

Mining Association Rules in Large Databases

- Introduction to association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

May 23, 2001

ata Mining: Concepts and Techniques

What Is Association Rule Mining?

- Association rule mining:
 - Finding frequent patterns, associations, correlations, or causal structures among sets of items or objects in transaction databases, relational databases, and other information repositories.
- Applications:
 - Basket data analysis, cross-marketing, catalog design, loss-leader analysis, clustering, classification, etc.
- Evamples
 - Rule form: "Body \rightarrow Head [support, confidence]".
 - buys(x, "diapers") \rightarrow buys(x, "beers") [0.5%, 60%]
 - major(x, "CS") $^$ takes(x, "DB") \rightarrow grade(x, "A") [1%, 75%]

May 23, 200

Data Mining: Concepts and Techniques

Association Rules: Basic Concepts

- Given: (1) database of transactions, (2) each transaction is a list of items (purchased by a customer in a visit)
- Find: <u>all</u> rules that correlate the presence of one set of items with that of another set of items
- E.g., 98% of people who purchase tires and auto accessories also get automotive services done
- Applications
 - ?⇒ Maintenance Agreement (What the store should do to boost Maintenance Agreement sales)
 - Home Electronics ⇒ ? (What other products should the store stocks up?)
 - Attached mailing in direct marketing

May 23, 200

Data Mining: Concepts and Technique

Association Rules: Definitions

- Set of *items*: $I = \{i_1, i_2, ..., i_m\}$
- Set of *transactions*: D = { d_1 , d_2 , ..., d_n } Each $d_i \subseteq I$
- An association rule: $A \Rightarrow B$ where $A \subset I$, $B \subset I$, $A \cap B = \emptyset$

- Means that to some extent A implies B.
- Need to measure how strong the implication is.

May 23, 2001

Data Mining: Concepts and Techniques

Association Rules: Definitions II

■ The probability of a set A:

$$P(A) = \frac{\sum_{i} C(A, d_i)}{|D|} \quad \text{Where:} \quad C(X, Y) = \begin{cases} 1 \text{ if } X \subseteq Y \\ 0 \text{ else} \end{cases}$$

- *k-itemset*: tuple of items, or sets of items:
- Example: {A,B} is a 2-itemset
- The probability of $\{A,B\}$ is the probability of the set $A \cup B$, that is the fraction of transactions that contain both A and B. Not the same as $P(A \cap B)$.

May 23, 2001

Association Rules: Definitions III

- Support of a rule A ⇒ B is the probability of the itemset {A,B}. This gives an idea of how often the rule is relevant.
 - support(A \Rightarrow B) = P({A,B})
- Confidence of a rule A ⇒ B is the conditional probability of B given A. This gives a measure of how accurate the rule is.
 - confidence(A \Rightarrow B) = P(B|A)

= support({A,B}) / support(A)

4000

5000

Rule Measures: Support and

Find all the rules $X \Rightarrow Y$ given thresholds for minimum confidence and minimum support.

- support, s, probability that a transaction contains {X, Y}
- confidence, c, conditional probability that a transaction having X also contains Y

With minimum support 50%, and minimum confidence 50%, we have

- *A* ⇒ *C* (50%, 66.6%)
- C⇒ A (50%, 100%)

B,E,F

A,D

Association Rule Mining: A Road Map

- Boolean vs. quantitative associations (Based on the types of values
 - buys(x, "SQLServer") ^ buys(x, "DMBook") → buys(x, "DBMiner") [0.2%, 60%]
 - age(x, "30..39") $^{\circ}$ income(x, "42..48K") $^{\circ}$ buys(x, "PC") [1%, 75%]
- <u>Single dimension vs. multiple dimensional associations</u> (see ex. Above)
- Single level vs. multiple-level analysis
- What brands of beers are associated with what brands of diapers?
- Various extensions and analysis
 - Correlation, causality analysis
 - · Association does not necessarily imply correlation or causality
 - Maxpatterns and closed itemsets
 - Constraints enforced
 - E.g., small sales (sum < 100) trigger big buys (sum > 1,000)?

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summarv

Transaction ID 2000 1000	Items Bought A,B,C A,C	Min. support 50% Min. confidence 50%	
4000	A,D	Frequent Itemset {A}	Support 75%
5000	B,E,F	(A) {B}	50%
For rule $A \Rightarrow 0$	<i>C</i> :	{C} {A,C}	50% 50%

 $support = support({A, C}) = 50\%$

confidence = $support({A, C})/support({A}) = 66.6\%$

The Apriori principle:

Any subset of a frequent itemset must be frequent

Data Mining: Concepts and Technique

Mining Frequent Itemsets: the **Key Step**

- Find the *frequent itemsets*: the sets of items that have at least a given minimum support
 - A subset of a frequent itemset must also be a frequent itemset
 - i.e., if $\{A, B\}$ is a frequent itemset, both $\{A\}$ and $\{B\}$ should be a frequent itemset
 - Iteratively find frequent itemsets with cardinality from 1 to k (k-itemset)
- Use the frequent itemsets to generate association rules.

How to do Generate Candidates?

- Suppose the items in L_{k-1} are listed in an order
- Step 1: self-joining L_{k-1}
 insert into C_k
 select p.item_y p.item_y ..., p.item_{k-y} q.item_{k-1}
 from L_{k-1} p, L_{k-1} q
 where p.item₁=q.item_y ..., p.item_{k-2}=q.item_{k-y} p.item_{k-1} <
 q.item_{k-1}
- forall *itemsets* c *in* C_k do forall (k-1)-subsets s of c do if (s is not in $L_{k-l})$ then delete c from C_k

May 23, 2001

■ Step 2: pruning

Pata Mining: Concepts and Techn

How to Count Supports of Candidates?

- Why counting supports of candidates a problem?
 - The total number of candidates can be very huge
 - One transaction may contain many candidates
- Method:
 - Candidate itemsets are stored in a hash-tree
 - Leaf node of hash-tree contains a list of itemsets and counts
 - Interior node contains a hash table
 - Subset function: finds all the candidates contained in a transaction

May 23, 20

ata Mining: Concepts and Techniques

Example of Generating Candidates

- L₃={abc, abd, acd, ace, bcd}
- Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
- Pruning:
 - acde is removed because ade is not in L₃
- C₄={abcd}

May 23, 20

Data Mining: Concepts and Techniques

Methods to Improve Apriori's Efficiency

- Hash-based itemset counting: A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
- Transaction reduction: A transaction that does not contain any frequent k-itemset is useless in subsequent scans
- Partitioning: Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
- Sampling: mining on a subset of given data, lower support threshold + a method to determine the completeness
- Dynamic itemset counting: add new candidate itemsets only when all of their subsets are estimated to be frequent

May 23, 2001

Is Apriori Fast Enough? — Performance Bottlenecks

- The core of the Apriori algorithm:
 - Use frequent (k − 1)-itemsets to generate <u>candidate</u> frequent k-itemsets
 - Use database scan and pattern matching to collect counts for the candidate itemsets
- The bottleneck of *Apriori*: <u>candidate generation</u>
 - Huge candidate sets:
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - \blacksquare To discover a frequent pattern of size 100, e.g., {a1, a2, ..., a100}, one needs to generate $2^{100}\approx 10^{30}$ candidates.
 - Multiple scans of database:
 - Needs (n+1) scans, n is the length of the longest pattern

May 23, 200

ta Mining: Concepts and Technique

Mining Frequent Patterns <u>Without</u> <u>Candidate Generation</u>

- Compress a large database into a compact, <u>Frequent-Pattern tree</u> (<u>FP-tree</u>) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

May 23, 200

Data Mining: Concepts and Techniques

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

May 23, 2001

Multi-Level Mining: Progressive Deepening

- A top-down, progressive deepening approach:
 - First mine high-level frequent items:
 - milk (15%), bread (10%)
 Then mine their lower-level "weaker" frequent itemsets:

2% milk (5%), wheat bread (4%)

- Different min_support threshold across multi-levels lead to different algorithms:
 - If adopting the same min support across multilevels

then toss t if any of t's ancestors is infrequent.

If adopting reduced min_support at lower levels then examine only those descendents whose ancestor's support is frequent/non-negligible.

Data Mining: Concepts and Tech

- Why progressive refinement?
 - Mining operator can be expensive or cheap, fine or rough
 - Trade speed with quality: step-by-step refinement.
- Superset coverage property:
 - Preserve all the positive answers—allow a positive false test but not a false negative test.
- Two- or multi-step mining:
 - First apply rough/cheap operator (superset coverage)
 - Then apply expensive algorithm on a substantially reduced candidate set (Koperski & Han, SSD'95).

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Multi-Dimensional Association: Concepts

Single-dimensional rules:

 $buys(X, "milk") \Rightarrow buys(X, "bread")$

- Multi-dimensional rules: O 2 dimensions or predicates
 - Inter-dimension association rules (no repeated predicates)

 $age(X,"19-25") \land occupation(X,"student") \Rightarrow buys(X,"coke")$

- hybrid-dimension association rules (repeated predicates) $age(X,"19-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")$
- Categorical Attributes
 - finite number of possible values, no ordering among
- Quantitative Attributes
 - numeric, implicit ordering among values

Techniques for Mining MD Associations

- Search for frequent *k*-predicate set:
 - Example: {age, occupation, buys} is a 3-predicate
 - Techniques can be categorized by how age are treated
- 1. Using static discretization of quantitative attributes
 - Quantitative attributes are statically discretized by using predefined concept hierarchies.
- 2. Quantitative association rules
 - Quantitative attributes are dynamically discretized into "bins" based on the distribution of the data.
- 3. Distance-based association rules
 - This is a dynamic discretization process that considers the distance between data points.

Static Discretization of Quantitative **Attributes**

- Discretized prior to mining using concept hierarchy.
- Numeric values are replaced by ranges.
- In relational database, finding all frequent k-predicate sets will require k or k+1 table scans.

Data cube is well suited for mining.

The cells of an n-dimensional cuboid correspond to the predicate sets. Mining from data cubes

can be much faster.

(inco uys) (inc (age,income,buys)

Quantitative Association Rules Numeric attributes are dynamically discretized Such that the confidence or compactness of the rules mined is maximized. ■ 2-D quantitative association rules: $A_{quan1} \land A_{quan2} \Rightarrow A_{cat}$ Cluster "adjacent" association rules 60-70K to form general rules using a 2-D grid. Example: $age(X,"30-34") \land income(X,"24K$ -⇒ buys(X,"high resolution TV")

Limitations of ARCS

- Only quantitative attributes on LHS of rules.
- Only 2 attributes on LHS. (2D limitation)
- An alternative to ARCS
 - Non-grid-based
 - equi-depth binning
 - clustering based on a measure of partial completeness.
 - "Mining Quantitative Association Rules in Large Relational Tables" by R. Srikant and R. Agrawal.

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summarv

Interestingness Measurements

- Objective measures
 - Two popular measurements:
 - * support; and
 - o confidence
- Subjective measures (Silberschatz & Tuzhilin,

A rule (pattern) is interesting if

- * it is unexpected (surprising to the user);
- o actionable (the user can do something with it)

Data Mining: Concepts and Techniques

Criticism to Support and Confidence

- Example 1: (Aggarwal & Yu, PODS98)
 - Among 5000 students
 - 3000 play basketball
 3750 eat cereal

 - 2000 both play basket ball and eat cereal
 - play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%.
 - play basketball ⇒ not eat cereal [20%, 33.3%] is far more accurate, although with lower support and confidence

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Criticism to Support and Confidence (Cont.)

- Example 2:
 - X and Y: positively correlated,
 - X and Z, negatively related
 - support and confidence of X=>Z dominates

•	We need a measure of depen	dent
	or correlated events	D.

corr -	$P(A \cup B)$
$corr_{A,B} =$	P(A)P(B)

Rule	Support	Confidence
X=>Y	25%	50%
X=>Z	37.50%	75%

P(B|A)/P(B) is also called the lift of rule A => B

May 22 2001

ata Mining: Concepts and Techniques

Other Interestingness Measures

■ Interest (correlation, lift)

 $P(A \wedge B)$

- $P(A)P(B) \label{eq:PA}$ \bullet taking both P(A) and P(B) in consideration
- P(A^B)=P(B)*P(A), if A and B are independent events
- A and B negatively correlated, if the value is less than 1;
 otherwise A and B positively correlated

Х	1	1	1	1	0	0	0	0
Υ	1	1	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

Item set	Support	Interest
X,Y	25%	2
X,Z	37.50%	0.9
Y,Z	12.50%	0.57

May 23, 200

Mining: Concepts and Techniques

Chapter 6: Mining Association Rules in Large Databases

- Association rule mining
- Mining single-dimensional Boolean association rules from transactional databases
- Mining multilevel association rules from transactional databases
- Mining multidimensional association rules from transactional databases and data warehouse
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

May 23, 200

Data Mining: Concepts and Technique

Constraint-Based Mining

- Interactive, exploratory mining giga-bytes of data?
 - Could it be real? Making good use of constraints!
- What kinds of constraints can be used in mining?
- Knowledge type constraint: classification, association, etc.
- Data constraint: SQL-like queries
 - Find product pairs sold together in Vancouver in Dec. '98.
- Dimension/level constraints:
 - $\, \bullet \,$ in relevance to region, price, brand, customer category.
- Rule constraints
- small sales (price < \$10) triggers big sales (sum > \$200).
- Interestingness constraints:
 - strong rules (min support ≥ 3%, min confidence ≥ 60%).

May 23, 200

Data Mining: Concepts and Technique

Rule Constraints in Association Mining

- Two kind of rule constraints:
 - Rule form constraints: meta-rule guided mining.
 - $P(x, y) \wedge Q(x, w) \rightarrow takes(x, "database systems").$
 - Rule (content) constraint: constraint-based query optimization (Ng, et al., SIGMOD'98).
 - sum(LHS) < 100 ^ min(LHS) > 20 ^ count(LHS) > 3 ^ sum(RHS) > 1000
- 1-variable vs. 2-variable constraints (Lakshmanan, et al. SIGMOD'99):
 - 1-var: A constraint confining only one side (L/R) of the rule, e.g., as shown above.
 - $\, \bullet \,$ 2-var: A constraint confining both sides (L and R).
 - sum(LHS) < min(RHS) ^ max(RHS) < 5* sum(LHS)</p>

May 23, 2001

Data Mining: Concepts and Techniques

Constrained Association Query Optimization Problem

- Given a CAQ = $\{ (S_1, S_2) / C \}$, the algorithm should be :
 - sound: It only finds frequent sets that satisfy the given constraints C
 - complete: All frequent sets satisfy the given constraints C are found
- A naïve solution:
 - Apply Apriori for finding all frequent sets, and then to test them for constraint satisfaction one by one.
- More advanced approach:
 - Comprehensive analysis of the properties of constraints and try to push them as deeply as possible inside the frequent set computation.

May 23, 2001

Summary

- Association rules offer an efficient way to mine interesting probabilities about data in very large databases.
- Can be dangerous when mis-interpreted as signs of statistically significant causality.
- The basic Apriori algorithm and it's extensions allow the user to gather a good deal of information without too many passes through data.

May 23, 200

Data Mining: Concepts and Techniques

Appendix A: FP-growth

 FP-growth offers significant speed up over Apriori.

May 23, 2001

ata Mining: Concepts and Techniques

Benefits of the FP-tree Structure

- Completeness:
 - never breaks a long pattern of any transaction
 - preserves complete information for frequent pattern mining
- Compactness
 - reduce irrelevant information—infrequent items are gone
 - frequency descending ordering: more frequent items are more likely to be shared
 - never be larger than the original database (if not count node-links and counts)
 - Example: For Connect-4 DB, compression ratio could be over 100

May 23, 200

ata Mining: Concepts and Techniques

Mining Frequent Patterns Using FP-tree

- General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FP-tree
- Method
 - For each item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

May 23, 200

Data Mining: Concepts and Techniques

Major Steps to Mine FP-tree

- Construct conditional pattern base for each node in the FP-tree
- Construct conditional FP-tree from each conditional pattern-base
- Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional FP-tree contains a single path, simply enumerate all the patterns

May 23, 2001

- Node-link property
 - For any frequent item a_j all the possible frequent patterns that contain a_j can be obtained by following a_j's node-links, starting from a_j's head in the FP-tree header
- Prefix path property
 - To calculate the frequent patterns for a node a_i in a path P_i only the prefix sub-path of a_i in P need to be accumulated, and its frequency count should carry the same count as node a_i.

Mining Frequent Patterns by Creating

ay 23, 2001 Data Mining: Concepts and Technique

Principles of Frequent Pattern Growth

- Pattern growth property
 - \blacksquare Let α be a frequent itemset in DB, B be $\alpha\text{'s}$ conditional pattern base, and $\boldsymbol{\beta}$ be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.
- "abcdef" is a frequent pattern, if and only if
 - "abcde" is a frequent pattern, and
 - "f" is frequent in the set of transactions containing "abcde"

Why Is Frequent Pattern Growth Fast?

- Our performance study shows
 - FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection
- - No candidate generation, no candidate test
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building

Data Mining: Concepts and Tech

References

- R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent itemests. In Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining), 2000.
- R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93, 207-216, Washington, D.C.
- R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94 487-499, Santiago, Chile.
- R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95, 3-14, Taipei, Taiwan
- R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98, 85-93, Seattle,

- R. J. Bayardo. Efficiently mining long patterns iron occords of the Washington.

 S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97, 255-276, Tucson, Arizona.

 S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market basket analysis. SIGMOD'97, 255-264, Tucson, Arizona, May 1997.

 K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. SIGMOD'99, 359-370, Philadelphia, PA, June 1999.

 D. W. Cheino, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association rules in large
- 370, Priladepinia, PA, June 1999.
 DW. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association rules in large databases: An incremental updating technique. ICDE'96, 106-114, New Orleans, LA.
 M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries efficiently. VLDB'98, 299-310, New York, NY, Aug. 1998.

Data Mining: Concepts and Techniq

References (2)

- G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. ICDE'00, 512-521, San Diego, CA, Feb. 2000.
 Y. Fu and J. Han. Meta-rule-guided mining of association rules in relational databases. KDOOD'95, 39-946, Singapore, Dec. 1995.
 T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. SIGMOD'96, 13-23, Montreal, Canadia.
 E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. SIGMOD'97, 277-288, Tucson, Arizona.

- J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database ICDE'99, Sydney, Australia.
- J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95, 420-431, Zurich, Switzerland.
- J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD'00, 1-12, Dallas, TX, May 2000.
- T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communications of ACM, 39:58-64, 1996.
- 39:30-90, 1996.

 M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided mining of multi-dimensional association rules using data cubes. KDD97, 207-210, Newport Beach, California.

 M. Klemettinen, H. Mannila, P. Ronkainen, H. Tokvonen, and A.I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94, 401-408, Gaithersburg, Maryland.

References (3)

- F. Kom, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data mining. VLDB'98, 582-593, New York, NY.
 B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97, 220-231, Birmingham,
- England.
- Linguin. Han, and L. Feng. Stock movement and n-dimensional inter-transaction association rules. SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'98), 12:1-12:7, Seattle, Washington.
- H. Mannila, H. Tolovnen, and A. I. Verkamo. Efficient algorithms for discovering association rules. KDD'94, 181-192, Seattle, WA, July 1994.
 H. Mannila, H. Ovionen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1:259-289, 1997.
- R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96, 122-
- 133, Bombay, India.

 R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97, 452-461, Tucson, Arizona.
- R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of constrained associations rules. SIGMOD'98, 13-24, Seattle, Washington.
 N. Pasquier, Y. Bastide, R. Taolii, and L. Lakhal, Discovering frequent closed itemsets for association rules. ICDT'99, 398-416, Jerusalem, Israel, Jan. 1999.

Data Mining: Concepts and Techn

References (4)

- J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95, 175-186, San Jose, CA, May 1995.
 J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets. DMKO'00, Dallas, TX, 11-20, May 2000.
 J. Pei and J. Han. Can We Push More Constraints into Frequent Pattern Mining? KDD'00. Boston, MA. Aug. 2000.
 G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro and W. J. Frawky- editors, Knowledge Discovery in Databases, 229-238. AAAI/MIT Press, 1991.
 B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98, 412-421, Orlando, FL.
- J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95, 175-186, San Jose, CA.
- SIGMOD'95, 175-186, San Jose, CA.

 S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting patterns in association rules. VLDB'96, 368-379, New York, NY.

 S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMO'98, 343-354, Seattle, WA.

 A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95, 432-443, Zurich, Switzerland.

 A. Savasere, E. Omiecinski, and S. Navathe Mining for strong negative associations in a large database of customer transactions. ICDE'98, 494-502, Orlando, FL, Feb. 1998.

Data Mining: Concepts and Techniq

References (5)

- C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures. VLDB'98, 594-605, New York, NY.
 R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95, 407-419, Zurich, Switzerland, Sept. 1995.
- R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. SIGMOD96, 1-12, Montreal, Canada. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97, 67-73, Newport Beach, California.
- H. Toivonen. Sampling large databases for association rules. VLDB'96, 134-145, Bombay, India, Sept. 1996.
- D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A generalization of association-rule mining. SIGMOD'98, 1-12, Seattle, Washington.
- K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized rectilinear regions for association rules. KDD'97, 96-103, Newport Beach, CA, Aug. 199 M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of
- association rules, Data Mining and Knowledge Discovery, 1:343-374, 1997.
- M. Zaki. Generating Non-Redundant Association Rules. KDD'00. Boston, MA. Aug. 2000.
- O. R. Zaiane, J. Han, and H. Zhu. Mining Recurrent Items in Multimedia with Progressive Resolution Refinement. ICDE'00, 461-470, San Diego, CA, Feb. 2000.

12