
1/5/10	

1	

Lecture 1 – History and Overview

CSE P567

What is a Computer?
  Performs calculations

  On numbers
  But everything can be reduced to numbers

  Follows instructions (a program)
  Automatic (self-contained)
  Machine

  But used to refer to people

1/5/10	

2	

History of “Computers”
  People were hired to perform repetitious calculations

  e.g. for making books of tables

  e.g. Gauss’s human computer
  Johan Dase
  Hired to compute pi and factor integers

Jacquard Loom
  Cards with holes are the

instructions
  The holes control the hooks

attached to warp threads
  First machine to use punch cards

to control sequencing operation
of a machine

  But not a calculator

courtesy Wikipedia

1/5/10	

3	

Charles Babbage
  Difference engine #2 (1849)

  Compute 7-th order polynomials to 31 decimal places
  Mechanically – without mistakes
  Faster than humans

  Method of differences
  e.g f(x) = x2 – 2x + 4

x f(x) 1st difference 2nd difference
1 3
2 4 1
3 7 3 2
4 12 5 2

－

－
－

－
－

Charles Babbage
  Difference engine #2 (1849)

  Compute 7-th order polynomials to 31 decimal places
  Mechanically – without mistakes
  Faster than humans

  Method of differences
  e.g f(x) = x2 – 2x + 4

x f(x) 1st difference 2nd difference
1 3
2 4 1
3 7 3 2
4 12 5 2
5 19 7 2
6 38 9 2
7 39 11 2

+
+
+

+
+
+

1/5/10	

4	

Difference Engine
  1800’s technology not good enough
  Replica recently completed and on display at the

Computer Museum

Difference Engine Video

courtesy Computer History Museum

1941: Z3 Computer – KonradZuse
  2300 relays
  Floating-point binary arithmetic

courtesy Computer History Museum

1/5/10	

5	

1942: Atanasoff-Berry Computer
  Iowa State College
  Not fully functional, but won patent dispute

courtesy Computer History Museum

1946: ENIAC – Mauchly& Eckert
  Stored program computer
  Relays and switches
  .005 MIPS

courtesy Computer History Museum

1/5/10	

6	

1949: Manchester Mark 1
  Vacuum tube switches
  Memory: Cathode ray tube, magnetic drum
  addition delay – 1.8 microseconds

courtesy Computer History Museum

1955: Bell Labs TRADIC
  First computer using transistors
  Reduced power by 20x

courtesy Computer History Museum

1/5/10	

7	

1958: First Integrated Circuit (Kilby)
  5 components on one sliver of germanium

  Transistors, resistors, capacitors

courtesy Computer History Museum

1965 - Moore’s Law

1/5/10	

8	

1971: First Microprocesor (Intel)
  1971: 4004 – 4 bit processor
  1972: 8008 – 8 bit processor

courtesy Computer History Museum

courtesy Wikipedia

1/5/10	

9	

Hardware Design
  Ignoring scale, HW design reduces to:

  Logic gates (AND, OR, INVERT)
  Storage (registers)

  We can make these with switches
  We can make switches with:

  Relays
  Vacuum tubes
  Transistors (more later)
  Nanotubes
  ? ? ?

Hardware Design
  “Register Transfer”

  Move values from register to register
  Perform some operation on these values

  CPU Example:
  R1 = R2 + R3
  Values already in R2 and R3
  Move (connect) these values from R2 and R3 to the adder
  Move (connect) the adder output to R1
  Wait for clock to store new value in R1

  Make sure only R1 is enabled

1/5/10	

10	

Register Transfer
  CPU executes a sequence of instructions

  Each is a register transfer

  Why can an instruction only do one thing?
  Historically, ALUs and multipliers were expensive
  Now we can supply many “function units”

  One instruction could specify multiple register transfers
  They must be independent so they can execute in parallel

  All destination registers sample and hold simultaneously
  Central clock

  Performance
  How much happens before value is ready for latching?

FIR Filter Example
  Mix of sequencing and computation

  T adds and T multiplies for each y[i]
  Simple program uses at least 2T instructions

  Plus loads and stores

for (i = 0; i< N-T+1; i++) {
y[i] = 0;
 for (j = 0; j< T; j++) {
y[i] += c[j] * x[i+j];
 }
}

1/5/10	

11	

FIR Filter Example

for (i = 0; i< N-T+1; i++) {
y[i] = 0;
 for (j = 0; j< T; j++) {
y[i] += c[j] * x[i+j];
 }
}

r0 0
ld r2, C(r6)
r7 r5 + r6
ld r3, X(r7)
r1 r2 * r3
r0 r0 + r1
etc.

Direct Hardware Implementation
  If we can use as much hardware as we want:

  Convert time into space

1/5/10	

12	

Direct Hardware Implementation
  Reducing read bandwidth

Direct Hardware Implementation
  Reducing read bandwidth

1/5/10	

13	

Direct Hardware Implementation
  Reducing read bandwidth

  Look at the longest register transfer…
  Very slow clock
  How can we make it faster?

Register Transfer Summary
  We store values of interest in registers
  We compute on these values

  And store the results in registers

  We can do multiple independent computations
simultaneously
  All results are clocked at the same time

  Example:
  Shift register
  Swap register values

1/5/10	

14	

Controllers
  Something must control what data transfers happen

  Instruction execution

  Finite state machine
  Inputs – status signals, e.g. result of comparison
  Outputs – signals that select registers, enable registers
  Set of states
  Next state equation
  Output equation

Finite State Machines (FSMs)
  Set of states (instruction addresses)
  Sequence through those states (next state equation)

  State register has state (e.g. PC)
  e.g. PC = PC + 1
  Move from one state to the next on clock
  May depend on input (conditional branch)

  Each state specifies instruction (output equation)
  Example

0: r0 0
1: r1 r2 * r3
2: r2 r1 * r1
3: r0 r0 + r2
4: cmp r0, r4
5: bge . + 10

1/5/10	

15	

Controller + Datapath
  Very common design methodology
  Controller specifies what to do in each clock cycle

  Could be multiple, complicated things

  Datapath does it
  Register transfer

  Note that controller uses register transfer as well
  State register

Designing Hardware
  What operations need to be done?

  Provide function units

  What values are needed?
  Provide registers

  In what order should the operation be executed?
  Including parallelism
  Design controller/sequencer (FSM)

  Then we need to connect everything together

1/5/10	

16	

Hardware Systems
  Multiple, interacting hardware components

  Multiple controller & datapaths
  Memories
  Disk controllers
  Network interfaces
  Physical interfaces (lights, motors, sensors, etc.)
  etc.

  Connected together using interfaces and
communication buses

Communication Buses
  Point-to-point
  Single master/multiple slave
  Multiple master
  Synchronous vs. Asynchronous
  Parallel vs. Serial
  Speed constrained by electrical considerations

  Impedencemis-match
  Ringing and reflections
  Crosstalk
  Return paths
  Single-ended vs. differential
  Inductive effects (di/dt)

1/5/10	

17	

Implementation Alternatives
  Custom IC

  Design mostly by hand – expensive
  Intel and a few others

  Send to foundry for fabrication – expensive and slow

  ASIC (semi-custom)
  Rely on design tools to generate circuits

  Less efficient – much less expensive/time-consuming
  Send to foundry for fabrication – expensive and slow

  FPGA
  Relay on design tools to generate circuits
  User “programs” circuit into the FPGA – no NRE

  Cheap and fast
  Circuits are slower and bigger (no free lunch)

Design Methodology

HDL (Verilog), schematics

Altera Quartus II

Mentor ModelSim

Altera Place and Route (Quartus)

AlteraQuartus STA (no simulation)

Altera Qartus

1/5/10	

18	

Design Methodology
  Same flow for ASICs and FPGAs

  Only details are different

  We will focus on using HDLs
  Virtually all design is done with HDLs

  Verilog vs. VHDL
  A matter of taste – they are more-or-less equivalent
  Verilog – simple syntax, easy to learn
  VHDL – more verbose, support for complex systems
  We will use Verilog

Verilog
  Syntax is reminiscent of C (or Java)
  Semantics is NOT!
  All blocks execute in parallel
  Register Transfer model

  clock ticks: all registers latch new values (if enabled)
  all logic computes new results with new register values
  clock ticks: all registers latch new values (if enabled)
  all logic computes new results with new register values
  etc.

1/5/10	

19	

A Word About the Lab
  We will give you a complete design in Verilog

  Camera to LCD pipeline

  Lab 1 – Compile, download into hardware and test
  Apply a small tweak to the design

  Lab 2 – Simple Verilog design and simulation
  Lab 3 – Implement adaptive threshold filter
  Lab 4 – Implement picture-in-picture
  Lab 5 – Chip layout tutorial
  Labs 6:10 – Embedded Systems

  Rate-matching project
Subject to change

Course Hardware
  Hard-hardware: Altera FPGA board

  with camera and LCD screen
  installed in 003 HW lab
  run design tools at home (Windows)

  Soft-hardware: Arduino Atmel platform
  very cool, extensible system
  you buy in lieu of a textbook (~ $50)
  run tools and hardware at home (Window or Mac)
  we will supply widgets

  LEDs, motors, accelerometers, light sensors

1/5/10	

20	

Arduino Platform Details
  Arduino USB board - $29.95

http://www.sparkfun.com/commerce/product_info.php?products_id=666
ArduinoProtoShield Kit - $16.95
http://www.sparkfun.com/commerce/product_info.php?products_id=7914
Arduino Breadboard Mini Self-Adhesive - $3.95
http://www.sparkfun.com/commerce/product_info.php?products_id=8800
Total cost: $50.85 + shipping

Jan 7 is Free Day

Labs
  Lab time is very limited!

  We ask you to do much of the design at home
  Come prepared to test and debug the design
  Lab will be open before class so you can start early

  All tools are available for you to run at home
  And in the lab of course

