
Lecture 3 – System Timing and
Case Studies

CSE P567

Summary: Verilog for Combinational Logic

  Two alternatives:
  assign statement – simple logic equation
  always block – allows complex program to describe function

  Each assign and always block compiles into a component
  Combinational function with some inputs and outputs

  All components operate in parallel, continuously
  If any input changes, the function is recomputed
  This may change the output
  Which will cause inputs of some components to change

  Just like a circuit made up of gates!

Verilog for
  for is similar to C
  for statement is executed at compile time

  result is all that matters, not how result is calculated

// simple encoder
module encode
 (input [7:0] A, // 8-bit input vector
 output reg [2:0] Y); // 3-bit encoded output
 integer i; // Temporary variables for program only
 reg [7:0] test;

 always @(*) begin
 test = 8b’00000001;
 Y = 3’bX;
 for (i = 0; i < 8; i = i + 1) begin
 if (A == test) Y = i;
 test = test << 1;
 end
 end
endmodule

Another Behavioral Example
  Combinational block that computes Conway’s Game of Life rule

module life
 (input self,
 input [7:0] neighbors,
 output reg out);
 integer count;
 integer i;

 always @(*) begin
 count = 0;
 for (i = 0; i<8; i = i+1) count = count + neighbors[i];
 out = 0;
 out = out | (count == 3);
 out = out | ((self == 1) & (count == 2));
 end
endmodule

Case Study – Division by Constant
  e. g. gray = (red + blue + green)/3
  Division is very expensive in general

  Area and Delay
  Much more so than multiplication

  Convert division to multiplication
  Multiply by the reciprocal
  e.g. (red + blue + green) * 0.33
  Floating-point??

  Also expensive!

  Key idea: multiply & divide by 2n is FREE

RGB to Grayscale
  Y = 0.3*R + 0.59*G + 0.11*B
  1024 * 0.3 = 307.2
  1024 * 0.59 = 604.16
  1024 * 0.11 = 112.64

  Y = (307*R + 604*G + 113*B) >> 10;

  This works for multiplying/dividing with any number with
fractions
  Scale then re-scale

Converting Division to Multiplication
  Increase precision until it’s good enough

  FPGA has 18x18 multipliers – almost free

  Division by a variable?
  Table lookup of reciprocal
  Does not scale to large numbers
  Use iterative solutions

Creating a Table in Verilog

  Generate this code using a program!

//////////// Sin Wave ROM Table //////////////
always @(*) begin
 case(SIN_Cont)
 0 : Sin_Out = 0 ;
 1 : Sin_Out = 4276 ;
 2 : Sin_Out = 8480 ;
 3 : Sin_Out = 12539 ;
 4 : Sin_Out = 16383 ;
 5 : Sin_Out = 19947 ;
 6 : Sin_Out = 23169 ;
 7 : Sin_Out = 25995 ;
 8 : Sin_Out = 28377 ;
 9 : Sin_Out = 30272 ;
 10 : Sin_Out = 31650 ;
 11 : Sin_Out = 32486 ;
 12 : Sin_Out = 32767 ;
 13 : Sin_Out = 32486 ;
 14 : Sin_Out = 31650 ;
 15 : Sin_Out = 30272 ;
 16 : Sin_Out = 28377 ;
 17 : Sin_Out = 25995 ;
 18 : Sin_Out = 23169 ;
 19 : Sin_Out = 19947 ;
 20 : Sin_Out = 16383 ;

 21 : Sin_Out = 12539 ;
 22 : Sin_Out = 8480 ;
 23 : Sin_Out = 4276 ;
 24 : Sin_Out = 0 ;
 25 : Sin_Out = 61259 ;
 26 : Sin_Out = 57056 ;
 . . .
 default : Sin_Out = 0 ;
 endcase
end

Summary: Verilog for Sequential Logic
  Use always @(posedge clk) blocks

  Executes only when clock “ticks” (rising edge)
  All assignments are registered

  Use <= (delayed assignment – implements parallel sample/hold)

  Styles
  One posedge clk block

  Computation and registers
  Not general

  Separate register block and combinational logic block
  More general, more like hardware
  Less intuitive

Shift Register Example
// 4 register shift register
module shiftReg
 (input CLK,
 input reset, // initialize registers
 input shift,
 input [7:0] Din, // Data input for load
 output [7:0] Dout);
 reg [7:0] D0, D1, D2, D3;
 assign Dout = D0;
 always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else if (shift) begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;
 end
 end

endmodule // shiftReg

FIR Filter Example
module fir
 (input CLK,
 input reset, // initialize registers
 input [7:0] Din, // Data input for load
 output reg [7:0] Dout);
 reg [7:0] D0, D1, D2, D3;
 localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1;

 always @(posedge CLK) begin
 if (reset) begin
 D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0;
 end else begin
 D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1;

 Dout <= C0 * D0 + C1 * D1 + C2 * D2 + C3 * D3;
 end
 end
endmodule // fir

Case Study: Wavelet Computation #1

 localparam INIT=4, State0=0, State1=1, State2=2, State3=3;
 reg [2:0] state; // State register

 // This shift register captures the input
 reg [7:0] in0, in1, in2, in3;
 // These hold data while data is shifting in
 reg [7:0] D0, D1, D2, D3;

// We use this shift register to delay the input valid bit by
 // up to 8 clock cycles to generate the output valid bit
 reg [8:0] valid;
 assign validOut = valid[5]; // 5 cycles for pipe to fill

 // Valid data enters as soon as reset is turned off
 wire validIn = ~reset;

 always @(posedge clk) begin
 if (reset) begin
 valid = 0;
 state <= INIT;
 end else begin

 // Constantly shift input data
 in0 <= in1;
 in1 <= in2;
 in2 <= in3;
 in3 <= dataIn;
 valid <= { valid[7:0], validIn };
 case (state)
 INIT: begin
 state <= State0;
 end
 State0: begin
 dataOut <= D0-D1; // Q0
 state <= State1;
 end
 State1: begin
 dataOut <= D2-D3; // Q1
 state <= State2;
 end
 State2: begin
 dataOut <= D0+D1+D2+D3; // Q2
 state <= State3;
 end
 State3: begin
 dataOut <= D0+D1-D2-D3; // Q3
 // Latch inputs
 D0 <= in0;
 D1 <= in1;
 D2 <= in2;
 D3 <= in3;
 state <= State0;
 end // case: State3
 endcase // case(state)
 end

 end

Block Diagram for Wavelet Filter

Wavelet with Split Block Style
 localparam INIT=4, State0=0, State1=1, State2=2, State3=3;
 reg [2:0] state, nextState; // State register

. . .

 // Registers
 always @(posedge clk) begin

 if (reset) begin
 valid <= 0;
 state <= INIT;
 end else begin
 // Input shift register
 in0 <= in1;
 in1 <= in2;
 in2 <= in3;
 in3 <= dataIn;
 valid <= { valid[7:0], validIn }; // Shift left
 if (state == State3) begin
 D0 <= in0;
 D1 <= in1;
 D2 <= in2;
 D3 <= in3;
 end
 state <= nextState;
 end // else: !if(reset)

 end // always @ (posedge clk)

// Combinational logic
 always @(*) begin

 case (state)
 INIT: begin
 nextState = State0;
 end
 State0: begin
 dataOut = D0-D1; // Q0
 nextState = State1;
 end
 State1: begin
 dataOut = D2-D3; // Q1
 nextState = State2;
 end
 State2: begin
 dataOut = D0+D1+D2+D3; // Q2
 nextState = State3;
 end
 State3: begin
 dataOut = D0+D1-D2-D3; // Q3
 nextState = State0;
 end // case: State3
 endcase // case(state)

 end

Case Study: Complex Wavelet

 localparam INIT=4, State0=0, State1=1, State2=2, State3=3;
 reg [2:0] state; // State register
 reg [9:0] D0D1, D2D3; // Temp registers

 // This shift register captures the input
 // oldest newest
 reg [7:0] in0, in1, in2, in3;

 reg [8:0] valid;
 assign validOut = valid[3];

 // Valid data enters as soon as reset is turned off
 wire validIn = ~reset;

 always @(posedge clk) begin
 if (reset) begin
 valid = 0;
 state <= INIT;
 end else begin

 in0 <= in1;
 in1 <= in2;
 in2 <= in3;
 in3 <= dataIn;
 valid <= { valid[7:0], validIn };
 case (state)
 INIT: begin
 state <= State0;
 end
 State0: begin
 dataOut <= D0D1 + D2D3; // Q2
 state <= State1;
 end
 State1: begin
 dataOut <= D0D1 - D2D3; // Q3
 state <= State2;
 end
 State2: begin
 dataOut <= in1 - in2; // Q0: D0 - D1
 D0D1 <= in1 + in2; // D0 + D1
 state <= State3;
 end
 State3: begin
 dataOut <= in2 - in3; // Q1: D2 - D3
 D2D3 <= in2 + in3; // D2 + D3
 state <= State0;
 end // case: State3
 endcase // case(state)
 end

 end
endmodule

Block Diagram for Complex Wavelet

Case Study: Camera Input

 module camera(
 input clk, // clock
 input reset, // reset
 input [11:0] CCD_DATA, // Input from camera
 input CCD_FVAL, // In Frame signal
 input CCD_LVAL, // In Line signal
 input iSTART, // Start button
 input iEND, // Stop button
 output [11:0] pixelOut, // Output pixel data
 output reg [15:0] colAddr, // Pixel address
 output reg [15:0] lineAddr, // Line address
 output newFrame, // Done with frame
 output pixelValid);// Pixel valid

 // Registers
 reg fvalPrev;
 reg lvalPrev;
 reg [11:0] CCD_DATA_L0;
 reg [11:0] CCD_DATA_L1;

 // Control signals
 reg outputEnableSignal;
 reg outputEnable;
 wire isNewPixel;
 wire isNewFrame;
 wire isNewLine;

 // Control signals
 assign isNewPixel = CCD_FVAL && CCD_LVAL;
 assign isNewFrame = fvalPrev && !CCD_FVAL;
 assign isNewLine = lvalPrev && !CCD_LVAL;

 assign pixelOut = CCD_DATA_L1;
 assign pixelValid = isNewPixel && outputEnable;
 assign newFrame = isNewFrame && outputEnable;

 // Latch signals
 always @(posedge clk) begin
 fvalPrev <= CCD_FVAL;
 lvalPrev <= CCD_LVAL;
 CCD_DATA_L0 <= CCD_DATA;
 CCD_DATA_L1 <= CCD_DATA_L0;
 end

 // Calculate addresses
 always @(posedge clk) begin
 if (reset || isNewLine) colAddr <= 0;
 else if (isNewPixel) colAddr <= colAddr + 1;
 if (reset || isNewFrame) lineAddr <= 0;
 else if (isNewLine) lineAddr <= lineAddr + 1;
 end

 // Implement START/STOP picture
 always @(posedge clk) begin
 if (reset || iSTART) outputEnableSignal <= 1;
 else if (iEND) outputEnableSignal <= 0;
 if (isNewFrame) outputEnable <= outputEnableSignal;
 end

Case Study: Camera Input

 // Calculate addresses
 always @(posedge clk) begin
 if (reset || isNewLine) colAddr <= 0;
 else if (isNewPixel) colAddr <= colAddr + 1;
 if (reset || isNewFrame) lineAddr <= 0;
 else if (isNewLine) lineAddr <= lineAddr + 1;
 end

 // Implement START/STOP picture
 always @(posedge clk) begin
 if (reset || iSTART) outputEnableSignal <= 1;
 else if (iEND) outputEnableSignal <= 0;
 if (isNewFrame) outputEnable <= outputEnableSignal;
 end

Case Study: Camera Input
 // Control signals
 assign isNewPixel = CCD_FVAL && CCD_LVAL;
 assign isNewFrame = fvalPrev && !CCD_FVAL;
 assign isNewLine = lvalPrev && !CCD_LVAL;

 assign pixelOut = CCD_DATA_L1;
 assign pixelValid = isNewPixel && outputEnable;
 assign newFrame = isNewFrame && outputEnable;

 // Latch signals
 always @(posedge clk) begin
 fvalPrev <= CCD_FVAL;
 lvalPrev <= CCD_LVAL;
 CCD_DATA_L0 <= CCD_DATA;
 CCD_DATA_L1 <= CCD_DATA_L0;
 end

Case Study: Camera Input
 // Control signals
 assign isNewPixel = CCD_FVAL && CCD_LVAL;
 assign isNewFrame = fvalPrev && !CCD_FVAL;
 assign isNewLine = lvalPrev && !CCD_LVAL;

 assign pixelOut = CCD_DATA_L1;
 assign pixelValid = isNewPixel && outputEnable;
 assign newFrame = isNewFrame && outputEnable;

 // Latch signals
 always @(posedge clk) begin
 fvalPrev <= CCD_FVAL;
 lvalPrev <= CCD_LVAL;
 CCD_DATA_L0 <= CCD_DATA;
 CCD_DATA_L1 <= CCD_DATA_L0;
 end

21

Design Problem – Run-Length Encoder
  7-bit input stream
  8-bit output stream

  high-order bit == 0: Data value
  high-order bit == 1: Repeat count of previous data value

  Valid bit set when 8-bit output is data or count

22

RLE Design
  Split design into datapath and control
  Datapath

  Registers for data values, count
  Multiplexors

  Control
  Keep track of what’s happening
  clear count, increment count, send data value, send count

  Control will be an FSM

23

Start with Datapath

  We need to know what to control

  FSM inputs
  eq

  FSM outputs
  clr, inc, valid, cnt,

24

FSM Controller

25

Verilog For State Machines
  State machine has two parts

  State register
  Combinational Logic

  Next state function
  Output function

  Each in a different always block

inputs
Moore outputs

Mealy outputs

next state

current state

combinational
logic

RLE Module – Datapath + Control

26

module rleFSM (clk, reset, eq, clr, inc, valid, cnttag);
 input clk, reset;
 input eq; // current data value == previous data value
 output clr; // clear count value (0 means 2, . . .)
 output inc; // increment count value (clr overrides)
 output valid; // output value is valid
 output cnttag; // select the count for the output value

 // Use parameter to define symbolic states
 localparam START1 = 0, START2 = 1, SENDING = 2, COUNTING = 3;
 reg [1:0] state, // current state

 nextState; // next state

 always @(posedge CLK) begin
 if (reset)
 state <= START1;
 else
 state <= nextState;
 end

27

Combinational Logic for FSM
always @(*) begin

 // Set defaults
 valid = 0; inc = x; clr = x; cnttag = x;

 case (state)
 START1:
 nextState = START2;

 START2:
 nextState = SENDING;
 SENDING: begin
 valid = 1;
 cnttag = 0;
 if (eq) begin
 nextState = COUNTING;
 end else begin
 nextState = SENDING;
 end
 end
 COUNTING: begin
 if (eq) begin
 clr = 0;
 inc = 1;
 nextState = COUNTING;
 end else begin
 valid = 1;
 cnttag = 1;
 nextState = SENDING;
 end
 end

end

Combinational Logic Design
  We can translate a Boolean function into logic gates

  AND, OR, INVERT

  e.g. Homework problem
  g0 = r0
  g1 = r1 * r0’
  g2 = r2 * r0’ * r1’
  g2 = r3 * r0’ * r1’ * r2’
  g2 = r4 * r0’ * r1’ * r2’ * r3’
  g2 = r5 * r0’ * r1’ * r2’ * r3’ * r4

  This is a “scan” computation from parallel computing

Reduce and Scan Operators
  Reduce: Reduce a vector of values to a single value

  e.g. sum, max, min, . . .

  Scan: Convert a vector of values to a new vector
  outputk is reduction applied to the first k inputs
  e.g. sum, max, min, …

  Reduce can be done in O(log) time
  Simple n-ary tree

  Scan can also be done in O(log) time
  Double the time for Reduce
  A “down” tree and an “up” tree

A Real Example of Scan
  Histogram equalization – contrast enhancement

  (see Wikipedia)

  Step 1 – Create a histogram of all pixel values
  Bin 0 – 255

  Step 2 – Compute the Cumulative Distribution Function
  cdf[i] = SUMj<=i (bin[j]) / totalPixelCount

  Step 3 – Convert pixels using the cdf
  out = 255 * cdf(in)

  CDF can be computed in O(log) time
  For large dynamic range, this can be important

Histogram Equalization
  a) Histogram and cdf
  b) Equalized histogram and cdf

a b

Carry-Lookahead Adder
  Recall: Sumi = Ai xor Bi xor Ci

  where Ci is the carry in from the next bit position

  If we can compute carry using scan, we can compute add
in O(log) time

  Problem: Parallel scan only works for associative functions
  Carry is not associative

  We will use two other functions that are associative
  Carry Generate (G)
  Carry Propagate (P)

Carry-Lookahead Adder
  Generate – true, if an adder “block” generates a carry

regardless of the carry in
  Propagate – true, if an adder “block” propagates a carry in

to the carry out
  Example: 1-bit adder

  Example: 2-bit adder

  Associativity: Combining Generates and Propagates

Carry-Lookahead Adder
  Ci = Gi:0 + Cin * Pi:0

  That is, if we compute Gi:0 and Pi:0 fast, then we can
compute Ci fast

  And we can use parallel scan (aka parallel prefix) to
compute Gi:0 and Pi:0 fast

System Timing
  Register Timing Constraints

  Setup time
  Hold time

  Clock Generation and Distribution
  Clock skew
  Multiple clocks
  PLLs & DLLs

  Asynchronous communication
  Not all modules can have the same clock
  Distance and too much clock skew

  Synchronous communication
  Source-synchronous signaling

Registers

Sequential Logic 36

  Sample data using clock
  Hold data between clock cycles
  Computation (and delay) occurs between registers

clock

data in
may change stable

data out (Q) stable stable stable

clock

data in
D Q D Q data out

Sequential Logic 37

there is a timing "window"
around the clocking event
during which the input must
remain stable and unchanged
in order to be recognized

clock

data

changing stable

input

clock

Tsu Th

Timing Methodologies (cont’d)
  Definition of terms

  setup time: minimum time before the clocking event
 by which the input must be stable (Tsu)

  hold time: minimum time after the clocking event
 until which the input must remain stable (Th)

clock

data
D Q D Q

Typical timing specifications

Sequential Logic 38

  Positive edge-triggered D flip-flop
  setup and hold times
  minimum clock width
  propagation delays (low to high, high to low, max and typical)

all measurements are made from the clocking event that is,
the rising edge of the clock

Th
1ns

Tw 7ns

Tplh
[2,4]ns

Tphl
[1,3]ns

Tsu
2ns

D

CLK

Q

Tsu
2ns

Th
1ns

Synchronous System Model

Sequential Logic 39

  Register-to-register operation
  Perform operations during transfer
  Many transfers/operations occur simultaneously

Sequential Logic 40

System Clock Frequency
  Register transfer must fit into one clock cycle

  reg tpd + C.L. tpd + reg tsu < Tclk

  Use maximum delays
  Find the “critical path”

  Longest register-register delay

Sequential Logic 41

Short Paths
  Can a path have too little delay?

  Yes: Hold time can be violated
  tpd > th
  Use min delay (contamination delay)

  Fortunately, most registers have hold time = 0
  But there can still be a problem! Clock skew…

Sequential Logic 42

Clock Skew
  Cannot make clock arrive at registers at the same time
  If skew > 0:

  tpd > th + tskew

  Clock skew can cause system failure
  Can you fix this after you’ve fabbed the chip?

Sequential Logic 43

Clock Skew
  Cannot make clock arrive at registers at the same time
  If skew > 0:

  tpd > th + tskew

  Clock skew can cause system failure
  Can you fix this after you’ve fabbed the chip?

Sequential Logic 44

Clock Skew
  If skew < 0:

  tclk > reg tpd + CL tpd + reg tSU + |tskew|

  Can you fix this after fab?

Sequential Logic 45

Clock Skew
  If skew < 0:

  tclk > reg tpd + CL tpd + reg tSU + |tskew|

  Can you fix this after fab?

Sequential Logic 46

Clock Skew
  Correct behavior assumes that all storage elements sample at

exactly the same time
  Not possible in real systems:

  clock driven from some central location
  different wire delay to different points in the circuit

  Problems arise if skew is of the same order as FF
contamination delay

  Gets worse as systems get faster (wires don't improve as fast)
  1) distribute clock signals against the data flow
  2) wire carrying the clock between two communicating components

should be as short as possible
  3) try to make all wires from the clock generator be the same length

=> clock tree

Altera FPGA PLL

What About External Inputs?

Sequential Logic 48

  Internal signals are OK
  Can only change when clock changes

  External signals can change at any time
  Asynchronous inputs
  Truly asynchronous
  Produced by a different clock

  This means register may sample a signal that is changing
  Violates setup/hold time
  What happens?

Sequential Logic 49

Sampling Asynchronous Inputs

Sequential Logic 50

Sampling Rate
  How fast does your sample clock need to be?

Sequential Logic 51

Sampling Rate
  How fast does your sample clock need to be?

  f(clkB) > f(clkA)
  f(clkB) > 2 f(data) (Nyquist)

Sequential Logic 52

Another Problem with Asynchronous inputs

  What goes wrong here?

  What is the fix?

Think About the Reset Signal!
  Reset input is typically asynchronous

  Which edge do we care about?
  Does it matter if the registers have

synchronous or asynchronous resets?

  Reset is broadcast to all registers in system
  What happens?

  Register input should be single-registered just like every
other asynchronous input

Sequential Logic 53

Sequential Logic 54

More Asynchronous inputs
  What is the problem?
  What is the fix?

Sequential Logic 55

Important Rule!
  Exactly one register makes the synchronizing decision

Sequential Logic 56

More Asynchronous inputs
  Can we input asynchronous data values with several bits?

Sequential Logic 57

More Asynchronous inputs
  How can we input asynchronous data values with several

bits?

Sequential Logic 58

What Went Wrong?
  Each bit has a different delay

  Wire lengths differ
  Gate thresholds differ
  Driver speeds are different
  Register delays are different

  Rise vs. Fall times

  Clock skews to register bits

  Bottom line – “data skew” is inevitable
  aka Bus Skew
  Longer wires => More skew

  What is the solution??

Sequential Logic 59

Sending Multiple Data Bits
  Must send a “clock” with the data – Source-Synchronous

  Waits until data is stable
  “Sample window”

  De-skewing delay

  f(clkB) > 2 f(clkA)

Crossing Clock Domain Boundaries is
Tricky

Sequential Logic 60

  Direct sampling of multiple asynchronous bits is
impossible
  We can reliably sample only a single bit

  But even worse: Synchronization Failure [Metastability]
  Non-zero probability that our system will fail
  And there is nothing we can do about

  Although we can reduce the probability to an extremely low value

Sequential Logic 61

small, but non-zero probability
that the FF output will get stuck

in an in-between state

oscilloscope traces demonstrating
synchronizer failure and eventual

decay to steady state

logic 0 logic 1
logic 0

logic 1

Synchronization failure
  Occurs when FF input changes close to clock edge

  the FF may enter a metastable state – neither a logic 0 nor 1 –
  it may stay in this state an indefinite amount of time
  this is not likely in practice but has some probability

Guarding against synchronization failure

Sequential Logic 62

  Key idea – give the register as long as possible to make up its
mind
  Probability of failure cannot be reduced to 0, but low enough that we

don’t care

  Cascade two registers
  Use very fast registers
  Slow down the clock

  Slows communication rate

D D Q Q
asynchronous

input
synchronized

input

Clk

Sequential Logic 63

Calculating probability of failure

  For a single synchronizer

 Mean-Time Between Failure (MTBF) = exp (tr / τ) / (T0 × fc × fa)

where a failure occurs if metastability persists beyond time tr
  tr is the resolution time – slack time in the clock period for settling

  Tclk - (tpd + TCL + tsetup)
  fc is the frequency of the FF clock
  fa is the frequency of asynchronous events on the input of the FF
  T0 and τ are constaints that depend on the FF's electrical characteristics

(e.g., gain or steepness of curve)
  Must add probabilities from all synchronizers in system

 1/MTBFsystem = Σ 1/MTBFsynch

Altera Stratix-3 Example Data

Sequential Logic 64

