CSEP567— tonight:

TinyOS

TinyOS

Open-source development environment
Simple (and tiny) operating system — TinyOS
Programming language and model — nesC
Set of services

Principal elements

o Scheduler/event model of concurrency

o Software components for efficient modularity

o Software encapsulation for resources of sensor networks

CSEP567 TinyOS

TinyOS Design Goals

Support networked embedded systems
o Asleep most of the time, but remain vigilant to stimuli
o Bursts of events and operations
Support UCB mote hardware
o Power, sensing, computation, communication
o Easy to port to evolving platforms
Support technological advances
o Keep scaling down
o Smaller, cheaper, lower power

CSEP567 TinyOS

TinyOS Kernel Design

Two-level scheduling structure
o Events
Small amount of processing to be done in a timely manner
E.g. timer, ADC interrupts
Can interrupt longer running tasks
o Tasks
Not time critical
Larger amount of processing
E.g. computing the average of a set of readings in an array
Run to completion with respect to other tasks
o Only need a single stack

CSEP567 TinyOS

TinyOS Concurrency Model

Tasks 1
N e
FIFO queue
IS =
Interrupts

Two-level of concurrency: tasks and interrupts

CSEP567 TinyOS

TinyOS Concurrency Model (cont’d)

= Tasks
o FIFO queue
o Placed on queue by:
= Application
= Other tasks
= Self-queued
= Interrupt service routine
o Run-to-completion
= No other tasks can run until completed
= Interruptable, but any new tasks go to end of queue
= Interrupts
o Stop running task
o Post new tasks to queue

CSEP567 TinyOS 6

TinyOS Concurrency Model (cont’d)

= Two-levels of concurrency
o Possible conflicts between interrupts and tasks

= Atomic statements
atomic {
:
= Asynchronous service routines (as opposed to
synchronous tasks)

async result_t interface_name.cmd_or_event_name {
}
= Race conditions detected by compiler

o Can generated false positives — norace keyword to stop
warnings, but be careful

CSEP567 TinyOS 7

TinyOS Programming Model

= Separation of construction and composition
o Programs are built out of components

= Specification of component behavior in terms of a set of interfaces
o Components specify interfaces they use and provide

= Components are statically wired to each other via their interfaces
o This increases runtime efficiency by enabling compiler optimizations

= Finite-state-machine-like specifications

= Thread of control passes into a component through its interfaces to
another component

CSEP567 TinyOS 8

TinyOS Basic Constructs

Flow of Events and Commands

= Fountain of events leading to commands and tasks (which in turn
issue may issue other commands that may cause other events, ...)

Wan*

task to get
out of async \
» commands
c \
[
>
(]
T interrupts Software
| \\ Hardware

CSEP567 TinyOS 10

= Commands
o Cause action to be initiated Application task
= Events A
i . command
o Notify action has occurred event
o Generated by external interrupts
o Call back.to provide results Component task
from previous command
= Tasks o command
o Background computation event
Not time critical
o Not time critical Hardware
task
Interface
CSEP567 TinyOS 9
TinyOS File Types ,
main.nc

= Interfaces (xxx.nc)
» Specifies functionality to outside world
» what commands can be called
» what events need handling
= Module (xxxM.nc)
» Code implementation
~ Code for Interface functions
= Configuration (xxxC.nc)
o Wiring of components

o When top level app,
drop C from filename xxx.nc

app.nc

compi1C.nc
(wires)

(code)

comp3M.nc
(code)

comp2M.

nc

CSEP567 TinyOS

The nesC Language

= nesC: networks of embedded sensors C
= Compiler for applications that run on UCB motes
o Built on top of avg-gcc
o nesC uses the filename extension ".nc
= Static Language
o No dynamic memory (no malloc)
o No function pointers
a No heap
= Influenced by Java
= Includes task FIFO scheduler
= Designed to foster code reuse

Application
(nesC)

TinyOS kernel (C) / nesC

—]
TinyOS libs (nesC) Compiler

Application &
TinyOS (C)
= Modules per application range from 8 to 67, mean of 24*** \Compiler

Application
Executable

= Average lines of code in a module only 120***
= Advantages of eliminating monolithic programs
o Code can be reused more easily
o Number of errors should decrease

**The NesC Language: A Holistic Approach to Network of Embedded Systems. David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer,
and David Culler. Proceedings of Programming Language Design and Implementation (PLDI) 2003, June 2003

CSEP567 TinyOS 12

Commands

Commands are issued with “call”

call Timer.start (TIMER_REPEAT, 1000);

Cause action to be initiated
Bounded amount of work

o Does not block

Act similarly to a function call

o Execution of a command is immediate

CSEP567 TinyOS

Events

Events are called with “signal”

signal ByteComm.txByteReady (SUCCESS) ;

Used to notify a component an action has occurred
Lowest-level events triggered by hardware interrupts
Bounded amount of work

o Do not block

Act similarly to a function call

o Execution of a event is immediate

CSEP567 TinyOS

Tasks

Tasks are queued with “post”

post radioEncodeThread();

Used for longer running operations
Pre-empted by events

o Initiated by interrupts

Tasks run to completion

Not pre-empted by other tasks
Example tasks

o High level — calculate aggregate of sensor readings
o Low level — encode radio packet for transmission, calculate CRC

CSEP567 TinyOS

Components

Two types of components in nesC:

o Module

o Configuration

A component provides and uses Interfaces

CSEP567 TinyOS

Module

Provides application code

o Contains C-like code

Must implement the ‘provides’ interfaces
o Implement the “commands” it provides

o Make sure to actually “signal”

Must implement the ‘uses’ interfaces

o Implement the “events” that need to be handled
o “call” commands as needed

CSEP567 TinyOS 17

Configuration

» A configuration is a component that "wires" other
components together.

» Configurations are used to assemble other
components together

» Connects interfaces used by components to
interfaces provided by others.

CSEP567 TinyOS

Interfaces

Bi-directional multi-function interaction channel between two
components

Allows a single interface to represent a complex event

o E.g., aregistration of some event, followed by a callback

o Critical for non-blocking operation

“provides” interfaces

o Represent the functionality that the component provides to its user
o Service “commands” — implemented command functions

o Issue “events” — signal to user for passing data or signalling done
“uses” interfaces

o Represent the functionality that the component needs from a provider
o Service “events” — implement event handling

o Issue “commands” — ask provider to do something

CSEP567 TinyOS 19

Application

Consists of one or more components,
wired together to form a runnable program

Single top-level configuration
that specifies the set of components in the application
and how they connect to one another

Connection (wire) to main component to start execution
o Must implement init, start, and stop commands

CSEP567 TinyOS

20

Components/Wiring Blink Application

What the executable does: tos/system/Main.nc

1. Main initiali h licati
ain initializes and starts the application Tos/nterfaces/SAControLnG

= Directed wire (an arrow: ‘->’) connects components 2. BlinkM initializes ClockC's rate at 1Hz
o Only 2 components at a time — point-to-point 3. ClockC continuously signals BlinkM
o Connection is across compatible interfaces atarate of 1 Hz tosfinterfaces/StdControl.nc
.). . . s 4. BlinkM commands LedsC red led
o ‘A<-Blisequivalentto 'B-> A to toggle each time it receives
= [component using interface] -> [component providing interface] asignal from ClockC BlinkMnG
o [interface] -> [implementation]
s : : . s Note: The StdControl interface
= .: can be used to wire a component dlrectly to the top-level ObJeCt S is similar to state machines (init, tos/interfaces/Timer.nc tos/interfaces/Leds.nc
interfaces start, stop); used extensively
) .) L . throughout TinyOS & lib
o Typically used in a configuration file to use a sub-component directly roughout Ty apps & To8 /
= Unused system components excluded from compilation tosieraces/SingleTjner.no
tos/interfaces/Timer.nc tos/interfaces/Leds.nc
tos/system/TimerC.nc tos/system/LedsC.nc
CSEP567 TinyOS 21 CSEP567 TinyOS 22
Blink.nc StdControl.nc
configuration Blink {
}
implementation { interface StdControl {

components Main, BlinkM, SingleTimer, LedsC;
Main.StdControl -> SingleTimer.StdControl;
Main.StdControl —> BlinkM.StdControl;
BlinkM.Timer -> SingleTimer.Timer;

BlinkM.Leds -> LedsC.Leds; }

command result_t init();
command result_t start();
command result_t stop();

CSEP567 TinyOS 24

8

CSEP567 TinyOS

BlinkM.nc

BlinkM.nc module BlinkM {
provides {
interface StdControl;

}

uses { implementation {
interface Timer; command result_t StdControl.init() {
interface Leds; call Leds.init();
} return SUCCESS;
} }

command result_t StdControl.start () {
return call Timer.start (TIMER REPEAT, 1000);
}
command result_t StdControl.stop() {
return call Timer.stop();
}
event result_t Timer.fired()
{
call Leds.redToggle();
return SUCCESS;

CSEP567 TinyOS

SingleTimer.nc (should have been SingleTimerC.nc)

Parameterized interfaces

o allows a component to provide multiple instances of an interface that are
parameterized by a value

Timer implements one level of indirection to actual timer functions

o Timer module supports many interfaces

o This module simply creates one unique timer interface and wires it up

o By wiring Timer to a separate instance of the Timer interface provided by TimerC,
each component can effectively get its own "private" timer

o Uses a compile-time constant function unique () to ensure index is unique

configuration SingleTimer {
provides interface Timer;
provides interface StdControl;

}

implementation {
components TimerC;

Timer = TimerC.Timer [unique ("Timer")];
StdControl = TimerC.StdControl;

CSEP567 TinyOS 26

Blink.nc without SingleTimer

configuration Blink {

}

implementation {
components Main, BlinkM, TimerC, LedsC;
Main.StdControl -> TimerC.StdControl;
Main.StdControl —> BlinkM.StdControl;
BlinkM.Timer -> TimerC.Timer [unique ("Timer")];
BlinkM.Leds -> LedsC.Leds;

CSEP567 TinyOS 27

Timer.nc

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();
event result_t fired();

}

CSEP567 TinyOS 28

‘ TimerC.nc

= Implementation of multiple timer interfaces

to a single shared timer
= Each interface is named

= Each interface connects to one other module

CSEP567

‘ Leds.nc (partial)

interface Leds {

/*

* Initialize the LEDs; among other things,

*/

async command result_t init();
/%%

* Turn the red LED on.
*/

async command result_t redOn();

Visd
* Turn the red LED off.
*/

async command result_t redOff();

/x*

* Toggle the red LED. If it was on, turn it off.

* turn it on.

*/

async command result_t redToggle();

If it was off,

initialization turns them all off.

CSEP567

TinyOS

3

0

' LedsC.nc (partial)

module LedsC {
provides interface Leds;

implementation
uint8_t ledsOn;

enum {
RED_BIT = 1,
GREEN_BIT = 2,
YELLOW_BIT = 4
}i

async command result_t Leds.init() {
atomic {
ledsOn = 0;

dbg (DBG_BOOT, "LEDS: initialized.\n");

TOSH_MAKE_RED_LED_OUTPUT() ;
TOSH_MAKE_YELLOW_LED_OUTPUT() ;
TOSH_MAKE_GREEN_LED_OUTPUT () ;
TOSH_SET_RED_LED_PIN();
TOSH_SET_YELLOW_LED_PIN();
TOSH_SET_GREEN_LED_PIN();

}
return SUCCESS;
}

async command result_t Leds.redon() {

dbg (DBG_LED, "LEDS: Red on.\n");
atomic {
TOSH_CLR_RED_LED_PIN();
ledsOn |= RED_BIT;

}
return SUCCESS;
}

async command result_t Leds.redOff() {
dbg (DBG_LED, "LEDS: Red off.\n");
atomic {
TOSH_SET_RED_LED_PIN() ;
ledsOn &= ~RED_BIT;

}
return SUCCESS;
}

async command result_t Leds.redToggle() {

result_t rval;
atomic {
if (ledsOn & RED_BIT)
rval = call Leds.redOff();
else
rval = call Leds.redOn();
}
return rval;

}

CSEP567

Blink — Compiled

1K lines of C
(another 1K lines of comments)

= ~1.5K bytes of assembly code

=]

CSEP567

TinyOS

]

Concurrency Model

Asynchronous Code (AC)

o Any code that is reachable from an interrupt handler
Synchronous Code (SC)

o Any code that is ONLY reachable from a task

o Boot sequence

Potential race conditions

o Asynchronous Code and Synchronous Code

o Asynchronous Code and Asynchronous Code

o Non-preemption eliminates data races among tasks

nesC reports potential data races to the programmer at compile time
(new with version 1.1)

Use atomic statement when needed
async keyword is used to declare asynchronous code to compiler

CSEP567 TinyOS 33

Commands, Events, and Tasks

{
status = call CmdName (args)
} command CmdName (args) {

return status;

}
event EvtName (args) {

return status;
} {
status = signal EvtName (args)

{ .
post TskName(); ®...,,

. task void TskName {

}

CSEP567 TinyOS 34

Split Phase Operations

Component1

Event or task L Component2 Phase |

call command, \ « call command with parameters
try again if not OK ..

real work or signals busy and

post task and return to try again later
OK, or return busy

Phase Il
« task completes and uses event
Task (with return parameters) to signal
d completion
Event handler k/ :;E;:i%ﬁﬁj;i . ever?t handler checks for success
Check success flag with event (may cause re-issue of
(OK, failed, etc.) command if failed)

CSEP567 TinyOS 35

Command «command either posts task to do

Naming Convention

Use mixed case with the first letter of word capitalized
o Interfaces (Xxx.nc)
o Components

Configuration (XxxC.nc)

Module (XxxM.nc)
o Application — top level component (Xxx.nc)
Commands, Events, & Tasks
o First letter lowercase

o Task names should start with the word “task”, commands with “cmd”,
events with “evt” or “event”

o If a command/event pair form a split-phase operation, event name should
be same as command name with the suffix “Done” or “Complete”

o Commands with “TOSH_” prefix indicate that they touch hardware directly
Variables — first letter lowercase, caps on first letter of all sub-words
Constants — all caps

CSEP567 TinyOS 36

Interfaces can fan-out and fan-in Example configurstion Cncoleds |

implementation {
components Main, Counter, IntToLeds, TimerC;

. . . Main.StdControl -> IntToleds.StdControl;
= nesC allows interfaces to fan-out to and fan-in from multiple components Main.StdControl —> Counter.StdControl;
= One “provides” can be connected to many “uses” and vice versa Main Stdcontrol -> TimerC.StdControl;
Counter.Timer —> TimerC.Timer[unique ("Timer")];
= Wiring fans-out, fan-in is done by a combine function that merges results Counter.IntOutput -> IntToLeds.IntOutput;
}

implementation {

components Main, Counter, IntToleds, TimerC; Main.nc

StdControl.nc

Main.StdControl —> IntToLeds.StdControl;

Main.StdControl -> Counter.StdControl; i

Main.StdControl -> TimerC.StdControl;

StdControl.nc
result_t okl, ok2, ok3; Counter.nc

Fan-out by wiring

Timer.nc ‘ IntOutput.nc

okl = call UARTControl.init();
ok2 = call RadioControl.init(); Z

Fan-in using rcombine | ©k3 = call Leds.init(); StdControl.nc ‘ Timer.nc IntOutput.nc ‘ StdControl.nc
- rcombine is just a simple 3 "
logical AND for most cases | return rcombine3(okl, ok2, ok3); TimerC.nc IntTolLeds.nc

CSEP567 TinyOS 37 CSEP567 TinyOS 38

