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Summary: Verilog for Combinational Logic 

  Two alternatives: 
  assign statement – simple logic equation 
  always block – allows complex program to describe function 

  Each assign and always block compiles into a component 
  Combinational function with some inputs and outputs 

  All components operate in parallel, continuously 
  If any input changes, the function is recomputed 
  This may change the output 
  Which will cause inputs of some components to change 

  Just like a circuit made up of gates! 



Verilog for 
  for is similar to C 
  for statement is executed at compile time 

  result is all that matters, not how result is calculated 

// simple encoder 
module encode 
 (input  [7:0] A,    // 8-bit input vector 
  output reg [2:0] Y); // 3-bit encoded output 
  integer i;   // Temporary variables for program only 
  reg [7:0] test; 

  always @(*) begin 
    test = 8b’00000001; 
    Y = 3’bX; 
    for (i = 0; i < 8; i = i + 1) begin 
       if (A == test) Y = i; 
       test = test << 1; 
    end 
  end 
endmodule 



Another Behavioral Example 
  Combinational block that computes Conway’s Game of Life rule 

module life 
 (input         self, 
  input [7:0]   neighbors, 
  output reg    out); 
  integer       count; 
  integer       i; 

  always @(*) begin 
    count = 0; 
    for (i = 0; i<8; i = i+1) count = count + neighbors[i]; 
    out = 0; 
    out = out | (count == 3); 
    out = out | ((self == 1) & (count == 2)); 
  end 
endmodule 



Case Study – Division by Constant 
  e. g.  gray = (red + blue + green)/3 
  Division is very expensive in general 

  Area and Delay 
  Much more so than multiplication 

  Convert division to multiplication 
  Multiply by the reciprocal 
  e.g.  (red + blue + green) * 0.33 
  Floating-point?? 

  Also expensive! 

  Key idea: multiply & divide by 2n is FREE 



RGB to Grayscale 
  Y = 0.3*R + 0.59*G + 0.11*B 
  1024 * 0.3 = 307.2 
  1024 * 0.59 = 604.16 
  1024 * 0.11 = 112.64 

  Y = (307*R + 604*G + 113*B) >> 10; 

  This works for multiplying/dividing with any number with 
fractions 
  Scale then re-scale 



Converting Division to Multiplication 
  Increase precision until it’s good enough 

  FPGA has 18x18 multipliers – almost free 

  Division by a variable? 
  Table lookup of reciprocal 
  Does not scale to large numbers 
  Use iterative solutions 



Creating a Table in Verilog 

  Generate this code using a program! 

////////////  Sin Wave ROM Table  ////////////// 
always @(*) begin 
  case(SIN_Cont) 
    0  :  Sin_Out       =      0       ; 
    1  :  Sin_Out       =      4276    ; 
    2  :  Sin_Out       =      8480    ; 
    3  :  Sin_Out       =      12539   ; 
    4  :  Sin_Out       =      16383   ; 
    5  :  Sin_Out       =      19947   ; 
    6  :  Sin_Out       =      23169   ; 
    7  :  Sin_Out       =      25995   ; 
    8  :  Sin_Out       =      28377   ; 
    9  :  Sin_Out       =      30272   ; 
    10  :  Sin_Out      =      31650   ; 
    11  :  Sin_Out      =      32486   ; 
    12  :  Sin_Out      =      32767   ; 
    13  :  Sin_Out      =      32486   ; 
    14  :  Sin_Out      =      31650   ; 
    15  :  Sin_Out      =      30272   ; 
    16  :  Sin_Out      =      28377   ; 
    17  :  Sin_Out      =      25995   ; 
    18  :  Sin_Out      =      23169   ; 
    19  :  Sin_Out      =      19947   ; 
    20  :  Sin_Out      =      16383   ; 

    21  :  Sin_Out      =      12539   ; 
    22  :  Sin_Out      =      8480    ; 
    23  :  Sin_Out      =      4276    ; 
    24  :  Sin_Out      =      0       ; 
    25  :  Sin_Out      =      61259   ; 
    26  :  Sin_Out      =      57056   ; 
    . . . 
    default :  Sin_Out  =    0      ; 
  endcase 
end   



Summary: Verilog for Sequential Logic 
  Use  always @(posedge clk)  blocks 

  Executes only when clock “ticks” (rising edge) 
  All assignments are registered 

  Use <=  (delayed assignment – implements parallel sample/hold) 

  Styles 
  One posedge clk block 

  Computation and registers 
  Not general 

  Separate register block and combinational logic block 
  More general, more like hardware 
  Less intuitive 



Shift Register Example 
// 4 register shift register 
module shiftReg 
 (input   CLK, 
  input   reset,    // initialize registers  
  input   shift, 
  input  [7:0]  Din,  // Data input for load 
  output  [7:0]  Dout); 
  reg [7:0] D0, D1, D2, D3; 
  assign Dout = D0; 
  always @(posedge CLK) begin 
    if (reset) begin 
      D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0; 
    end else if (shift) begin 
      D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1; 
    end 
  end 

endmodule  // shiftReg 



FIR Filter Example 
module fir 
  (input   CLK, 
   input   reset,    // initialize registers  
   input  [7:0]  Din,  // Data input for load 
   output reg [7:0] Dout); 
   reg [7:0]   D0, D1, D2, D3; 
   localparam C0 = 4, C1 = 3, C2 = 2, C3 = 1; 

   always @(posedge CLK) begin 
     if (reset) begin 
       D0 <= 0; D1 <= 0; D2 <= 0; D3 <= 0; 
    end else begin 
       D3 <= Din; D2 <= D3; D1 <= D2; D0 <= D1; 

    Dout <= C0 * D0 + C1 * D1 + C2 * D2 + C3 * D3; 
    end 
  end 
endmodule // fir 



Case Study: Wavelet Computation #1 

 localparam INIT=4, State0=0, State1=1, State2=2, State3=3; 
   reg [2:0] state;        // State register 

   // This shift register captures the input 
   reg [7:0] in0, in1, in2, in3; 
   // These hold data while data is shifting in 
   reg [7:0] D0,  D1,  D2,  D3; 

// We use this shift register to delay the input valid bit by 
   // up to 8 clock cycles to generate the output valid bit 
   reg [8:0] valid; 
   assign validOut = valid[5];  // 5 cycles for pipe to fill 

   // Valid data enters as soon as reset is turned off 
   wire   validIn = ~reset; 

   always @(posedge clk) begin 
   if (reset) begin 
   valid = 0; 
   state <= INIT; 
   end else begin 

   // Constantly shift input data 
   in0 <= in1; 
   in1 <= in2; 
   in2 <= in3; 
   in3 <= dataIn; 
   valid <= { valid[7:0], validIn }; 
   case (state) 
     INIT: begin 
     state <= State0; 
     end 
     State0: begin 
     dataOut <= D0-D1;  // Q0 
     state <= State1; 
     end 
     State1: begin 
     dataOut <= D2-D3;  // Q1 
     state <= State2; 
     end 
     State2: begin 
     dataOut <= D0+D1+D2+D3;  // Q2 
     state <= State3; 
     end 
     State3: begin 
     dataOut <= D0+D1-D2-D3;  // Q3 
     // Latch inputs 
     D0 <= in0; 
     D1 <= in1; 
     D2 <= in2; 
     D3 <= in3; 
     state <= State0; 
     end // case: State3 
   endcase // case(state) 
 end 

   end 



Block Diagram for Wavelet Filter 



Wavelet with Split Block Style 
  localparam  INIT=4, State0=0, State1=1, State2=2, State3=3; 
   reg [2:0] state, nextState;   // State register 

. . . 

   // Registers 
   always @(posedge clk) begin 

   if (reset) begin 
   valid <= 0; 
   state <= INIT; 
   end else begin 
   // Input shift register 
   in0 <= in1; 
   in1 <= in2; 
   in2 <= in3; 
   in3 <= dataIn; 
   valid <= { valid[7:0], validIn };  // Shift left 
   if (state == State3) begin 
     D0 <= in0; 
     D1 <= in1; 
     D2 <= in2; 
     D3 <= in3; 
   end 
   state <= nextState; 
   end // else: !if(reset) 

   end // always @ (posedge clk) 

   

// Combinational logic 
   always @(*) begin 

   case (state) 
  INIT: begin 
     nextState = State0; 
  end 
  State0: begin 
     dataOut = D0-D1;  // Q0 
     nextState = State1; 
  end 
  State1: begin 
     dataOut = D2-D3;  // Q1 
     nextState = State2; 
  end 
  State2: begin 
     dataOut = D0+D1+D2+D3;  // Q2 
     nextState = State3; 
  end 
  State3: begin 
     dataOut = D0+D1-D2-D3;  // Q3 
     nextState = State0; 
  end // case: State3 
   endcase // case(state) 

   end 



Case Study: Complex Wavelet 

 localparam INIT=4, State0=0, State1=1, State2=2, State3=3; 
   reg [2:0] state;        // State register 
   reg [9:0] D0D1, D2D3;   // Temp registers 

   // This shift register captures the input 
   //        oldest         newest 
   reg [7:0] in0, in1, in2, in3; 

   reg [8:0] valid; 
   assign validOut = valid[3]; 

   // Valid data enters as soon as reset is turned off 
   wire   validIn = ~reset; 

   always @(posedge clk) begin 
   if (reset) begin 
   valid = 0; 
   state <= INIT; 
   end else begin 

   in0 <= in1; 
   in1 <= in2; 
   in2 <= in3; 
   in3 <= dataIn; 
   valid <= { valid[7:0], validIn };   
   case (state) 
     INIT: begin 
     state <= State0; 
     end 
     State0: begin 
     dataOut <= D0D1 + D2D3;  // Q2 
     state <= State1; 
     end 
     State1: begin 
     dataOut <= D0D1 - D2D3;  // Q3 
     state <= State2; 
     end 
     State2: begin 
     dataOut <= in1 - in2; // Q0: D0 - D1 
     D0D1 <= in1 + in2;      // D0 + D1 
     state <= State3; 
     end 
     State3: begin 
     dataOut <= in2 - in3; // Q1: D2 - D3 
     D2D3 <= in2 + in3;      // D2 + D3 
     state <= State0; 
     end // case: State3 
   endcase // case(state) 
 end 

   end 
endmodule 



Block Diagram for Complex Wavelet 



Case Study: Camera Input 

 module camera( 
  input             clk,      // clock 
  input             reset,    // reset 
  input  [11:0]     CCD_DATA,   // Input from camera 
  input             CCD_FVAL,   // In Frame signal 
  input             CCD_LVAL,   // In Line signal 
  input             iSTART,     // Start button 
  input             iEND,       // Stop button 
  output [11:0]     pixelOut,   // Output pixel data 
  output reg [15:0] colAddr,    // Pixel address 
  output reg [15:0] lineAddr,   // Line address 
  output            newFrame,   // Done with frame 
  output            pixelValid);// Pixel valid 

  // Registers 
  reg fvalPrev; 
  reg lvalPrev; 
  reg [11:0] CCD_DATA_L0; 
  reg [11:0] CCD_DATA_L1; 

  // Control signals 
  reg outputEnableSignal; 
  reg outputEnable; 
  wire isNewPixel; 
  wire isNewFrame; 
  wire isNewLine; 

  // Control signals 
  assign isNewPixel = CCD_FVAL && CCD_LVAL; 
  assign isNewFrame = fvalPrev && !CCD_FVAL; 
  assign isNewLine = lvalPrev && !CCD_LVAL; 

  assign pixelOut = CCD_DATA_L1; 
  assign pixelValid = isNewPixel && outputEnable; 
  assign newFrame = isNewFrame && outputEnable; 

  // Latch signals 
  always @(posedge clk) begin 
    fvalPrev <= CCD_FVAL; 
    lvalPrev <= CCD_LVAL; 
    CCD_DATA_L0 <= CCD_DATA; 
    CCD_DATA_L1 <= CCD_DATA_L0; 
  end 

  // Calculate addresses 
  always @(posedge clk) begin 
    if (reset || isNewLine) colAddr <= 0; 
    else if (isNewPixel) colAddr <= colAddr + 1; 
    if (reset || isNewFrame) lineAddr <= 0; 
    else if (isNewLine) lineAddr <= lineAddr + 1; 
  end 

  // Implement START/STOP picture 
  always @(posedge clk) begin 
    if (reset || iSTART) outputEnableSignal <= 1; 
    else if (iEND) outputEnableSignal <= 0; 
    if (isNewFrame) outputEnable <= outputEnableSignal; 
  end 



Case Study: Camera Input 

  // Calculate addresses 
  always @(posedge clk) begin 
    if (reset || isNewLine) colAddr <= 0; 
    else if (isNewPixel) colAddr <= colAddr + 1; 
    if (reset || isNewFrame) lineAddr <= 0; 
    else if (isNewLine) lineAddr <= lineAddr + 1; 
  end 

  // Implement START/STOP picture 
  always @(posedge clk) begin 
    if (reset || iSTART) outputEnableSignal <= 1; 
    else if (iEND) outputEnableSignal <= 0; 
    if (isNewFrame) outputEnable <= outputEnableSignal; 
  end 



Case Study: Camera Input 
  // Control signals 
  assign isNewPixel = CCD_FVAL && CCD_LVAL; 
  assign isNewFrame = fvalPrev && !CCD_FVAL; 
  assign isNewLine = lvalPrev && !CCD_LVAL; 

  assign pixelOut = CCD_DATA_L1; 
  assign pixelValid = isNewPixel && outputEnable; 
  assign newFrame = isNewFrame && outputEnable; 

  // Latch signals 
  always @(posedge clk) begin 
    fvalPrev <= CCD_FVAL; 
    lvalPrev <= CCD_LVAL; 
    CCD_DATA_L0 <= CCD_DATA; 
    CCD_DATA_L1 <= CCD_DATA_L0; 
  end 



Case Study: Camera Input 
  // Control signals 
  assign isNewPixel = CCD_FVAL && CCD_LVAL; 
  assign isNewFrame = fvalPrev && !CCD_FVAL; 
  assign isNewLine = lvalPrev && !CCD_LVAL; 

  assign pixelOut = CCD_DATA_L1; 
  assign pixelValid = isNewPixel && outputEnable; 
  assign newFrame = isNewFrame && outputEnable; 

  // Latch signals 
  always @(posedge clk) begin 
    fvalPrev <= CCD_FVAL; 
    lvalPrev <= CCD_LVAL; 
    CCD_DATA_L0 <= CCD_DATA; 
    CCD_DATA_L1 <= CCD_DATA_L0; 
  end 
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Design Problem – Run-Length Encoder 
  7-bit input stream 
  8-bit output stream 

  high-order bit == 0:  Data value 
  high-order bit == 1:  Repeat count of previous data value 

  Valid bit set when 8-bit output is data or count 
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RLE Design 
  Split design into datapath and control 
  Datapath 

  Registers for data values, count 
  Multiplexors 

  Control 
  Keep track of what’s happening 
  clear count, increment count, send data value, send count 

  Control will be an FSM 
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Start with Datapath 

  We need to know what to control 

  FSM inputs 
  eq 

  FSM outputs 
  clr, inc, valid, cnt,  
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FSM Controller 
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Verilog For State Machines 
  State machine has two parts 

  State register 
  Combinational Logic 

  Next state function 
  Output function 

  Each in a different always block 

inputs 
Moore outputs 

Mealy outputs 

next state 

current state 

combinational 
logic 



RLE Module – Datapath + Control 
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module rleFSM (clk, reset, eq, clr, inc, valid, cnttag); 
  input clk, reset; 
  input eq;   // current data value == previous data value 
  output clr;  // clear count value (0 means 2, . . .) 
  output inc;  // increment count value (clr overrides) 
  output valid;  // output value is valid 
  output cnttag;  // select the count for the output value 

  // Use parameter to define symbolic states 
  localparam START1 = 0, START2 = 1, SENDING = 2, COUNTING = 3; 
  reg [1:0]  state,  // current state 

   nextState; // next state 

    always @(posedge CLK) begin 
   if (reset) 
     state <= START1; 
   else 
     state <= nextState; 
 end 
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Combinational Logic for FSM 
always @(*) begin 

 // Set defaults 
 valid = 0; inc = x; clr = x; cnttag = x; 

    case (state) 
    START1: 
      nextState = START2; 

 START2: 
   nextState = SENDING; 
 SENDING: begin 
   valid = 1; 
   cnttag = 0; 
   if (eq) begin 
  nextState = COUNTING; 
   end else begin 
  nextState = SENDING; 
   end 
 end 
 COUNTING: begin 
   if (eq) begin 
  clr = 0; 
  inc = 1; 
  nextState = COUNTING; 
   end else begin 
  valid = 1; 
  cnttag = 1; 
  nextState = SENDING; 
   end 
 end 

end 



Combinational Logic Design 
  We can translate a Boolean function into logic gates 

  AND, OR, INVERT 

  e.g. Homework problem 
  g0 = r0 
  g1 = r1 * r0’ 
  g2 = r2 * r0’ * r1’ 
  g2 = r3 * r0’ * r1’ * r2’ 
  g2 = r4 * r0’ * r1’ * r2’ * r3’ 
  g2 = r5 * r0’ * r1’ * r2’ * r3’ * r4 

  This is a “scan” computation from parallel computing 



Reduce and Scan Operators 
  Reduce:  Reduce a vector of values to a single value 

  e.g.  sum, max, min, . . . 

  Scan: Convert a vector of values to a new vector 
  outputk is reduction applied to the first k inputs 
  e.g. sum, max, min, … 

  Reduce can be done in O(log) time 
  Simple n-ary tree 

  Scan can also be done in O(log) time 
  Double the time for Reduce 
  A “down” tree and an “up” tree 



A Real Example of Scan 
  Histogram equalization – contrast enhancement 

   (see Wikipedia) 

  Step 1 – Create a histogram of all pixel values 
  Bin 0 – 255 

  Step 2 – Compute the Cumulative Distribution Function 
  cdf[i] = SUMj<=i (bin[j]) / totalPixelCount 

  Step 3 – Convert pixels using the cdf 
  out = 255 * cdf(in) 

  CDF can be computed in O(log) time 
  For large dynamic range, this can be important 



Histogram Equalization 
  a) Histogram and cdf 
  b) Equalized histogram and cdf 

a b 



Carry-Lookahead Adder 
  Recall:   Sumi = Ai xor Bi xor Ci 

  where Ci is the carry in from the next bit position 

  If we can compute carry using scan, we can compute add 
in O(log) time 

  Problem: Parallel scan only works for associative functions 
  Carry is not associative 

  We will use two other functions that are associative 
  Carry Generate (G) 
  Carry Propagate (P) 



Carry-Lookahead Adder 
  Generate – true, if an adder “block” generates a carry 

regardless of the carry in 
  Propagate – true, if an adder “block” propagates a carry in 

to the carry out 
  Example:  1-bit adder 

  Example:  2-bit adder 

  Associativity:  Combining Generates and Propagates 



Carry-Lookahead Adder 
  Ci = Gi:0 + Cin * Pi:0 

  That is, if we compute Gi:0 and Pi:0 fast, then we can 
compute Ci fast 

  And we can use parallel scan (aka parallel prefix) to 
compute Gi:0 and Pi:0 fast 



System Timing 
  Register Timing Constraints 

  Setup time 
  Hold time 

  Clock Generation and Distribution 
  Clock skew 
  Multiple clocks 
  PLLs & DLLs 

  Asynchronous communication 
  Not all modules can have the same clock 
  Distance and too much clock skew 

  Synchronous communication 
  Source-synchronous signaling 



Registers 

Sequential Logic 36 

  Sample data using clock 
  Hold data between clock cycles 
  Computation (and delay) occurs between registers 

clock 

data in 
may change stable 

data out (Q) stable stable stable 

clock 

data in 
D Q D Q data out 



Sequential Logic 37 

there is a timing "window"  
around the clocking event  
during which the input must  
remain stable and unchanged  
in order to be recognized 

clock 

data 

changing stable 

input 

clock 

Tsu Th 

Timing Methodologies (cont’d) 
  Definition of terms 

  setup time: minimum time before the clocking event 
  by which the input must be stable (Tsu) 

  hold time: minimum time after the clocking event 
  until which the input must remain stable (Th) 

clock 

data 
D Q D Q 



Typical timing specifications 

Sequential Logic 38 

  Positive edge-triggered D flip-flop 
  setup and hold times 
  minimum clock width 
  propagation delays (low to high, high to low, max and typical) 

all measurements are made from the clocking event that is,  
the rising edge of the clock 

Th 
1ns 

Tw 7ns 

Tplh 
[2,4]ns 

Tphl 
[1,3]ns 

Tsu 
2ns 

D 

CLK 

Q 

Tsu 
2ns 

Th 
1ns 



Synchronous System Model 
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  Register-to-register operation 
  Perform operations during transfer 
  Many transfers/operations occur simultaneously 



Sequential Logic 40 

System Clock Frequency 
  Register transfer must fit into one clock cycle 

  reg tpd + C.L. tpd + reg tsu < Tclk 

  Use maximum delays 
  Find the “critical path” 

  Longest register-register delay 
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Short Paths 
  Can a path have too little delay? 

  Yes: Hold time can be violated 
  tpd > th 
  Use min delay (contamination delay) 

  Fortunately, most registers have hold time = 0 
  But there can still be a problem!  Clock skew… 



Sequential Logic 42 

Clock Skew 
  Cannot make clock arrive at registers at the same time 
  If skew > 0: 

  tpd > th + tskew 

  Clock skew can cause system failure  
  Can you fix this after you’ve fabbed the chip? 
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Clock Skew 
  Cannot make clock arrive at registers at the same time 
  If skew > 0: 

  tpd > th + tskew 

  Clock skew can cause system failure  
  Can you fix this after you’ve fabbed the chip? 



Sequential Logic 44 

Clock Skew 
  If skew < 0: 

  tclk > reg tpd + CL tpd +  reg tSU + |tskew| 

  Can you fix this after fab? 



Sequential Logic 45 

Clock Skew 
  If skew < 0: 

  tclk > reg tpd + CL tpd +  reg tSU + |tskew| 

  Can you fix this after fab? 



Sequential Logic 46 

Clock Skew 
  Correct behavior assumes that all storage elements sample at 

exactly the same time 
  Not possible in real systems: 

  clock driven from some central location 
  different wire delay to different points in the circuit 

  Problems arise if skew is of the same order as FF 
contamination delay  

  Gets worse as systems get faster (wires don't improve as fast) 
  1) distribute clock signals against the data flow 
  2) wire carrying the clock between two communicating components 

should be as short as possible 
  3) try to make all wires from the clock generator be the same length 

=> clock tree 



Altera FPGA PLL 



What About External Inputs? 

Sequential Logic 48 

  Internal signals are OK 
  Can only change when clock changes 

  External signals can change at any time 
  Asynchronous inputs 
  Truly asynchronous 
  Produced by a different clock 

  This means register may sample a signal that is changing 
  Violates setup/hold time 
  What happens? 
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Sampling Asynchronous Inputs 
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Sampling Rate 
  How fast does your sample clock need to be? 
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Sampling Rate 
  How fast does your sample clock need to be?    

  f(clkB) > f(clkA) 
  f(clkB) > 2 f(data) (Nyquist) 
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Another Problem with Asynchronous inputs 

  What goes wrong here?  

  What is the fix? 



Think About the Reset Signal! 
  Reset input is typically asynchronous 

  Which edge do we care about? 
  Does it matter if the registers have  

synchronous or asynchronous resets? 

  Reset is broadcast to all registers in system 
  What happens? 

  Register input should be single-registered just like every 
other asynchronous input 

Sequential Logic 53 
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More Asynchronous inputs 
  What is the problem? 
  What is the fix? 
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Important Rule!   
  Exactly one register makes the synchronizing decision 
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More Asynchronous inputs 
  Can we input asynchronous data values with several bits?  
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More Asynchronous inputs 
  How can we input asynchronous data values with several 

bits?  
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What Went Wrong? 
  Each bit has a different delay 

  Wire lengths differ 
  Gate thresholds differ 
  Driver speeds are different 
  Register delays are different 

  Rise vs. Fall times 

  Clock skews to register bits 

  Bottom line – “data skew” is inevitable 
  aka Bus Skew 
  Longer wires => More skew 

  What is the solution?? 
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Sending Multiple Data Bits 
  Must send a “clock” with the data – Source-Synchronous 

  Waits until data is stable 
  “Sample window” 

  De-skewing delay 

  f(clkB) > 2 f(clkA) 



Crossing Clock Domain Boundaries is 
Tricky 
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  Direct sampling of multiple asynchronous bits is 
impossible 
  We can reliably sample only a single bit 

  But even worse:  Synchronization Failure [Metastability] 
  Non-zero probability that our system will fail 
  And there is nothing we can do about  

  Although we can reduce the probability to an extremely low value 
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small, but non-zero probability  
that the FF output will get stuck  

in an in-between state 

oscilloscope traces demonstrating 
synchronizer failure and eventual 

decay to steady state 

logic 0 logic 1 
logic 0 

logic 1 

Synchronization failure 
  Occurs when FF input changes close to clock edge 

  the FF may enter a metastable state – neither a logic 0 nor 1 – 
  it may stay in this state an indefinite amount of time 
  this is not likely in practice but has some probability 



Guarding against synchronization failure 
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  Key idea – give the register as long as possible to make up its 
mind 
  Probability of failure cannot be reduced to 0, but low enough that we 

don’t care 

  Cascade two registers 
  Use very fast registers 
  Slow down the clock 

  Slows communication rate 

D D Q Q 
asynchronous 

input 
synchronized 

input 

Clk 
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Calculating probability of failure 

  For a single synchronizer 

 Mean-Time Between Failure (MTBF) = exp ( tr / τ ) / ( T0 × fc ×  fa ) 

where a failure occurs if metastability persists beyond time tr 
  tr is the resolution time – slack time in the clock period for settling 

  Tclk - (tpd  + TCL + tsetup) 
  fc is the frequency of the FF clock 
  fa is the frequency of asynchronous events on the input of the FF 
  T0 and τ are constaints that depend on the  FF's electrical characteristics  

(e.g., gain or steepness of curve) 
  Must add probabilities from all synchronizers in system 

 1/MTBFsystem = Σ 1/MTBFsynch 



Altera Stratix-3 Example Data 
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