1/5/10

Lecture 1 — History and Overview

CSE P567

What is a Computer?

» Performs calculations
On numbers
But everything can be reduced to numbers
» Follows instructions (a program)
» Automatic (self-contained)
» Machine

But used to refer to people

1/5/10

History of “Computers”

» People were hired to perform repetitious calculations
e.g. for making books of tables

» e.g. Gauss’s human computer
Johan Dase

Hired to compute pi and factor integers

Jacquard Loom

» Cards with holes are the
instructions

» The holes control the hooks
attached to warp threads

» First machine to use punch cards

to control sequencing operation
of a machine

» But not a calculator

courtesy Wikipedia

1/5/10

Charles Babbage
» Difference engine #2 (1849)

Compute 7-th order polynomials to 31 decimal places
Mechanically — without mistakes
Faster than humans
» Method of differences
eg £(x) = x2 - 2x + 4

x f(x) 1st difference 2" difference
1 3

P — 1 —

3 =33 -— 2

4 12— 35— 3

Charles Babbage
» Difference engine #2 (1849)

Compute 7-th order polynomials to 31 decimal places
Mechanically — without mistakes
Faster than humans
» Method of differences
eg £(x) = x2 - 2x + 4

£f(x) 15t difference 2" difference

So o WN RN
(R

® © N

N W

"/

<
NI ®B
+| |+ |+
NNNMNDN

Difference Engine

» 1800’s technology not good enough
» Replica recently completed and on display at the
Computer Museum

Difference Engine Video

courtesy Computer History Museum

1941: Z3 Computer — KonradZuse

» 2300 relays
» Floating-point binary arithmetic

courtesy Computer History Museum

1/5/10

1942: Atanasoff-Berry Computer

» lowa State College
» Not fully functional, but won patent dispute

N N\

courtesy Computer History Museum

1946: ENIAC — Mauchly& Eckert

» Stored program computer
» Relays and switches
» .005 MIPS

courtesy Computer History Museum

1/5/10

1/5/10

1949: Manchester Mark 1

» Vacuum tube switches
» Memory: Cathode ray tube, magnetic drum
» addition delay — 1.8 microseconds

courtesy Computer History Museum

1955: Bell Labs TRADIC

» First computer using transistors
» Reduced power by 20x

courtesy Computer History Museum

1/5/10

1958: First Integrated Circuit (Kilby)

» 5 components on one sliver of germanium

» Transistors, resistors, capacitors

courtesy Computer History Museum

1965 - Moore’s Law

F © BIPOLAR LOGIC
| ABPOLAR ARRAYS
I ®MOS LOGIC

' @MOS ARRAYS

1971: First Microprocesor (Intel)

» 1971: 4004 — 4 bit processor
» 1972: 8008 — 8 bit processor

courtesy Computer History Museum

CPU Transistor Counts 1971-2008 & Moore’s Law

2,000,000,000 —; DuatCors i 2@ 8 QUA-Core Haium Tukwia
T200
1,000,000,000 — PO g ®RVTTO
Htanium 2 with OMB cache @ /l .
o 25
tanium2@ 7 Cgﬁe o
100,000,000 — A
e .,’ ®Baton gam
g Curve shows ‘Moore’s Law’ ',/.%Am
S urve W r W' e
Q 10,000,000 — transistor count doubling R
8 every two years /,’ °
9 L @ Pentium
1] -
g 1,000,000 — we e
8 o
= 386 @~
100,000 — wee
e
10,000 — s
L 8080
2,300 —) w04 ¢ #5308
1971 1980 1990 2000 2008

Date of introduction

courtesy Wikipedia

1/5/10

1/5/10

Hardware Design

» Ignoring scale, HW design reduces to:
Logic gates (AND, OR, INVERT)
Storage (registers)

» We can make these with switches

» We can make switches with:
Relays
Vacuum tubes
Transistors (more later)

Nanotubes
1

Hardware Design

» “Register Transfer”
Move values from register to register
Perform some operation on these values
» CPU Example:
Rl =R2 +R3
Values already in R2 and R3
Move (connect) these values from R2 and R3 to the adder
Move (connect) the adder output to R

Wait for clock to store new value in RI

Make sure only R1 is enabled

Register Transfer

» CPU executes a sequence of instructions
Each is a register transfer

» Why can an instruction only do one thing?
Historically, ALUs and multipliers were expensive
Now we can supply many “function units”

» One instruction could specify multiple register transfers
They must be independent so they can execute in parallel

» All destination registers sample and hold simultaneously
Central clock

» Performance

How much happens before value is ready for latching?

FIR Filter Example

» Mix of sequencing and computation

for (i = 0; i< N-T+1l; i++) {
y[i] = 0;

for (j = 0; j< T; j++) {
yl[il += c[3] * x[i+]];

}
}

» T adds and T multiplies for each y[1]

» Simple program uses at least 2T instructions
Plus loads and stores

1/5/10

10

1/5/10

FIR Filter Example

for (i = 0; i< N-T+1l; i++) {
y[i] = 0;

for (j = 0; < T; j++) {
y[i]l += c[3] * x[i+]];

}
}

r0 € 0

1d r2, C(re6)
r7 € r5 + r6
1d r3, X(x7)
rl € r2 * r3
r0 €r0 + rl

etc.

Direct Hardware Implementation

» If we can use as much hardware as we want:

x[3] x[2] x[1] x[0]

» Convert time into space

11

1/5/10

Direct Hardware Implementation

» Reducing read bandwidth
x[3] x[2] x[1] x[0]

o
c[3]§ c[z]é c1] c[0]
0 —O—OD———0

Direct Hardware Implementation

» Reducing read bandwidth
x[4] x[3] x(2] x[1]

X[5] —»D

c[3]

y[1]

12

Direct Hardware Implementation

» Reducing read bandwidth
x[9] x[4] x[3] x[2]

x[6] —»D

c[3]

y[1]

» Look at the longest register transfer...
Very slow clock
How can we make it faster?

Register Transfer Summary

» We store values of interest in registers
» We compute on these values
And store the results in registers
» We can do multiple independent computations
simultaneously
All results are clocked at the same time
» Example:
Shift register
Swap register values

1/5/10

13

Controllers

» Something must control what data transfers happen

Instruction execution

» Finite state machine

Inputs — status signals, e.g. result of comparison

Outputs — signals that select registers, enable registers

Set of states

Next state equation

Output equation

Finite State Machines (FSMs)

» Set of states (instruction addresses)

» Sequence through those states (next state equation)

State register has state (e.g. PC)

eg PC=PC+ |

Move from one state to the next on clock
May depend on input (conditional branch)

» Each state specifies instruction (output equation)

» Example

ud WMNhRr O

r0O € 0

rl € r2 * r3
r2 €rl * ril

r0 €r0 + r2

cmp r0, r4

bge . + 10

O @

1/5/10

14

1/5/10

Controller + Datapath

» Very common design methodology

» Controller specifies what to do in each clock cycle
Could be multiple, complicated things
» Datapath does it

Register transfer

» Note that controller uses register transfer as well

State register Controller/Sequencer Datapath
Control

YVVY

A A

Status

Designing Hardware

» What operations need to be done?
Provide function units
» What values are needed?
Provide registers
» In what order should the operation be executed?
Including parallelism
Design controller/sequencer (FSM)

» Then we need to connect everything together

15

Hardware Systems

» Multiple, interacting hardware components
Multiple controller & datapaths
Memories
Disk controllers
Network interfaces
Physical interfaces (lights, motors, sensors, etc.)
etc.

» Connected together using interfaces and

communication buses

Communication Buses

Point-to-point
Single master/multiple slave
Multiple master
Synchronous vs. Asynchronous
Parallel vs. Serial
Speed constrained by electrical considerations
Impedencemis-match
Ringing and reflections
Crosstalk
Return paths
Single-ended vs. differential
Inductive effects (di/dt)

v Vv Vv Vv v Vv

1/5/10

16

Implementation Alternatives

» Custom IC
Design mostly by hand — expensive
Intel and a few others
Send to foundry for fabrication — expensive and slow

» ASIC (semi-custom)
Rely on design tools to generate circuits
Less efficient — much less expensive/time-consuming
Send to foundry for fabrication — expensive and slow

» FPGA

Relay on design tools to generate circuits

User “programs” circuit into the FPGA — no NRE
Cheap and fast

Circuits are slower and bigger (no free lunch)

Design Methodology

| Design Entry | HDL (Verilog), schematics
| Synthesis | Altera Quartus Il
| Functional Simulation | Mentor ModelSim

Design correct?

Yes

| Fitting | Altera Place and Route (Quartus)

!

AlteraQuartus STA (no simulation)

| Timing Analysis and Simulation |

Altera Qartus

Programming and Configuration

1/5/10

17

Design Methodology

» Same flow for ASICs and FPGAs
Only details are different

» We will focus on using HDLs
Virtually all design is done with HDLs

» Verilog vs.VHDL
A matter of taste — they are more-or-less equivalent
Verilog — simple syntax, easy to learn
VHDL — more verbose, support for complex systems
We will use Verilog

Verilog

» Syntax is reminiscent of C (or Java)
» Semantics is NOT!
» All blocks execute in parallel

» Register Transfer model
clock ticks: all registers latch new values (if enabled)
all logic computes new results with new register values
clock ticks: all registers latch new values (if enabled)

all logic computes new results with new register values
etc.

1/5/10

18

1/5/10

A Word About the Lab

» We will give you a complete design in Verilog
Camera to LCD pipeline

v

Lab | — Compile, download into hardware and test
Apply a small tweak to the design

v

Lab 2 — Simple Verilog design and simulation
» Lab 3 — Implement adaptive threshold filter

v

Lab 4 — Implement picture-in-picture
Lab 5 — Chip layout tutorial
» Labs 6:10 — Embedded Systems

Rate-matching project

v

Subject to change

Course Hardware
» Hard-hardware: Altera FPGA board

with camera and LCD screen
installed in 003 HWV lab
run design tools at home (Windows)

» Soft-hardware: Arduino Atmel platform
very cool, extensible system
you buy in lieu of a textbook (~ $50)
run tools and hardware at home (Window or Mac)
we will supply widgets

LEDs, motors, accelerometers, light sensors

19

1/5/10

Arduino Platform Details
» Arduino USB board - $29.95

ArduinoProtoShield Kit - $16.95

Arduino Breadboard Mini Self-Adhesive - $3.95

Total cost: $50.85 + shipping

Jan 7 is Free Day

Labs

» Lab time is very limited!
We ask you to do much of the design at home
Come prepared to test and debug the design
Lab will be open before class so you can start early
» All tools are available for you to run at home
And in the lab of course

20

