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Summary: Verilog for Combinational Logic 

  Two alternatives: 
  assign statement – simple logic equation 
  always block – allows complex program to describe function 

  Each assign and always block compiles into a component 
  Combinational function with some inputs and outputs 

  All components operate in parallel, continuously 
  If any input changes, the function is recomputed 
  This may change the output 
  Which will cause inputs of some components to change 

  Just like a circuit made up of gates! 



Verilog for 
  for is similar to C 
  for statement is executed at compile time 

  result is all that matters, not how result is calculated 

// simple encoder 
module encode 
 (input  [7:0] A,    // 8-bit input vector 
  output reg [2:0] Y); // 3-bit encoded output 
  integer i;   // Temporary variables for program only 
  reg [7:0] test; 

  always @(*) begin 
    test = 8b’00000001; 
    Y = 3’bX; 
    for (i = 0; i < 8; i = i + 1) begin 
       if (A == test) Y = i; 
       test = test << 1; 
    end 
  end 
endmodule 



Another Behavioral Example 
  Combinational block that computes Conway’s Game of Life rule 

module life 
 (input         self, 
  input [7:0]   neighbors, 
  output reg    out); 
  integer       count; 
  integer       i; 

  always @(*) begin 
    count = 0; 
    for (i = 0; i<8; i = i+1) count = count + neighbors[i]; 
    out = 0; 
    out = out | (count == 3); 
    out = out | ((self == 1) & (count == 2)); 
  end 
endmodule 



Case Study – Division by Constant 
  e. g.  gray = (red + blue + green)/3 
  Division is very expensive in general 

  Area and Delay 
  Much more so than multiplication 

  Convert division to multiplication 
  Multiply by the reciprocal 
  e.g.  (red + blue + green) * 0.33 
  Floating-point?? 

  Also expensive! 

  Key idea: multiply & divide by 2n is FREE 



RGB to Grayscale 
  Y = 0.3*R + 0.59*G + 0.11*B 
  1024 * 0.3 = 307.2 
  1024 * 0.59 = 604.16 
  1024 * 0.11 = 112.64 

  Y = (307*R + 604*G + 113*B) >> 10; 

  This works for multiplying/dividing with any number with 
fractions 
  Scale then re-scale 



Converting Division to Multiplication 
  Increase precision until it’s good enough 

  FPGA has 18x18 multipliers – almost free 

  Division by a variable? 
  Table lookup of reciprocal 
  Does not scale to large numbers 
  Use iterative solutions 



Creating a Table in Verilog 

  Generate this code using a program! 

////////////  Sin Wave ROM Table  ////////////// 
always @(*) begin 
  case(SIN_Cont) 
    0  :  Sin_Out       =      0       ; 
    1  :  Sin_Out       =      4276    ; 
    2  :  Sin_Out       =      8480    ; 
    3  :  Sin_Out       =      12539   ; 
    4  :  Sin_Out       =      16383   ; 
    5  :  Sin_Out       =      19947   ; 
    6  :  Sin_Out       =      23169   ; 
    7  :  Sin_Out       =      25995   ; 
    8  :  Sin_Out       =      28377   ; 
    9  :  Sin_Out       =      30272   ; 
    10  :  Sin_Out      =      31650   ; 
    11  :  Sin_Out      =      32486   ; 
    12  :  Sin_Out      =      32767   ; 
    13  :  Sin_Out      =      32486   ; 
    14  :  Sin_Out      =      31650   ; 
    15  :  Sin_Out      =      30272   ; 
    16  :  Sin_Out      =      28377   ; 
    17  :  Sin_Out      =      25995   ; 
    18  :  Sin_Out      =      23169   ; 
    19  :  Sin_Out      =      19947   ; 
    20  :  Sin_Out      =      16383   ; 

    21  :  Sin_Out      =      12539   ; 
    22  :  Sin_Out      =      8480    ; 
    23  :  Sin_Out      =      4276    ; 
    24  :  Sin_Out      =      0       ; 
    25  :  Sin_Out      =      61259   ; 
    26  :  Sin_Out      =      57056   ; 
    . . . 
    default :  Sin_Out  =    0      ; 
  endcase 
end   



Summary: Verilog for Sequential Logic 
  Use  always @(posedge clk)  blocks 

  Executes only when clock “ticks” (rising edge) 
  All assignments are registered 

  Use <=  (delayed assignment – implements parallel sample/hold) 

  Styles 
  One posedge clk block 

  Computation and registers 
  Not general 

  Separate register block and combinational logic block 
  More general, more like hardware 
  Less intuitive 



Shift Register Example 
// 4 register shift register 
module shiftReg 
 (input   CLK, 
  input   reset,    // initialize registers  
  input   shift, 
  input  [7:0]  Din,  // Data input for load 
  output  [7:0]  Dout); 
  reg [7:0] D0, D1, D2, D3; 
  assign Dout = D0; 
  always @(posedge CLK) begin 
    if (reset) begin 
      D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0; 
    end else if (shift) begin 
      D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1; 
    end 
  end 

endmodule  // shiftReg 



FIR Filter Example 
module fir 
  (input   CLK, 
   input   reset,    // initialize registers  
   input  [7:0]  Din,  // Data input for load 
   output reg [7:0] Dout); 
   reg [7:0]   D0, D1, D2, D3; 
   localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1; 

   always @(posedge CLK) begin 
     if (reset) begin 
       D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0; 
    end else begin 
       D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1; 

    Dout <= C0 * D0 + C1 * D1 + C2 * D2 + C3 * D3; 
    end 
  end 
endmodule // fir 



Case Study: Wavelet Computation #1 

 localparam INIT=4, State0=0, State1=1, State2=2, State3=3; 
   reg [2:0] state;        // State register 

   // This shift register captures the input 
   reg [7:0] in0, in1, in2, in3; 
   // These hold data while data is shifting in 
   reg [7:0] D0,  D1,  D2,  D3; 

// We use this shift register to delay the input valid bit by 
   // up to 8 clock cycles to generate the output valid bit 
   reg [8:0] valid; 
   assign validOut = valid[5];  // 5 cycles for pipe to fill 

   // Valid data enters as soon as reset is turned off 
   wire   validIn = ~reset; 

   always @(posedge clk) begin 
   if (reset) begin 
   valid = 0; 
   state <= INIT; 
   end else begin 

   // Constantly shift input data 
   in0 <= in1; 
   in1 <= in2; 
   in2 <= in3; 
   in3 <= dataIn; 
   valid <= { valid[7:0], validIn }; 
   case (state) 
     INIT: begin 
     state <= State0; 
     end 
     State0: begin 
     dataOut <= D0-D1;  // Q0 
     state <= State1; 
     end 
     State1: begin 
     dataOut <= D2-D3;  // Q1 
     state <= State2; 
     end 
     State2: begin 
     dataOut <= D0+D1+D2+D3;  // Q2 
     state <= State3; 
     end 
     State3: begin 
     dataOut <= D0+D1-D2-D3;  // Q3 
     // Latch inputs 
     D0 <= in0; 
     D1 <= in1; 
     D2 <= in2; 
     D3 <= in3; 
     state <= State0; 
     end // case: State3 
   endcase // case(state) 
 end 

   end 



Block Diagram for Wavelet Filter 



Wavelet with Split Block Style 
  localparam  INIT=4, State0=0, State1=1, State2=2, State3=3; 
   reg [2:0] state, nextState;   // State register 

. . . 

   // Registers 
   always @(posedge clk) begin 

   if (reset) begin 
   valid <= 0; 
   state <= INIT; 
   end else begin 
   // Input shift register 
   in0 <= in1; 
   in1 <= in2; 
   in2 <= in3; 
   in3 <= dataIn; 
   valid <= { valid[7:0], validIn };  // Shift left 
   if (state == State3) begin 
     D0 <= in0; 
     D1 <= in1; 
     D2 <= in2; 
     D3 <= in3; 
   end 
   state <= nextState; 
   end // else: !if(reset) 

   end // always @ (posedge clk) 

   

// Combinational logic 
   always @(*) begin 

   case (state) 
  INIT: begin 
     nextState = State0; 
  end 
  State0: begin 
     dataOut = D0-D1;  // Q0 
     nextState = State1; 
  end 
  State1: begin 
     dataOut = D2-D3;  // Q1 
     nextState = State2; 
  end 
  State2: begin 
     dataOut = D0+D1+D2+D3;  // Q2 
     nextState = State3; 
  end 
  State3: begin 
     dataOut = D0+D1-D2-D3;  // Q3 
     nextState = State0; 
  end // case: State3 
   endcase // case(state) 

   end 



Case Study: Complex Wavelet 

 localparam INIT=4, State0=0, State1=1, State2=2, State3=3; 
   reg [2:0] state;        // State register 
   reg [9:0] D0D1, D2D3;   // Temp registers 

   // This shift register captures the input 
   //        oldest         newest 
   reg [7:0] in0, in1, in2, in3; 

   reg [8:0] valid; 
   assign validOut = valid[3]; 

   // Valid data enters as soon as reset is turned off 
   wire   validIn = ~reset; 

   always @(posedge clk) begin 
   if (reset) begin 
   valid = 0; 
   state <= INIT; 
   end else begin 

   in0 <= in1; 
   in1 <= in2; 
   in2 <= in3; 
   in3 <= dataIn; 
   valid <= { valid[7:0], validIn };   
   case (state) 
     INIT: begin 
     state <= State0; 
     end 
     State0: begin 
     dataOut <= D0D1 + D2D3;  // Q2 
     state <= State1; 
     end 
     State1: begin 
     dataOut <= D0D1 - D2D3;  // Q3 
     state <= State2; 
     end 
     State2: begin 
     dataOut <= in1 - in2; // Q0: D0 - D1 
     D0D1 <= in1 + in2;      // D0 + D1 
     state <= State3; 
     end 
     State3: begin 
     dataOut <= in2 - in3; // Q1: D2 - D3 
     D2D3 <= in2 + in3;      // D2 + D3 
     state <= State0; 
     end // case: State3 
   endcase // case(state) 
 end 

   end 
endmodule 



Block Diagram for Complex Wavelet 



Case Study: Camera Input 

 module camera( 
  input             clk,      // clock 
  input             reset,    // reset 
  input  [11:0]     CCD_DATA,   // Input from camera 
  input             CCD_FVAL,   // In Frame signal 
  input             CCD_LVAL,   // In Line signal 
  input             iSTART,     // Start button 
  input             iEND,       // Stop button 
  output [11:0]     pixelOut,   // Output pixel data 
  output reg [15:0] colAddr,    // Pixel address 
  output reg [15:0] lineAddr,   // Line address 
  output            newFrame,   // Done with frame 
  output            pixelValid);// Pixel valid 

  // Registers 
  reg fvalPrev; 
  reg lvalPrev; 
  reg [11:0] CCD_DATA_L0; 
  reg [11:0] CCD_DATA_L1; 

  // Control signals 
  reg outputEnableSignal; 
  reg outputEnable; 
  wire isNewPixel; 
  wire isNewFrame; 
  wire isNewLine; 

  // Control signals 
  assign isNewPixel = CCD_FVAL && CCD_LVAL; 
  assign isNewFrame = fvalPrev && !CCD_FVAL; 
  assign isNewLine = lvalPrev && !CCD_LVAL; 

  assign pixelOut = CCD_DATA_L1; 
  assign pixelValid = isNewPixel && outputEnable; 
  assign newFrame = isNewFrame && outputEnable; 

  // Latch signals 
  always @(posedge clk) begin 
    fvalPrev <= CCD_FVAL; 
    lvalPrev <= CCD_LVAL; 
    CCD_DATA_L0 <= CCD_DATA; 
    CCD_DATA_L1 <= CCD_DATA_L0; 
  end 

  // Calculate addresses 
  always @(posedge clk) begin 
    if (reset || isNewLine) colAddr <= 0; 
    else if (isNewPixel) colAddr <= colAddr + 1; 
    if (reset || isNewFrame) lineAddr <= 0; 
    else if (isNewLine) lineAddr <= lineAddr + 1; 
  end 

  // Implement START/STOP picture 
  always @(posedge clk) begin 
    if (reset || iSTART) outputEnableSignal <= 1; 
    else if (iEND) outputEnableSignal <= 0; 
    if (isNewFrame) outputEnable <= outputEnableSignal; 
  end 



Case Study: Camera Input 

  // Calculate addresses 
  always @(posedge clk) begin 
    if (reset || isNewLine) colAddr <= 0; 
    else if (isNewPixel) colAddr <= colAddr + 1; 
    if (reset || isNewFrame) lineAddr <= 0; 
    else if (isNewLine) lineAddr <= lineAddr + 1; 
  end 

  // Implement START/STOP picture 
  always @(posedge clk) begin 
    if (reset || iSTART) outputEnableSignal <= 1; 
    else if (iEND) outputEnableSignal <= 0; 
    if (isNewFrame) outputEnable <= outputEnableSignal; 
  end 



Case Study: Camera Input 
  // Control signals 
  assign isNewPixel = CCD_FVAL && CCD_LVAL; 
  assign isNewFrame = fvalPrev && !CCD_FVAL; 
  assign isNewLine = lvalPrev && !CCD_LVAL; 

  assign pixelOut = CCD_DATA_L1; 
  assign pixelValid = isNewPixel && outputEnable; 
  assign newFrame = isNewFrame && outputEnable; 

  // Latch signals 
  always @(posedge clk) begin 
    fvalPrev <= CCD_FVAL; 
    lvalPrev <= CCD_LVAL; 
    CCD_DATA_L0 <= CCD_DATA; 
    CCD_DATA_L1 <= CCD_DATA_L0; 
  end 



Case Study: Camera Input 
  // Control signals 
  assign isNewPixel = CCD_FVAL && CCD_LVAL; 
  assign isNewFrame = fvalPrev && !CCD_FVAL; 
  assign isNewLine = lvalPrev && !CCD_LVAL; 

  assign pixelOut = CCD_DATA_L1; 
  assign pixelValid = isNewPixel && outputEnable; 
  assign newFrame = isNewFrame && outputEnable; 

  // Latch signals 
  always @(posedge clk) begin 
    fvalPrev <= CCD_FVAL; 
    lvalPrev <= CCD_LVAL; 
    CCD_DATA_L0 <= CCD_DATA; 
    CCD_DATA_L1 <= CCD_DATA_L0; 
  end 
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Design Problem – Run-Length Encoder 
  7-bit input stream 
  8-bit output stream 

  high-order bit == 0:  Data value 
  high-order bit == 1:  Repeat count of previous data value 

  Valid bit set when 8-bit output is data or count 
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RLE Design 
  Split design into datapath and control 
  Datapath 

  Registers for data values, count 
  Multiplexors 

  Control 
  Keep track of what’s happening 
  clear count, increment count, send data value, send count 

  Control will be an FSM 
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Start with Datapath 

  We need to know what to control 

  FSM inputs 
  eq 

  FSM outputs 
  clr, inc, valid, cnt,  
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FSM Controller 
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Verilog For State Machines 
  State machine has two parts 

  State register 
  Combinational Logic 

  Next state function 
  Output function 

  Each in a different always block 

inputs 
Moore outputs 

Mealy outputs 

next state 

current state 

combinational 
logic 



RLE Module – Datapath + Control 
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module rleFSM (clk, reset, eq, clr, inc, valid, cnttag); 
  input clk, reset; 
  input eq;   // current data value == previous data value 
  output clr;  // clear count value (0 means 2, . . .) 
  output inc;  // increment count value (clr overrides) 
  output valid;  // output value is valid 
  output cnttag;  // select the count for the output value 

  // Use parameter to define symbolic states 
  localparam START1 = 0, START2 = 1, SENDING = 2, COUNTING = 3; 
  reg [1:0]  state,  // current state 

   nextState; // next state 

    always @(posedge CLK) begin 
   if (reset) 
     state <= START1; 
   else 
     state <= nextState; 
 end 
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Combinational Logic for FSM 
always @(*) begin 

 // Set defaults 
 valid = 0; inc = x; clr = x; cnttag = x; 

    case (state) 
    START1: 
      nextState = START2; 

 START2: 
   nextState = SENDING; 
 SENDING: begin 
   valid = 1; 
   cnttag = 0; 
   if (eq) begin 
  nextState = COUNTING; 
   end else begin 
  nextState = SENDING; 
   end 
 end 
 COUNTING: begin 
   if (eq) begin 
  clr = 0; 
  inc = 1; 
  nextState = COUNTING; 
   end else begin 
  valid = 1; 
  cnttag = 1; 
  nextState = SENDING; 
   end 
 end 

end 



Combinational Logic Design 
  We can translate a Boolean function into logic gates 

  AND, OR, INVERT 

  e.g. Homework problem 
  g0 = r0 
  g1 = r1 * r0’ 
  g2 = r2 * r0’ * r1’ 
  g2 = r3 * r0’ * r1’ * r2’ 
  g2 = r4 * r0’ * r1’ * r2’ * r3’ 
  g2 = r5 * r0’ * r1’ * r2’ * r3’ * r4 

  This is a “scan” computation from parallel computing 



Reduce and Scan Operators 
  Reduce:  Reduce a vector of values to a single value 

  e.g.  sum, max, min, . . . 

  Scan: Convert a vector of values to a new vector 
  outputk is reduction applied to the first k inputs 
  e.g. sum, max, min, … 

  Reduce can be done in O(log) time 
  Simple n-ary tree 

  Scan can also be done in O(log) time 
  Double the time for Reduce 
  A “down” tree and an “up” tree 



A Real Example of Scan 
  Histogram equalization – contrast enhancement 

   (see Wikipedia) 

  Step 1 – Create a histogram of all pixel values 
  Bin 0 – 255 

  Step 2 – Compute the Cumulative Distribution Function 
  cdf[i] = SUMj<=i (bin[j]) / totalPixelCount 

  Step 3 – Convert pixels using the cdf 
  out = 255 * cdf(in) 

  CDF can be computed in O(log) time 
  For large dynamic range, this can be important 



Histogram Equalization 
  a) Histogram and cdf 
  b) Equalized histogram and cdf 

a b 



Carry-Lookahead Adder 
  Recall:   Sumi = Ai xor Bi xor Ci 

  where Ci is the carry in from the next bit position 

  If we can compute carry using scan, we can compute add 
in O(log) time 

  Problem: Parallel scan only works for associative functions 
  Carry is not associative 

  We will use two other functions that are associative 
  Carry Generate (G) 
  Carry Propagate (P) 



Carry-Lookahead Adder 
  Generate – true, if an adder “block” generates a carry 

regardless of the carry in 
  Propagate – true, if an adder “block” propagates a carry in 

to the carry out 
  Example:  1-bit adder 

  Example:  2-bit adder 

  Associativity:  Combining Generates and Propagates 



Carry-Lookahead Adder 
  Ci = Gi:0 + Cin * Pi:0 

  That is, if we compute Gi:0 and Pi:0 fast, then we can 
compute Ci fast 

  And we can use parallel scan (aka parallel prefix) to 
compute Gi:0 and Pi:0 fast 



System Timing 
  Register Timing Constraints 

  Setup time 
  Hold time 

  Clock Generation and Distribution 
  Clock skew 
  Multiple clocks 
  PLLs & DLLs 

  Asynchronous communication 
  Not all modules can have the same clock 
  Distance and too much clock skew 

  Synchronous communication 
  Source-synchronous signaling 



Registers 

Sequential Logic 36 

  Sample data using clock 
  Hold data between clock cycles 
  Computation (and delay) occurs between registers 

clock 

data in 
may change stable 

data out (Q) stable stable stable 

clock 

data in 
D Q D Q data out 



Sequential Logic 37 

there is a timing "window"  
around the clocking event  
during which the input must  
remain stable and unchanged  
in order to be recognized 

clock 

data 

changing stable 

input 

clock 

Tsu Th 

Timing Methodologies (cont’d) 
  Definition of terms 

  setup time: minimum time before the clocking event 
  by which the input must be stable (Tsu) 

  hold time: minimum time after the clocking event 
  until which the input must remain stable (Th) 

clock 

data 
D Q D Q 



Typical timing specifications 

Sequential Logic 38 

  Positive edge-triggered D flip-flop 
  setup and hold times 
  minimum clock width 
  propagation delays (low to high, high to low, max and typical) 

all measurements are made from the clocking event that is,  
the rising edge of the clock 

Th 
1ns 

Tw 7ns 

Tplh 
[2,4]ns 

Tphl 
[1,3]ns 

Tsu 
2ns 

D 

CLK 

Q 

Tsu 
2ns 

Th 
1ns 



Synchronous System Model 
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  Register-to-register operation 
  Perform operations during transfer 
  Many transfers/operations occur simultaneously 



Sequential Logic 40 

System Clock Frequency 
  Register transfer must fit into one clock cycle 

  reg tpd + C.L. tpd + reg tsu < Tclk 

  Use maximum delays 
  Find the “critical path” 

  Longest register-register delay 
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Short Paths 
  Can a path have too little delay? 

  Yes: Hold time can be violated 
  tpd > th 
  Use min delay (contamination delay) 

  Fortunately, most registers have hold time = 0 
  But there can still be a problem!  Clock skew… 
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Clock Skew 
  Cannot make clock arrive at registers at the same time 
  If skew > 0: 

  tpd > th + tskew 

  Clock skew can cause system failure  
  Can you fix this after you’ve fabbed the chip? 



Sequential Logic 43 

Clock Skew 
  Cannot make clock arrive at registers at the same time 
  If skew > 0: 

  tpd > th + tskew 

  Clock skew can cause system failure  
  Can you fix this after you’ve fabbed the chip? 
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Clock Skew 
  If skew < 0: 

  tclk > reg tpd + CL tpd +  reg tSU + |tskew| 

  Can you fix this after fab? 
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Clock Skew 
  If skew < 0: 

  tclk > reg tpd + CL tpd +  reg tSU + |tskew| 

  Can you fix this after fab? 
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Clock Skew 
  Correct behavior assumes that all storage elements sample at 

exactly the same time 
  Not possible in real systems: 

  clock driven from some central location 
  different wire delay to different points in the circuit 

  Problems arise if skew is of the same order as FF 
contamination delay  

  Gets worse as systems get faster (wires don't improve as fast) 
  1) distribute clock signals against the data flow 
  2) wire carrying the clock between two communicating components 

should be as short as possible 
  3) try to make all wires from the clock generator be the same length 

=> clock tree 



Altera FPGA PLL 



What About External Inputs? 
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  Internal signals are OK 
  Can only change when clock changes 

  External signals can change at any time 
  Asynchronous inputs 
  Truly asynchronous 
  Produced by a different clock 

  This means register may sample a signal that is changing 
  Violates setup/hold time 
  What happens? 
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Sampling Asynchronous Inputs 
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Sampling Rate 
  How fast does your sample clock need to be? 
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Sampling Rate 
  How fast does your sample clock need to be?    

  f(clkB) > f(clkA) 
  f(clkB) > 2 f(data) (Nyquist) 
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Another Problem with Asynchronous inputs 

  What goes wrong here?  

  What is the fix? 



Think About the Reset Signal! 
  Reset input is typically asynchronous 

  Which edge do we care about? 
  Does it matter if the registers have  

synchronous or asynchronous resets? 

  Reset is broadcast to all registers in system 
  What happens? 

  Register input should be single-registered just like every 
other asynchronous input 
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More Asynchronous inputs 
  What is the problem? 
  What is the fix? 
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Important Rule!   
  Exactly one register makes the synchronizing decision 
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More Asynchronous inputs 
  Can we input asynchronous data values with several bits?  
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More Asynchronous inputs 
  How can we input asynchronous data values with several 

bits?  
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What Went Wrong? 
  Each bit has a different delay 

  Wire lengths differ 
  Gate thresholds differ 
  Driver speeds are different 
  Register delays are different 

  Rise vs. Fall times 

  Clock skews to register bits 

  Bottom line – “data skew” is inevitable 
  aka Bus Skew 
  Longer wires => More skew 

  What is the solution?? 
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Sending Multiple Data Bits 
  Must send a “clock” with the data – Source-Synchronous 

  Waits until data is stable 
  “Sample window” 

  De-skewing delay 

  f(clkB) > 2 f(clkA) 



Crossing Clock Domain Boundaries is 
Tricky 
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  Direct sampling of multiple asynchronous bits is 
impossible 
  We can reliably sample only a single bit 

  But even worse:  Synchronization Failure [Metastability] 
  Non-zero probability that our system will fail 
  And there is nothing we can do about  

  Although we can reduce the probability to an extremely low value 



Sequential Logic 61 

small, but non-zero probability  
that the FF output will get stuck  

in an in-between state 

oscilloscope traces demonstrating 
synchronizer failure and eventual 

decay to steady state 

logic 0 logic 1 
logic 0 

logic 1 

Synchronization failure 
  Occurs when FF input changes close to clock edge 

  the FF may enter a metastable state – neither a logic 0 nor 1 – 
  it may stay in this state an indefinite amount of time 
  this is not likely in practice but has some probability 



Guarding against synchronization failure 
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  Key idea – give the register as long as possible to make up its 
mind 
  Probability of failure cannot be reduced to 0, but low enough that we 

don’t care 

  Cascade two registers 
  Use very fast registers 
  Slow down the clock 

  Slows communication rate 

D D Q Q 
asynchronous 

input 
synchronized 

input 

Clk 
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Calculating probability of failure 

  For a single synchronizer 

 Mean-Time Between Failure (MTBF) = exp ( tr / τ ) / ( T0 × fc ×  fa ) 

where a failure occurs if metastability persists beyond time tr 
  tr is the resolution time – slack time in the clock period for settling 

  Tclk - (tpd  + TCL + tsetup) 
  fc is the frequency of the FF clock 
  fa is the frequency of asynchronous events on the input of the FF 
  T0 and τ are constaints that depend on the  FF's electrical characteristics  

(e.g., gain or steepness of curve) 
  Must add probabilities from all synchronizers in system 

 1/MTBFsystem = Σ 1/MTBFsynch 



Altera Stratix-3 Example Data 
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