
1/5/10	

1	

Lecture 1 – History and Overview

CSE P567

What is a Computer?
  Performs calculations

  On numbers
  But everything can be reduced to numbers

  Follows instructions (a program)
  Automatic (self-contained)
  Machine

  But used to refer to people

1/5/10	

2	

History of “Computers”
  People were hired to perform repetitious calculations

  e.g. for making books of tables

  e.g. Gauss’s human computer
  Johan Dase
  Hired to compute pi and factor integers

Jacquard Loom
  Cards with holes are the

instructions
  The holes control the hooks

attached to warp threads
  First machine to use punch cards

to control sequencing operation
of a machine

  But not a calculator

courtesy Wikipedia

1/5/10	

3	

Charles Babbage
  Difference engine #2 (1849)

  Compute 7-th order polynomials to 31 decimal places
  Mechanically – without mistakes
  Faster than humans

  Method of differences
  e.g f(x) = x2 – 2x + 4

x f(x) 1st difference 2nd difference
1 3
2 4 1
3 7 3 2
4 12 5 2

－

－
－

－
－

Charles Babbage
  Difference engine #2 (1849)

  Compute 7-th order polynomials to 31 decimal places
  Mechanically – without mistakes
  Faster than humans

  Method of differences
  e.g f(x) = x2 – 2x + 4

x f(x) 1st difference 2nd difference
1 3
2 4 1
3 7 3 2
4 12 5 2
5 19 7 2
6 38 9 2
7 39 11 2

+
+
+

+
+
+

1/5/10	

4	

Difference Engine
  1800’s technology not good enough
  Replica recently completed and on display at the

Computer Museum

Difference Engine Video

courtesy Computer History Museum

1941: Z3 Computer – KonradZuse
  2300 relays
  Floating-point binary arithmetic

courtesy Computer History Museum

1/5/10	

5	

1942: Atanasoff-Berry Computer
  Iowa State College
  Not fully functional, but won patent dispute

courtesy Computer History Museum

1946: ENIAC – Mauchly& Eckert
  Stored program computer
  Relays and switches
  .005 MIPS

courtesy Computer History Museum

1/5/10	

6	

1949: Manchester Mark 1
  Vacuum tube switches
  Memory: Cathode ray tube, magnetic drum
  addition delay – 1.8 microseconds

courtesy Computer History Museum

1955: Bell Labs TRADIC
  First computer using transistors
  Reduced power by 20x

courtesy Computer History Museum

1/5/10	

7	

1958: First Integrated Circuit (Kilby)
  5 components on one sliver of germanium

  Transistors, resistors, capacitors

courtesy Computer History Museum

1965 - Moore’s Law

1/5/10	

8	

1971: First Microprocesor (Intel)
  1971: 4004 – 4 bit processor
  1972: 8008 – 8 bit processor

courtesy Computer History Museum

courtesy Wikipedia

1/5/10	

9	

Hardware Design
  Ignoring scale, HW design reduces to:

  Logic gates (AND, OR, INVERT)
  Storage (registers)

  We can make these with switches
  We can make switches with:

  Relays
  Vacuum tubes
  Transistors (more later)
  Nanotubes
  ? ? ?

Hardware Design
  “Register Transfer”

  Move values from register to register
  Perform some operation on these values

  CPU Example:
  R1 = R2 + R3
  Values already in R2 and R3
  Move (connect) these values from R2 and R3 to the adder
  Move (connect) the adder output to R1
  Wait for clock to store new value in R1

  Make sure only R1 is enabled

1/5/10	

10	

Register Transfer
  CPU executes a sequence of instructions

  Each is a register transfer

  Why can an instruction only do one thing?
  Historically, ALUs and multipliers were expensive
  Now we can supply many “function units”

  One instruction could specify multiple register transfers
  They must be independent so they can execute in parallel

  All destination registers sample and hold simultaneously
  Central clock

  Performance
  How much happens before value is ready for latching?

FIR Filter Example
  Mix of sequencing and computation

  T adds and T multiplies for each y[i]
  Simple program uses at least 2T instructions

  Plus loads and stores

for (i = 0; i< N-T+1; i++) {
y[i] = 0;
 for (j = 0; j< T; j++) {
y[i] += c[j] * x[i+j];
 }
}

1/5/10	

11	

FIR Filter Example

for (i = 0; i< N-T+1; i++) {
y[i] = 0;
 for (j = 0; j< T; j++) {
y[i] += c[j] * x[i+j];
 }
}

r0  0
ld r2, C(r6)
r7  r5 + r6
ld r3, X(r7)
r1  r2 * r3
r0 r0 + r1
etc.

Direct Hardware Implementation
  If we can use as much hardware as we want:

  Convert time into space

1/5/10	

12	

Direct Hardware Implementation
  Reducing read bandwidth

Direct Hardware Implementation
  Reducing read bandwidth

1/5/10	

13	

Direct Hardware Implementation
  Reducing read bandwidth

  Look at the longest register transfer…
  Very slow clock
  How can we make it faster?

Register Transfer Summary
  We store values of interest in registers
  We compute on these values

  And store the results in registers

  We can do multiple independent computations
simultaneously
  All results are clocked at the same time

  Example:
  Shift register
  Swap register values

1/5/10	

14	

Controllers
  Something must control what data transfers happen

  Instruction execution

  Finite state machine
  Inputs – status signals, e.g. result of comparison
  Outputs – signals that select registers, enable registers
  Set of states
  Next state equation
  Output equation

Finite State Machines (FSMs)
  Set of states (instruction addresses)
  Sequence through those states (next state equation)

  State register has state (e.g. PC)
  e.g. PC = PC + 1
  Move from one state to the next on clock
  May depend on input (conditional branch)

  Each state specifies instruction (output equation)
  Example

0: r0  0
1: r1  r2 * r3
2: r2 r1 * r1
3: r0 r0 + r2
4: cmp r0, r4
5: bge . + 10

1/5/10	

15	

Controller + Datapath
  Very common design methodology
  Controller specifies what to do in each clock cycle

  Could be multiple, complicated things

  Datapath does it
  Register transfer

  Note that controller uses register transfer as well
  State register

Designing Hardware
  What operations need to be done?

  Provide function units

  What values are needed?
  Provide registers

  In what order should the operation be executed?
  Including parallelism
  Design controller/sequencer (FSM)

  Then we need to connect everything together

1/5/10	

16	

Hardware Systems
  Multiple, interacting hardware components

  Multiple controller & datapaths
  Memories
  Disk controllers
  Network interfaces
  Physical interfaces (lights, motors, sensors, etc.)
  etc.

  Connected together using interfaces and
communication buses

Communication Buses
  Point-to-point
  Single master/multiple slave
  Multiple master
  Synchronous vs. Asynchronous
  Parallel vs. Serial
  Speed constrained by electrical considerations

  Impedencemis-match
  Ringing and reflections
  Crosstalk
  Return paths
  Single-ended vs. differential
  Inductive effects (di/dt)

1/5/10	

17	

Implementation Alternatives
  Custom IC

  Design mostly by hand – expensive
  Intel and a few others

  Send to foundry for fabrication – expensive and slow

  ASIC (semi-custom)
  Rely on design tools to generate circuits

  Less efficient – much less expensive/time-consuming
  Send to foundry for fabrication – expensive and slow

  FPGA
  Relay on design tools to generate circuits
  User “programs” circuit into the FPGA – no NRE

  Cheap and fast
  Circuits are slower and bigger (no free lunch)

Design Methodology

HDL (Verilog), schematics

Altera Quartus II

Mentor ModelSim

Altera Place and Route (Quartus)

AlteraQuartus STA (no simulation)

Altera Qartus

1/5/10	

18	

Design Methodology
  Same flow for ASICs and FPGAs

  Only details are different

  We will focus on using HDLs
  Virtually all design is done with HDLs

  Verilog vs. VHDL
  A matter of taste – they are more-or-less equivalent
  Verilog – simple syntax, easy to learn
  VHDL – more verbose, support for complex systems
  We will use Verilog

Verilog
  Syntax is reminiscent of C (or Java)
  Semantics is NOT!
  All blocks execute in parallel
  Register Transfer model

  clock ticks: all registers latch new values (if enabled)
  all logic computes new results with new register values
  clock ticks: all registers latch new values (if enabled)
  all logic computes new results with new register values
  etc.

1/5/10	

19	

A Word About the Lab
  We will give you a complete design in Verilog

  Camera to LCD pipeline

  Lab 1 – Compile, download into hardware and test
  Apply a small tweak to the design

  Lab 2 – Simple Verilog design and simulation
  Lab 3 – Implement adaptive threshold filter
  Lab 4 – Implement picture-in-picture
  Lab 5 – Chip layout tutorial
  Labs 6:10 – Embedded Systems

  Rate-matching project
Subject to change

Course Hardware
  Hard-hardware: Altera FPGA board

  with camera and LCD screen
  installed in 003 HW lab
  run design tools at home (Windows)

  Soft-hardware: Arduino Atmel platform
  very cool, extensible system
  you buy in lieu of a textbook (~ $50)
  run tools and hardware at home (Window or Mac)
  we will supply widgets

  LEDs, motors, accelerometers, light sensors

1/5/10	

20	

Arduino Platform Details
  Arduino USB board - $29.95

http://www.sparkfun.com/commerce/product_info.php?products_id=666
ArduinoProtoShield Kit - $16.95
http://www.sparkfun.com/commerce/product_info.php?products_id=7914
Arduino Breadboard Mini Self-Adhesive - $3.95
http://www.sparkfun.com/commerce/product_info.php?products_id=8800
Total cost: $50.85 + shipping

Jan 7 is Free Day

Labs
  Lab time is very limited!

  We ask you to do much of the design at home
  Come prepared to test and debug the design
  Lab will be open before class so you can start early

  All tools are available for you to run at home
  And in the lab of course

