
Lecture 3 – System Timing and
Case Studies

CSE P567

Summary: Verilog for Combinational Logic

  Two alternatives:
  assign statement – simple logic equation
  always block – allows complex program to describe function

  Each assign and always block compiles into a component
  Combinational function with some inputs and outputs

  All components operate in parallel, continuously
  If any input changes, the function is recomputed
  This may change the output
  Which will cause inputs of some components to change

  Just like a circuit made up of gates!

Verilog for
  for is similar to C
  for statement is executed at compile time

  result is all that matters, not how result is calculated

// simple encoder
module encode
 (input [7:0] A, // 8-bit input vector
 output reg [2:0] Y); // 3-bit encoded output
 integer i; // Temporary variables for program only
 reg [7:0] test;

 always @(*) begin
 test = 8b’00000001;
 Y = 3’bX;
 for (i = 0; i < 8; i = i + 1) begin
 if (A == test) Y = i;
 test = test << 1;
 end
 end
endmodule

Another Behavioral Example
  Combinational block that computes Conway’s Game of Life rule

module life
 (input self,
 input [7:0] neighbors,
 output reg out);
 integer count;
 integer i;

 always @(*) begin
 count = 0;
 for (i = 0; i<8; i = i+1) count = count + neighbors[i];
 out = 0;
 out = out | (count == 3);
 out = out | ((self == 1) & (count == 2));
 end
endmodule

Case Study – Division by Constant
  e. g. gray = (red + blue + green)/3
  Division is very expensive in general

  Area and Delay
  Much more so than multiplication

  Convert division to multiplication
  Multiply by the reciprocal
  e.g. (red + blue + green) * 0.33
  Floating-point??

  Also expensive!

  Key idea: multiply & divide by 2n is FREE

RGB to Grayscale
  Y = 0.3*R + 0.59*G + 0.11*B
  1024 * 0.3 = 307.2
  1024 * 0.59 = 604.16
  1024 * 0.11 = 112.64

  Y = (307*R + 604*G + 113*B) >> 10;

  This works for multiplying/dividing with any number with
fractions
  Scale then re-scale

Converting Division to Multiplication
  Increase precision until it’s good enough

  FPGA has 18x18 multipliers – almost free

  Division by a variable?
  Table lookup of reciprocal
  Does not scale to large numbers
  Use iterative solutions

Creating a Table in Verilog

  Generate this code using a program!

//////////// Sin Wave ROM Table //////////////
always @(*) begin
 case(SIN_Cont)
 0 : Sin_Out = 0 ;
 1 : Sin_Out = 4276 ;
 2 : Sin_Out = 8480 ;
 3 : Sin_Out = 12539 ;
 4 : Sin_Out = 16383 ;
 5 : Sin_Out = 19947 ;
 6 : Sin_Out = 23169 ;
 7 : Sin_Out = 25995 ;
 8 : Sin_Out = 28377 ;
 9 : Sin_Out = 30272 ;
 10 : Sin_Out = 31650 ;
 11 : Sin_Out = 32486 ;
 12 : Sin_Out = 32767 ;
 13 : Sin_Out = 32486 ;
 14 : Sin_Out = 31650 ;
 15 : Sin_Out = 30272 ;
 16 : Sin_Out = 28377 ;
 17 : Sin_Out = 25995 ;
 18 : Sin_Out = 23169 ;
 19 : Sin_Out = 19947 ;
 20 : Sin_Out = 16383 ;

 21 : Sin_Out = 12539 ;
 22 : Sin_Out = 8480 ;
 23 : Sin_Out = 4276 ;
 24 : Sin_Out = 0 ;
 25 : Sin_Out = 61259 ;
 26 : Sin_Out = 57056 ;
 . . .
 default : Sin_Out = 0 ;
 endcase
end

Summary: Verilog for Sequential Logic
  Use always @(posedge clk) blocks

  Executes only when clock “ticks” (rising edge)
  All assignments are registered

  Use <= (delayed assignment – implements parallel sample/hold)

  Styles
  One posedge clk block

  Computation and registers
  Not general

  Separate register block and combinational logic block
  More general, more like hardware
  Less intuitive

Shift Register Example
// 4 register shift register
module shiftReg
 (input CLK,
 input reset, // initialize registers
 input shift,
 input [7:0] Din, // Data input for load
 output [7:0] Dout);
 reg [7:0] D0, D1, D2, D3;
 assign Dout = D0;
 always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else if (shift) begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;
 end
 end

endmodule // shiftReg

FIR Filter Example
module fir
 (input CLK,
 input reset, // initialize registers
 input [7:0] Din, // Data input for load
 output reg [7:0] Dout);
 reg [7:0] D0, D1, D2, D3;
 localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1;

 always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;

 Dout <= C0 * D0 + C1 * D1 + C2 * D2 + C3 * D3;
 end
 end
endmodule // fir

Case Study: Wavelet Computation #1

 localparam INIT=4, State0=0, State1=1, State2=2, State3=3;
 reg [2:0] state; // State register

 // This shift register captures the input
 reg [7:0] in0, in1, in2, in3;
 // These hold data while data is shifting in
 reg [7:0] D0, D1, D2, D3;

// We use this shift register to delay the input valid bit by
 // up to 8 clock cycles to generate the output valid bit
 reg [8:0] valid;
 assign validOut = valid[5]; // 5 cycles for pipe to fill

 // Valid data enters as soon as reset is turned off
 wire validIn = ~reset;

 always @(posedge clk) begin
 if (reset) begin
 valid = 0;
 state <= INIT;
 end else begin

 // Constantly shift input data
 in0 <= in1;
 in1 <= in2;
 in2 <= in3;
 in3 <= dataIn;
 valid <= { valid[7:0], validIn };
 case (state)
 INIT: begin
 state <= State0;
 end
 State0: begin
 dataOut <= D0-D1; // Q0
 state <= State1;
 end
 State1: begin
 dataOut <= D2-D3; // Q1
 state <= State2;
 end
 State2: begin
 dataOut <= D0+D1+D2+D3; // Q2
 state <= State3;
 end
 State3: begin
 dataOut <= D0+D1-D2-D3; // Q3
 // Latch inputs
 D0 <= in0;
 D1 <= in1;
 D2 <= in2;
 D3 <= in3;
 state <= State0;
 end // case: State3
 endcase // case(state)
 end

 end

Block Diagram for Wavelet Filter

Wavelet with Split Block Style
 localparam INIT=4, State0=0, State1=1, State2=2, State3=3;
 reg [2:0] state, nextState; // State register

. . .

 // Registers
 always @(posedge clk) begin

 if (reset) begin
 valid <= 0;
 state <= INIT;
 end else begin
 // Input shift register
 in0 <= in1;
 in1 <= in2;
 in2 <= in3;
 in3 <= dataIn;
 valid <= { valid[7:0], validIn }; // Shift left
 if (state == State3) begin
 D0 <= in0;
 D1 <= in1;
 D2 <= in2;
 D3 <= in3;
 end
 state <= nextState;
 end // else: !if(reset)

 end // always @ (posedge clk)

// Combinational logic
 always @(*) begin

 case (state)
 INIT: begin
 nextState = State0;
 end
 State0: begin
 dataOut = D0-D1; // Q0
 nextState = State1;
 end
 State1: begin
 dataOut = D2-D3; // Q1
 nextState = State2;
 end
 State2: begin
 dataOut = D0+D1+D2+D3; // Q2
 nextState = State3;
 end
 State3: begin
 dataOut = D0+D1-D2-D3; // Q3
 nextState = State0;
 end // case: State3
 endcase // case(state)

 end

Case Study: Complex Wavelet

 localparam INIT=4, State0=0, State1=1, State2=2, State3=3;
 reg [2:0] state; // State register
 reg [9:0] D0D1, D2D3; // Temp registers

 // This shift register captures the input
 // oldest newest
 reg [7:0] in0, in1, in2, in3;

 reg [8:0] valid;
 assign validOut = valid[3];

 // Valid data enters as soon as reset is turned off
 wire validIn = ~reset;

 always @(posedge clk) begin
 if (reset) begin
 valid = 0;
 state <= INIT;
 end else begin

 in0 <= in1;
 in1 <= in2;
 in2 <= in3;
 in3 <= dataIn;
 valid <= { valid[7:0], validIn };
 case (state)
 INIT: begin
 state <= State0;
 end
 State0: begin
 dataOut <= D0D1 + D2D3; // Q2
 state <= State1;
 end
 State1: begin
 dataOut <= D0D1 - D2D3; // Q3
 state <= State2;
 end
 State2: begin
 dataOut <= in1 - in2; // Q0: D0 - D1
 D0D1 <= in1 + in2; // D0 + D1
 state <= State3;
 end
 State3: begin
 dataOut <= in2 - in3; // Q1: D2 - D3
 D2D3 <= in2 + in3; // D2 + D3
 state <= State0;
 end // case: State3
 endcase // case(state)
 end

 end
endmodule

Block Diagram for Complex Wavelet

Case Study: Camera Input

 module camera(
 input clk, // clock
 input reset, // reset
 input [11:0] CCD_DATA, // Input from camera
 input CCD_FVAL, // In Frame signal
 input CCD_LVAL, // In Line signal
 input iSTART, // Start button
 input iEND, // Stop button
 output [11:0] pixelOut, // Output pixel data
 output reg [15:0] colAddr, // Pixel address
 output reg [15:0] lineAddr, // Line address
 output newFrame, // Done with frame
 output pixelValid);// Pixel valid

 // Registers
 reg fvalPrev;
 reg lvalPrev;
 reg [11:0] CCD_DATA_L0;
 reg [11:0] CCD_DATA_L1;

 // Control signals
 reg outputEnableSignal;
 reg outputEnable;
 wire isNewPixel;
 wire isNewFrame;
 wire isNewLine;

 // Control signals
 assign isNewPixel = CCD_FVAL && CCD_LVAL;
 assign isNewFrame = fvalPrev && !CCD_FVAL;
 assign isNewLine = lvalPrev && !CCD_LVAL;

 assign pixelOut = CCD_DATA_L1;
 assign pixelValid = isNewPixel && outputEnable;
 assign newFrame = isNewFrame && outputEnable;

 // Latch signals
 always @(posedge clk) begin
 fvalPrev <= CCD_FVAL;
 lvalPrev <= CCD_LVAL;
 CCD_DATA_L0 <= CCD_DATA;
 CCD_DATA_L1 <= CCD_DATA_L0;
 end

 // Calculate addresses
 always @(posedge clk) begin
 if (reset || isNewLine) colAddr <= 0;
 else if (isNewPixel) colAddr <= colAddr + 1;
 if (reset || isNewFrame) lineAddr <= 0;
 else if (isNewLine) lineAddr <= lineAddr + 1;
 end

 // Implement START/STOP picture
 always @(posedge clk) begin
 if (reset || iSTART) outputEnableSignal <= 1;
 else if (iEND) outputEnableSignal <= 0;
 if (isNewFrame) outputEnable <= outputEnableSignal;
 end

Case Study: Camera Input

 // Calculate addresses
 always @(posedge clk) begin
 if (reset || isNewLine) colAddr <= 0;
 else if (isNewPixel) colAddr <= colAddr + 1;
 if (reset || isNewFrame) lineAddr <= 0;
 else if (isNewLine) lineAddr <= lineAddr + 1;
 end

 // Implement START/STOP picture
 always @(posedge clk) begin
 if (reset || iSTART) outputEnableSignal <= 1;
 else if (iEND) outputEnableSignal <= 0;
 if (isNewFrame) outputEnable <= outputEnableSignal;
 end

Case Study: Camera Input
 // Control signals
 assign isNewPixel = CCD_FVAL && CCD_LVAL;
 assign isNewFrame = fvalPrev && !CCD_FVAL;
 assign isNewLine = lvalPrev && !CCD_LVAL;

 assign pixelOut = CCD_DATA_L1;
 assign pixelValid = isNewPixel && outputEnable;
 assign newFrame = isNewFrame && outputEnable;

 // Latch signals
 always @(posedge clk) begin
 fvalPrev <= CCD_FVAL;
 lvalPrev <= CCD_LVAL;
 CCD_DATA_L0 <= CCD_DATA;
 CCD_DATA_L1 <= CCD_DATA_L0;
 end

Case Study: Camera Input
 // Control signals
 assign isNewPixel = CCD_FVAL && CCD_LVAL;
 assign isNewFrame = fvalPrev && !CCD_FVAL;
 assign isNewLine = lvalPrev && !CCD_LVAL;

 assign pixelOut = CCD_DATA_L1;
 assign pixelValid = isNewPixel && outputEnable;
 assign newFrame = isNewFrame && outputEnable;

 // Latch signals
 always @(posedge clk) begin
 fvalPrev <= CCD_FVAL;
 lvalPrev <= CCD_LVAL;
 CCD_DATA_L0 <= CCD_DATA;
 CCD_DATA_L1 <= CCD_DATA_L0;
 end

21

Design Problem – Run-Length Encoder
  7-bit input stream
  8-bit output stream

  high-order bit == 0: Data value
  high-order bit == 1: Repeat count of previous data value

  Valid bit set when 8-bit output is data or count

22

RLE Design
  Split design into datapath and control
  Datapath

  Registers for data values, count
  Multiplexors

  Control
  Keep track of what’s happening
  clear count, increment count, send data value, send count

  Control will be an FSM

23

Start with Datapath

  We need to know what to control

  FSM inputs
  eq

  FSM outputs
  clr, inc, valid, cnt,

24

FSM Controller

25

Verilog For State Machines
  State machine has two parts

  State register
  Combinational Logic

  Next state function
  Output function

  Each in a different always block

inputs
Moore outputs

Mealy outputs

next state

current state

combinational
logic

RLE Module – Datapath + Control

26

module rleFSM (clk, reset, eq, clr, inc, valid, cnttag);
 input clk, reset;
 input eq; // current data value == previous data value
 output clr; // clear count value (0 means 2, . . .)
 output inc; // increment count value (clr overrides)
 output valid; // output value is valid
 output cnttag; // select the count for the output value

 // Use parameter to define symbolic states
 localparam START1 = 0, START2 = 1, SENDING = 2, COUNTING = 3;
 reg [1:0] state, // current state

 nextState; // next state

 always @(posedge CLK) begin
 if (reset)
 state <= START1;
 else
 state <= nextState;
 end

27

Combinational Logic for FSM
always @(*) begin

 // Set defaults
 valid = 0; inc = x; clr = x; cnttag = x;

 case (state)
 START1:
 nextState = START2;

 START2:
 nextState = SENDING;
 SENDING: begin
 valid = 1;
 cnttag = 0;
 if (eq) begin
 nextState = COUNTING;
 end else begin
 nextState = SENDING;
 end
 end
 COUNTING: begin
 if (eq) begin
 clr = 0;
 inc = 1;
 nextState = COUNTING;
 end else begin
 valid = 1;
 cnttag = 1;
 nextState = SENDING;
 end
 end

end

Combinational Logic Design
  We can translate a Boolean function into logic gates

  AND, OR, INVERT

  e.g. Homework problem
  g0 = r0
  g1 = r1 * r0’
  g2 = r2 * r0’ * r1’
  g2 = r3 * r0’ * r1’ * r2’
  g2 = r4 * r0’ * r1’ * r2’ * r3’
  g2 = r5 * r0’ * r1’ * r2’ * r3’ * r4

  This is a “scan” computation from parallel computing

Reduce and Scan Operators
  Reduce: Reduce a vector of values to a single value

  e.g. sum, max, min, . . .

  Scan: Convert a vector of values to a new vector
  outputk is reduction applied to the first k inputs
  e.g. sum, max, min, …

  Reduce can be done in O(log) time
  Simple n-ary tree

  Scan can also be done in O(log) time
  Double the time for Reduce
  A “down” tree and an “up” tree

A Real Example of Scan
  Histogram equalization – contrast enhancement

  (see Wikipedia)

  Step 1 – Create a histogram of all pixel values
  Bin 0 – 255

  Step 2 – Compute the Cumulative Distribution Function
  cdf[i] = SUMj<=i (bin[j]) / totalPixelCount

  Step 3 – Convert pixels using the cdf
  out = 255 * cdf(in)

  CDF can be computed in O(log) time
  For large dynamic range, this can be important

Histogram Equalization
  a) Histogram and cdf
  b) Equalized histogram and cdf

a b

Carry-Lookahead Adder
  Recall: Sumi = Ai xor Bi xor Ci

  where Ci is the carry in from the next bit position

  If we can compute carry using scan, we can compute add
in O(log) time

  Problem: Parallel scan only works for associative functions
  Carry is not associative

  We will use two other functions that are associative
  Carry Generate (G)
  Carry Propagate (P)

Carry-Lookahead Adder
  Generate – true, if an adder “block” generates a carry

regardless of the carry in
  Propagate – true, if an adder “block” propagates a carry in

to the carry out
  Example: 1-bit adder

  Example: 2-bit adder

  Associativity: Combining Generates and Propagates

Carry-Lookahead Adder
  Ci = Gi:0 + Cin * Pi:0

  That is, if we compute Gi:0 and Pi:0 fast, then we can
compute Ci fast

  And we can use parallel scan (aka parallel prefix) to
compute Gi:0 and Pi:0 fast

System Timing
  Register Timing Constraints

  Setup time
  Hold time

  Clock Generation and Distribution
  Clock skew
  Multiple clocks
  PLLs & DLLs

  Asynchronous communication
  Not all modules can have the same clock
  Distance and too much clock skew

  Synchronous communication
  Source-synchronous signaling

Registers

Sequential Logic 36

  Sample data using clock
  Hold data between clock cycles
  Computation (and delay) occurs between registers

clock

data in
may change stable

data out (Q) stable stable stable

clock

data in
D Q D Q data out

Sequential Logic 37

there is a timing "window"
around the clocking event
during which the input must
remain stable and unchanged
in order to be recognized

clock

data

changing stable

input

clock

Tsu Th

Timing Methodologies (cont’d)
  Definition of terms

  setup time: minimum time before the clocking event
 by which the input must be stable (Tsu)

  hold time: minimum time after the clocking event
 until which the input must remain stable (Th)

clock

data
D Q D Q

Typical timing specifications

Sequential Logic 38

  Positive edge-triggered D flip-flop
  setup and hold times
  minimum clock width
  propagation delays (low to high, high to low, max and typical)

all measurements are made from the clocking event that is,
the rising edge of the clock

Th
1ns

Tw 7ns

Tplh
[2,4]ns

Tphl
[1,3]ns

Tsu
2ns

D

CLK

Q

Tsu
2ns

Th
1ns

Synchronous System Model

Sequential Logic 39

  Register-to-register operation
  Perform operations during transfer
  Many transfers/operations occur simultaneously

Sequential Logic 40

System Clock Frequency
  Register transfer must fit into one clock cycle

  reg tpd + C.L. tpd + reg tsu < Tclk

  Use maximum delays
  Find the “critical path”

  Longest register-register delay

Sequential Logic 41

Short Paths
  Can a path have too little delay?

  Yes: Hold time can be violated
  tpd > th
  Use min delay (contamination delay)

  Fortunately, most registers have hold time = 0
  But there can still be a problem! Clock skew…

Sequential Logic 42

Clock Skew
  Cannot make clock arrive at registers at the same time
  If skew > 0:

  tpd > th + tskew

  Clock skew can cause system failure
  Can you fix this after you’ve fabbed the chip?

Sequential Logic 43

Clock Skew
  Cannot make clock arrive at registers at the same time
  If skew > 0:

  tpd > th + tskew

  Clock skew can cause system failure
  Can you fix this after you’ve fabbed the chip?

Sequential Logic 44

Clock Skew
  If skew < 0:

  tclk > reg tpd + CL tpd + reg tSU + |tskew|

  Can you fix this after fab?

Sequential Logic 45

Clock Skew
  If skew < 0:

  tclk > reg tpd + CL tpd + reg tSU + |tskew|

  Can you fix this after fab?

Sequential Logic 46

Clock Skew
  Correct behavior assumes that all storage elements sample at

exactly the same time
  Not possible in real systems:

  clock driven from some central location
  different wire delay to different points in the circuit

  Problems arise if skew is of the same order as FF
contamination delay

  Gets worse as systems get faster (wires don't improve as fast)
  1) distribute clock signals against the data flow
  2) wire carrying the clock between two communicating components

should be as short as possible
  3) try to make all wires from the clock generator be the same length

=> clock tree

Altera FPGA PLL

What About External Inputs?

Sequential Logic 48

  Internal signals are OK
  Can only change when clock changes

  External signals can change at any time
  Asynchronous inputs
  Truly asynchronous
  Produced by a different clock

  This means register may sample a signal that is changing
  Violates setup/hold time
  What happens?

Sequential Logic 49

Sampling Asynchronous Inputs

Sequential Logic 50

Sampling Rate
  How fast does your sample clock need to be?

Sequential Logic 51

Sampling Rate
  How fast does your sample clock need to be?

  f(clkB) > f(clkA)
  f(clkB) > 2 f(data) (Nyquist)

Sequential Logic 52

Another Problem with Asynchronous inputs

  What goes wrong here?

  What is the fix?

Think About the Reset Signal!
  Reset input is typically asynchronous

  Which edge do we care about?
  Does it matter if the registers have

synchronous or asynchronous resets?

  Reset is broadcast to all registers in system
  What happens?

  Register input should be single-registered just like every
other asynchronous input

Sequential Logic 53

Sequential Logic 54

More Asynchronous inputs
  What is the problem?
  What is the fix?

Sequential Logic 55

Important Rule!
  Exactly one register makes the synchronizing decision

Sequential Logic 56

More Asynchronous inputs
  Can we input asynchronous data values with several bits?

Sequential Logic 57

More Asynchronous inputs
  How can we input asynchronous data values with several

bits?

Sequential Logic 58

What Went Wrong?
  Each bit has a different delay

  Wire lengths differ
  Gate thresholds differ
  Driver speeds are different
  Register delays are different

  Rise vs. Fall times

  Clock skews to register bits

  Bottom line – “data skew” is inevitable
  aka Bus Skew
  Longer wires => More skew

  What is the solution??

Sequential Logic 59

Sending Multiple Data Bits
  Must send a “clock” with the data – Source-Synchronous

  Waits until data is stable
  “Sample window”

  De-skewing delay

  f(clkB) > 2 f(clkA)

Crossing Clock Domain Boundaries is
Tricky

Sequential Logic 60

  Direct sampling of multiple asynchronous bits is
impossible
  We can reliably sample only a single bit

  But even worse: Synchronization Failure [Metastability]
  Non-zero probability that our system will fail
  And there is nothing we can do about

  Although we can reduce the probability to an extremely low value

Sequential Logic 61

small, but non-zero probability
that the FF output will get stuck

in an in-between state

oscilloscope traces demonstrating
synchronizer failure and eventual

decay to steady state

logic 0 logic 1
logic 0

logic 1

Synchronization failure
  Occurs when FF input changes close to clock edge

  the FF may enter a metastable state – neither a logic 0 nor 1 –
  it may stay in this state an indefinite amount of time
  this is not likely in practice but has some probability

Guarding against synchronization failure

Sequential Logic 62

  Key idea – give the register as long as possible to make up its
mind
  Probability of failure cannot be reduced to 0, but low enough that we

don’t care

  Cascade two registers
  Use very fast registers
  Slow down the clock

  Slows communication rate

D D Q Q
asynchronous

input
synchronized

input

Clk

Sequential Logic 63

Calculating probability of failure

  For a single synchronizer

 Mean-Time Between Failure (MTBF) = exp (tr / τ) / (T0 × fc × fa)

where a failure occurs if metastability persists beyond time tr
  tr is the resolution time – slack time in the clock period for settling

  Tclk - (tpd + TCL + tsetup)
  fc is the frequency of the FF clock
  fa is the frequency of asynchronous events on the input of the FF
  T0 and τ are constaints that depend on the FF's electrical characteristics

(e.g., gain or steepness of curve)
  Must add probabilities from all synchronizers in system

 1/MTBFsystem = Σ 1/MTBFsynch

Altera Stratix-3 Example Data

Sequential Logic 64

