! Unfortunately iActually was successful in training the network! Unfortunately in the n the

wrong direction….wrong direction….

Other Possible ApproachesOther Possible Approaches

'' True Bayesian Network.True Bayesian Network.
–– Final prediction is dependant on locations.Final prediction is dependant on locations.

–– Each location is dependant on the data from Each location is dependant on the data from
that location.that location.

–– Could possibly also introduce dependencies Could possibly also introduce dependencies
from time of day to certain variables like from time of day to certain variables like
temperature.temperature.

SummarySummary

'' Was it successful?Was it successful?
–– Naïve Naïve BayesBayes was more successful than was more successful than

expected.expected.

–– Neural Network Idea bombed so far, but I still Neural Network Idea bombed so far, but I still
have hope it could yield positive results.have hope it could yield positive results.

Bottom Line Bottom Line –– Data was insufficient to make any Data was insufficient to make any
conclusive statements!conclusive statements!

Applying AI to Network Applying AI to Network
Intrusion ResponseIntrusion Response

Brett M. Wilson

BackgroundBackground

" IDS witnesses patterned or anomalous
behavior and categorizes it as an attack

" Traceback determines the final source and
destination of the network traffic involved

" Temporary blocking rules are inserted for
immediate response

" Human operator fine tunes the rules and
takes any other necessary precautions

30

DesignDesign

" Didn’t easily fall into the realm of one tool
" Split into different tasks for different tools

– Knowledge base for collecting data and deducing new
statements from it

• Prolog

– Bayesian network to determine the probabilities of
events in question, given evidence

• EBayes (programmatic interface to JavaBayes)

– Utility theory to weigh the tradeoff of letting an attack
spread versus blocking off part of the network or
service

• TBD

Pretty PicturesPretty Pictures

Threat

Attack

IDS1 IDS2

Open
Service

Latest
Patches

Weak
OS

Compromised

Scanned

Pretty GraphsPretty Graphs

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Detector Alert

P
ro

b
ab

il
ty

 o
f

A
tt

ac
k

Low 0.01% 19.99% 71.43% 99.98%

Normal 0.03% 39.98% 86.96% 99.99%

Medium 0.05% 54.98% 92.44% 100.00%

High 0.13% 74.98% 96.77% 100.00%

Extreme 0.81% 95.00% 99.48% 100.00%

Neither IDS1 IDS2 Both

Threat

Attack

IDS1 IDS2

Match 99.9% attacks
30% false positive

Match 70% attacks
.01% false positive

Future IdeasFuture Ideas

" More inputs, more inputs, more
inputs....

" Applying machine learning or game
theory to predicting an adversary’s
next move or final goal

FLIPFLIP

FirstFirst--order Logic Inference Proverorder Logic Inference Prover

Jonathan WrayJonathan Wray

CSE 592 Winter 2003CSE 592 Winter 2003

FirstFirst--Order LogicOrder Logic

• Extends Propositional logic to include objects, relations,
and functions.

• Similar in some respects to how humans reason.
• Predicates: King(x) Λ Greedy(x) → Evil(x).
• Functions: Sibling(Son(x), Daughter(x)).
• Universal Instantiation: @x Likes(x, IceCream).
• Existential Instantiation: #x Killed(x, Tuna).
• Chapter 8 in R&N

31

Inference in FOLInference in FOL

• Forward Chaining
– deductive databases, production systems

• Backward Chaining
– logic programming (e.g. Prolog)

Both are restricted to Horn Clauses

• Resolution
– theorem provers
– “refutation-complete”

• Chapter 9 in R&N

UnificationUnification

• Generalized Modus Ponens:
– For atomic sentences pi, pi′, and q, where there is a substitution
θ s.t. SUBST(θ, pi′) = SUBST(θ,q), for all i,

p1′, p2′, …, pn′, (p1 Λ p1 Λ p1 → q)

SUBST(θ, q)

• Example:
@x King(x) Λ Greedy(x) → Evil(x).
King(John).

Greedy(John). {x/John} → Evil(John)

Conversion toConversion to
Conjunctive Normal FormConjunctive Normal Form

• “Everyone who loves all animals is loved by someone.”

@x (@y Animal(y) -> Loves(x,y)) -> (#y Loves(y,x)).

• Eliminate implications, move negation inwards, standardize
variables, skolemize, drop universal qualifiers, distribute Λ over V:

Animal(F:0(x:0)) | Loves((F:1(x:0)), x:0) &

!Loves(x:0, (F:0(x:0))) | Loves((F:1(x:0)), x:0)

• Skolem function: “arguments are all universally quantified variables
in whose scope the existential quantifier appears” (Say what?)

Resolution Inference RuleResolution Inference Rule

• Binary resolution:
– For each pair of clauses, try to eliminate two

complementary literals (where one unifies with
negation of other)

– Apply substitution to remaining literals
– Remaining literals form the resolvent clause

• Factoring:
– For each clause, try to remove redundant literals

(those which unify)
– Apply substitutions to other literals

Did Curiosity kill the Cat?Did Curiosity kill the Cat?

• Knowlege Base: “Everyone who loves all animals is loved by someone.

Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.”

@x (@y Animal(y) -> Loves(x,y)) -> (#y Loves(y,x)).

@x (#y Animal(y) & Kills(x,y)) -> (@z !Loves(z,x)).

@x Animal(x) -> Loves(%Jack, x).

Kills(%Jack, %Tuna) | Kills(%Curiosity, %Tuna).

Cat(%Tuna).

@x Cat(x) -> Animal(x).

• Query: “Curiosity killed the Cat.”

Kills(%Curiosity, %Tuna).

Yes, and here’s the proof:Yes, and here’s the proof:
Animal(F:0(%Jack))

!Loves(z:5, %Jack)
Animal(%Tuna)

Cat(%Tuna)
Animal(x:7) | !Cat(x:7)

!Animal(%Tuna) | !Loves(z:5, %Jack)
Kills(%Jack, %Tuna)

!Kills(%Curiosity, %Tuna)
Kills(%Curiosity, %Tuna) | Kills(%Jack, %Tuna)

!Animal(y:4) | !Kills(x:3, y:4) | !Loves(z:5, x:3)
Animal(F:0(x:0)) | Loves((F:1(x:0)), x:0)

!Animal(F:0(%Jack))
!Loves(%Jack, (F:0(%Jack)))

!Loves(z:5, %Jack)
Animal(%Tuna)

Cat(%Tuna)
Animal(x:7) | !Cat(x:7)

!Animal(%Tuna) | !Loves(z:5, %Jack)
Kills(%Jack, %Tuna)

!Kills(%Curiosity, %Tuna)
Kills(%Curiosity, %Tuna) | Kills(%Jack, %Tuna)

!Animal(y:4) | !Kills(x:3, y:4) | !Loves(z:5, x:3)
Loves((F:1(x:0)), x:0) | !Loves(x:0, (F:0(x:0)))

Loves(%Jack, x:6) | !Animal(x:6)

32

Is West a criminal?Is West a criminal?
• Knowledge Base:

@x,y,z American(x) & Weapon(y) & Sells(x,y,z) & Hostile(z) -> Criminal(x).
@x Missile(x) & Owns(%Nono, x) -> Sells(%West, x, %Nono).
@x Enemy(x, %America) -> Hostile(x).
@x Missile(x) -> Weapon(x).
Owns(%Nono, %M1). Missile(%M1).
American(%West). Enemy(%Nono, %America).

• Query: Kills(%Curiosity, %Tuna).

American(%West)
!American(%West)

Weapon(%M1)
Missile(%M1)
Weapon(x:3) | !Missile(x:3)

!American(%West) | !Weapon(%M1)
Sells(%West, %M1, %Nono)

Missile(%M1)
Sells(%West, %M1, %Nono) | !Missile(%M1)

Owns(%Nono, %M1)
Sells(%West, x:1, %Nono) | !Missile(x:1) | !Owns(%Nono, x:1)

!American(%West) | !Sells(%West, y:0, %Nono) | !Weapon(y:0)
Hostile(%Nono)

Enemy(%Nono, %America)
Hostile(x:2) | !Enemy(x:2, %America)

!American(%West) | !Hostile(z:0) | !Sells(%West, y:0, z:0) | !Weapon(y:0)
!Criminal(%West)
Criminal(x:0) | !American(x:0) | !Hostile(z:0) | !Sells(x:0, y:0, z:0) | !Weapon(y:0)

Implementation DetailsImplementation Details

• FOL parser written using the Spirit Parser Framework:
– “Spirit is an object oriented recursive descent parser generator framework implemented using template

meta-programming techniques. Expression templates allow us to approximate the syntax of Extended
Backus Normal Form (EBNF) completely in C++. Parser objects are composed through operator overloading
and the result is a backtracking LL(∞) parser that is capable of parsing rather ambiguous grammars.”

• Conversion to CNF, Unification, etc. were implemented as recursive
operations on an abstract syntax tree (AST) representation.

• The AST was sorted during resolution according to a canonical
ordering designed to improve efficiency of various operations.

• Unit Preference: Prefer to do resolutions where one of the
sentences is a single literal, or unit clause.

• Support for strings, including concatenation and splitting.
• Limited support for equality.

FOL GrammarFOL Grammar
Identifier = lexeme_d[token_node_d[(alpha_p | '_' | '$') >> *(alnum_p | '_' | '$')]];
Constant = lexeme_d[token_node_d[ch_p('%') >> +(alnum_p | '_' | '$')]];
String = token_node_d[confix_p('\"', *c_escape_ch_p, '\"')];
Function = Identifier;
Predicate = Identifier;
Variable = Identifier;
TermList = infix_node_d[(Plus | Term) % ','];
VariableList = infix_node_d[Variable % ','];
Term = Function >> inner_node_d['(' >> TermList >> ')']

| Constant | Variable | String | inner_node_d['[' >> Plus >> ']'];
Plus = infix_node_d[Term >> ch_p('+') >> Term];
Equal = infix_node_d[(Plus | Term) >> ch_p('=') >> (Plus | Term)];
AtomicSentence = Predicate >> inner_node_d['(' >> TermList >> ')']

| inner_node_d['[' >> Equal >> ']']
| inner_node_d['(' >> Universal >> ')'];

Negation = root_node_d[ch_p('!')] >> AtomicSentence | AtomicSentence | Equal;
Disjunction = infix_node_d[Negation % '|'];
Conjunction = infix_node_d[Disjunction % '&'];
Implication = infix_node_d[Conjunction >> !("->" >> Disjunction)];
Biconditional = infix_node_d[Implication >> !("<->" >> Implication)];
Existential = root_node_d[ch_p('#')] >> VariableList >> Biconditional | Biconditional;
Universal = root_node_d[ch_p('@')] >> VariableList >> Existential | Existential;
SentenceList = infix_node_d[*(Universal >> '.')];

ResolutionResolution
while (true)

shortcut = false
for each (Ci, Cj in clauses) // clauses are already sorted

if (size(Ci) > threshold)
shortcut = true // unit preference optimization
break

{unified, resolvent} ← Resolve(Ci, Cj) // binary resolution
if unified

if (resolvent = Ø) return true // proof succeeded
sort resolvents
Factor(resolvents) // factoring
new ← new + resolvent

if (new = Ø)
if (shortcut) ++threshold, continue
else return false

new ← new + clauses // combine clauses
sort new
unique new // removes duplicates
if (new = clauses)

if (shortcut) ++threshold, continue
else return false

clauses ← new

Did Jack run up the hill?Did Jack run up the hill?

• Extension to FOL: support for strings as a primitive type
• Knowledge Base:

@n Noun(n) -> NounPhrase(n).

@a,n Article(a) & Noun(n) -> NounPhrase([a + " "] + n).

@p Preposition(p) -> PrepositionalPhrase(p).

@p,n Preposition(p) & NounPhrase(n) -> PrepositionalPhrase([p + " "] + n).

@v Verb(v) -> VerbPhrase(v).

@v,p VerbPhrase(v) & PrepositionalPhrase(p) -> VerbPhrase([v + " "] + p).

@n,v NounPhrase(n) & VerbPhrase(v) -> Sentence([[n + " "] + v] + ".").

Noun("Jack").

Verb("ran").

Preposition("up").

Article("the").

Noun("hill").

• Query: Sentence("Jack ran up the hill.").

Jack ran up the hill.Jack ran up the hill.
PrepositionalPhrase("up the hill")

NounPhrase("the hill")

Noun("hill")

NounPhrase("the " + n:1) | !Noun(n:1)

Article("the")

NounPhrase(a:1 + " " + n:1) | !Article(a:1) | !Noun(n:1)
PrepositionalPhrase("up " + n:3) | !NounPhrase(n:3)

Preposition("up")

PrepositionalPhrase(p:3 + " " + n:3) | !NounPhrase(n:3) | !Preposition(p:3)

!PrepositionalPhrase("up the hill")

!VerbPhrase("ran up the hill")
!Sentence("Jack ran up the hill.")

Sentence("Jack " + v:6 + ".") | !VerbPhrase(v:6)

NounPhrase("Jack")

Noun("Jack")

NounPhrase(n:0) | !Noun(n:0)
Sentence(n:6 + " " + v:6 + ".") | !NounPhrase(n:6) | !VerbPhrase(v:6)

VerbPhrase("ran " + p:5) | !PrepositionalPhrase(p:5)

VerbPhrase("ran")

Verb("ran")

VerbPhrase(v:4) | !Verb(v:4)
VerbPhrase(v:5 + " " + p:5) | !PrepositionalPhrase(p:5) | !VerbPhrase(v:5)

33

Past TensePast Tense

• Knowledge Base:
@s Verb(s) -> PastTense(s, s+"ed").

@s Verb(s+"y") -> PastTense(s+"y", s+"ied").

Verb("jump").

Verb("carry").

• Query: PastTense("jump", "jumped").
PastTense("jump", "jumped")

Verb("jump")

PastTense(s:0, (s:0 + "ed")) | !Verb(s:0)

!PastTense("jump", "jumped")

• Query: PastTense(“carry", “carried").
PastTense("carry", "carried")

Verb("carry")

PastTense((s:1 + "y"), (s:1 + "ied")) | !Verb(s:1 + "y")

!PastTense("carry", "carried")

Further ResearchFurther Research

• Extensions to FOL:
– sets, lists, numbers
– full support for equality
– higher-order logics

• Explore other efficiency strategies
– linear resolution
– subsumption

• Inductive Logic Programming (ILP)
– inverse resolution
– application to natural language processing

Artificial Intelligence
Techniques to Recover Lost

USGS Datafiles
United States Geological Survey elevation datafiles are the product
of publicly funded development to provide terrain elevation details

in digital form. Until ~ 2000, these were available through a simple
ftp tree from a site in the mid-West. Now, their access has been

scattered through a thicket of for-fee products on a maze of pages
belonging to “partners” of the USGS.

How can we recover them?

Goal
• Determine the shortest path from a common

index page within one of the partners to the
public datafiles.

• Accomplish this using naïve bayes approach,
by determining from page qualities and words
used whether a page is likely to lead to public
datafiles.

• Use other AI techniques in the process: the
use of a heuristic in a depth-first search
provides the corpus of a ‘happy’ selection
path.

World
• The pages within which the datafiles are to be

found are modern database driven pages, lots of
graphics.
– Containing <img= … --> tags that break parser,

occasional post transactions and script.
• It takes about 5 correct jumps to get to the free

datasets.
– Index to states to detour to counties to products to

the green icon gateway.
• A heuristic to evaluate target URLs leading to free

datasets is presented. This is utilized to gather a
teaching corpus.
– Each jump heuristic is unique to its level

Learning
• Each page will be characterized by particular

qualities as well as the words contained.
– Number of links.

– Proportion of image links to text links.
– Link descriptions short and capitalized.

• When a fruitful leaf is found on the tree, all the
intervening nodes will be tagged productive.
When at branch is found without fruitful leaves at
the fifth level the search continues past it.
– Character and words from the productive set will be compared to

the same from the unproductive set. Significant differences will
considered to develop a training set of parameters.

34

Link Heuristics

• Look for local files first. If the
context page (the page the link was
found in) lacks a host specification,
increment quality-index. Same again
for the target.

• Directories containing sublists of
state regions have the form
…/nnnnn/- sublist.html. Directories
containing sublists of counties have
the form …/nnnnn/nnn/index.html.
Increment so its noticed.

• The desired elevation files will be
designated “(DEM) - 24K” in any link
text. Another quality boost.

• The space examined requires
directory searches about five
deep to find its goal.

• A heuristic applied to get
through the first gate is a small
increment to the quality.

• For the subsequent gates,
when a desirable condition is
found, the target quality is
increased more.

• For negative conditions, such
as mangled URL or a file
already read, the quality is
taken down.

The heuristics will be turned off to gather a corpus
from the whole space under the tree.

Corpus Examination Tool

An ordered list of unexamined links is
presented in the top window of the central
split pane window.

The page currently being evaluated is shown
it the bottom window. The green arrow is
the gateway to file downloads.

The links are ordered according to a heuristic
that increases near free dataset links.

When a page is loaded, the tree element
(ideally) turns into a branching node, listing
the next links underneath.

Careful examination may reveal that the list of files
shown is merely the entire ordered list shown under
the last selected page, the presentation in a tree
display simply coincidence. User interface
rationalization is secondary to the demonstration of ai.

Exploring Tree

• For learning the happy path, the link evaluation heuristic is
turned on.
– After five ‘green’ leafs are found at a branch, the branch will pop

control. Link prioritization will ensure many green hits.

• The heuristic will be turned off to gather a corpus for the
whole vocabulary. Search depth will be limited. Also, after
five leaves are read at a node, the node pops control.

• Evaluation at each node goes like this
– Page (node) loaded, all links found are compared and collated into

the ‘play-list’: A list of all links encountered through the whole run.
Any links new to ‘play-list’ get added under the node. If the is
found, all the path is marked as good.

– The first in the play list is checked, if its parent branch has fewer than
five files examined, that file is loaded. If more than five files have
been examined, then unread siblings in the play-list are marked
‘crowded out’.

• After 300 files loaded, the tree is examined

Attribute learning
• Determine the overall chance of being either green

or red (herein, means “not green”):
– Discover the number of green/red-path documents, and

the total number of documents in general.

• Collate all the words of all green-path nodes into
the ‘big-green-file’, determine its population,
similarly collate all the words from the others into
‘big-red-file’

• For each word in the whole vocabulary, check
green and red.
– Count the number of times it is found in big-green-

file (or on second pass, big-red-file)

– Thus determine its chances for it being in this sort of
node:

• P(wk | vj) = (# of time in red/green file + 1)/(population of red/green file +
population of vocabulary)

Classification - the final test

• For a new document, get the chance of it being
green from

– P green ΠΠΠΠ P (each word in the new document being
found in a green document)

– P red ΠΠΠΠ P (each word in the new document being
found in a red document)

• Classify the document according to which is
greater.

Creating a smart animal in
Terrarium

CSE 592
Yuan Zhang

35

Problem domain

! Plants
! Carnivores
! Herbivores

! Move
! Eat
! Attack

My goals

! Create a smart herbivore
! Only deal with movement
! Look for plants to eat
! Hide from Carnivores

Methodology

! TD learning based on Neural network

… Hidden layer

Output layer

Input layer

Plant
position

Animal
position

…

Carnivore
position

Plant
food
left

Methodology - con

!

! Input nodes: 147
! Hidden nodes: 20
! Alpha � learning rate: 0.3
! Lambda: 0.3
! Reward 1 (can eat plant)
! Punishment 0 (attacked by caniv)
! Other 0.5 (no eating in 20 ticks)

1 1
1

()
t

t k
t t t t w k

k

w w Y Y Yα λ −
+ +

=

− = − ∇∑

Issues

! No IO in Terrarium
! animal starts learning from empty every time it gets

loaded
! Cannot save weights it got trained

! Event driven mode
! Computation only happens when animal gets a tick
! One animal gets 600 ticks in its lifetime
! Converge after hundreds of generations

! Will be wiped off if animal thinks more
than 5 seconds in one tick

Workaround

! Wrote a Terrarium simulator
! Finished training before jumping into

real world

36

Results

! Able to learn looking for plants and hiding
from carnivores (100,000 iterations)

0.6820.6490.5470.403Caniv

0.6930.672 0.619Animal
0.484

0.384

0.7520.7100.6440.5840.547

Plant0.7450.7150.6230.553

Lesson learned

! Terrarium is not good for algorithms
that need heavy computation

! To control animal�s actions and
movement is much harder than thought

! Should use Q function (action, state) to
search best policy

Questions?

