CSEP567-- tonight I. Reentrancy and Atomic
Operations
[Reentrancy and Atomic Operations
i Pulse-width modulation
. Color
Reentrancy and Atomic Operations a Function containing:
= 3rules: temp = foobar;

temp += 1;

o Use shared variables in an atomic way foobar = temp;

o Don't call non-reentrant functions

OR

o Don’t use hardware in a non-atomic way

foobar+=1;

What does the compiler do?

CSEP567 PWM-Color 3 CSEP567 PWM-Color

Compiler output:

(x86 compiler)
moveax, [foobar]
incax

mov [foobar], ax
Atomic version:

inc[foobar]

Moral: Don't trust your compiler!

CSEP567 PWM-Color

Automatic variables

int foo;
void some_function (void) {
foo++;

}

void some_function (void) {
int fooj;

foo++;

}

CSEP567 PWM-Color

Keeping Code Reentrant

long I;

void do_something(void) {
disable_interrupts();
i+=0x1234;

enable_interrupts();

Doesn’t work! if called from code with interrupts disabled...

CSEP567 PWM-Color

Better:

long I;

void do_something(void) {
push interrupt_state;
disable_interrupts();
i+=0x1234;

pop interrupt_state;

Or, use semaphores or RTOS locking mechanism

CSEP567 PWM-Color

Hardware reentrancy
int timer_hi;
interrupt timer () {

++timer_hi;

long read_timer (void) {
unsigned int low, high;
low = inword(hardware_register);
high=timer_hi;
return (high<<16 + low);
}
This code will fail, occasionally...

CSEP567 PWM-Color

One failure mode:

read_timer reads the hardware and gets Oxffff
immediately the timer hardware increments to 0x000

The overflow triggers an interrupt. The ISR runs, and
increments timer_hi to 0x0001, not 0x0000 as in step 1

The ISR returns, our read_t imer concatenates the new
0x0001 with the previously read 0xffff, and returns Ox1ffff—
WRONG!!!

CSEP567 PWM-Color 10

Or, while interrupts are disabled:

read_timer starts. The timer is Oxffff with no
overflows.

Before much else happens it increments to 0x0000.
With interrupts off the pending interrupt gets deferred.

read_timer returns a value of 0x0000 instead of the
correct 0x10000, or the reasonable Oxffff.

A once-a-month bug? How do you find it?

CSEP567 PWM-Color

Solutions:

Stop the timer BEFORE reading!
Downside: we lose time.

Or, read timer_hi, then the hardware timer, then re-
read timer_hi. lterate until the two variable reads are
equal.

Downside: can take a long time in a heavily loaded
system

CSEP567 PWM-Color 12

I1. Pulse Width Modulation

CSEP567 PWM-Color 13

Pulse-width modulation

= Pulse a digital signal to get an average “analog” value
= The longer the pulse width, the higher the voltage

t
Pulse-width ratio = —f———
t average
period 5 on value

t
. . . t
B B

CSEP567 PWM-Color 14

Why pulse-width modulation works

= Most mechanical systems are low-pass filters
o Consider frequency components of pulse-width modulated signal
o Low frequency components affect components
= They pass through
o High frequency components are too fast to fight inertia
= They are “filtered out”
= Electrical RC-networks are low-pass filters

o Time constant (t = RC) sets “cutoff” frequency
that separates low and high frequencies

CSEP567 PWM-Color 15

Anti-lock brake system

= Rear wheel controller/anti-lock brake system
o Normal operation
= Regulate velocity of rear wheel
o Brake pressed
= Gradually increase amount of breaking

= If skidding (front wheel is moving much faster than rear wheel)
then temporarily reduce amount of breaking

= Inputs
o Brake pedal
o Front wheel speed
o Rear wheel speed
= Outputs
o Pulse-width modulation rear wheel velocity
o Pulse-width modulation brake on/off

CSEP567 PWM-Color 16

Rear wheel controller/anti-lock brake system

brake pedal pressed

brake on/off

front wheel velocity

move rear wheel

rear wheel velocity

CSEP567 PWM-Color 17

‘ Basic I/O ports (brakes)

= Check if brake pedal pressed — or interrupt
o brakePressed = read (brakePedalPort)

= Turn brake on/off
o write (brakePort, onOff)

= Move rear wheel
o write (rearWheel, onOff)

brake pedal pressed

brake on/off
front wheel velocity

move rear wheel
rear wheel velocity

CSEP567 PWM-Color 18

Polling vs. interrupts

= Software must repeatedly check
o Brake pedal port
o How often?
o Need to make sure not to forget to do so (use timer)

= Use automatic detection capability of processor
o Connect brake pedal to input capture or external interrupt pin
o Interrupt on level change
o Interrupt handler for brake pedal

brake pedal pressed

CSEP567 PWM-Color 19

Pulse-width modulation for brakes

= To pump the brakes gradually increase the duty-cycle
(t,n) until car stops

11 B R NN

!—,—,7

t

CSEP567 PWM-Color 20

Brake pump setup

= Use timer to turn brake on and off

Apply brake

Set timer to interrupt after “on” time
Disengage brake

Set time to interrupt after “off” time
Repeat

= How do we tell which interrupt is which?

U 0 o0 o o

Tset timer to go off at each edge

CSEP567 PWM-Color 21

Brake pump setup (cont’d)

= Change value of “on” time to change analog average
o average output = (on + off) / (period)

= How do we decide on the period of the pulses?

= Using two timers
o One to set period (auto-reload)
o One to turn it off at the right duty cycle

Bright LED

= Easy to control intensity of light through pulse-width
modulation

= Duty-cycle is averaged by human eye
o Light is really turning on and off each period
o Too quickly for human retina (or most video cameras)
o Period must be short enough (< 1ms is a sure bet)

= LED output is low to turn on light, high to turn it off
o Active low output

CSEP567 PWM-Color 23

t
T T T T set timer to go off at each edge
CSEP567 PWM-Color 22
= Varying PWM output
volatile uint8_t width; /* positive pusle width */
volatile uint8_t delay; /* used to slow the pulse width changing */
SIGNAL (SIG_OVERFLOW2)
{
if (delay++ == 20) { OCR2 = width++; delay = 0; }
}
int main (void)
{
/* must make OC2 pin an output for the PWM to visible */
DDRD = _BV(DDD7) ;
/* use Timer 2 FastPWM and the overflow interrupt to update duty-cycle */
TCCR2 = _BV (WGM21) | _BV (WGM20) | _BV (COM21) | _BV(COM20) | _BV(CS21) | _BV(CS20);
TIMSK = _BV (TOIE2);
/* setup initial conditions */
delay = 0;

/* enable interrupts */
sei ();
for (;;)
{ ; /* LOOP FOREVER as the interrupt will make necessary adjustment */ }
return (0);
)

CSEP567 PWM-Color

24

Fast PWM

OCRn Interrupt Flag Set

TCNTn

QCn

QCn

L

Period)-—1 4>|-—2 4\-—3—44—4—-\-—5—-\-—5—-)-—7—4

OCRn Update and

TOVN Interrupt Flag Set

(COMR1:0=2)

(COMN1:0=3)

CSEP567

PWM-Color

25

LED PWM control

Control three LEDs: Red, Green, and Blue
Active Low, 15 ms period, 256 possible values for LED
Timer O interrupt 15ms/256

= Each interrupt, dec. count and decide if each LED is on
o if countis 0, count is 255 and all LEDs are off

LED1 LED2 LED3
on on on

o

15 ms

CSEP567 PWM-Color 26

I11. Color

CSEP567

PWM-Color

27

Color

/4

= Color perception usually involves three quantities:
o Hue: Distinguishes between colors like red, green, blue, etc
o Saturation: How far the color is from a gray of equal intensity
o Lightness: The perceived intensity of a reflecting object

=

= Sometimes lightness is called brightness if the object is emitting light instead of
reflecting it.

= In order to use color precisely in computer graphics, we need to be able to
specify and measure colors.

CSEP567 PWM-Color 28

Color Spaces

=Definition: A mapping of color components onto a Cartesian
coordinate system in three or more dimensions.

*RGB, CMY, XYZ, HSV, HLS, Lab, UVW, YUV, YCrCb, Luv,
L'u v, ..

=Different Purposes: display, editing, computation,
compression, ..

=Equally distant colors may not be equally perceivable

CSEP567 PWM-Color 29

Additive Model:
(RGB System)

/4

R, G,TB normalized on orthogonal axes

All representable colors inside the unit cube
Color Monitors mix R, G and B

Video cameras pick up R, G and B

CIE (Commission Internationale de I'Eclairage)
standardized in 1931: B: 435.8 nm, G: 546.1 nm, R: 700
nm.

3 fixed components acting alone can’'t generate all
spectrum colors.

CSEP567 PWM-Color 30

RGB Color space

G

Green Yellow
0,10) (10,1)

Syan " White
@11 <1 i

Black Red
(0,00) (10,0)

Blue Magenta
(00,1 (1,0,1)

PWM-Color 31

Problems with RGB

Only a small range of potential perceivable colors (particularly for
monitor RGB)

It isn’t easy for humans to say how much of RGB to use to get a
given color
o How much R, G and B is there in “brown”?

Perceptually non-linear

o Two points, a certain distance apart, may be perceptually different in one
part of the space, but could be same in another part of the space.

CSEP567 PWM-Color 32

Subtractive model (CMY System)

= Color results from removal of light from the
illumination source

= Pigments absorb R, G or B and so give C, Mor Y
= Used in deskjet/ inkjet printers.
= No ink (pigment) = white

Magenta

ragenta

ellow

CSEP567 PWM-Color

CMY Color space

%

‘ Qonverting between RGBMand CMY

! ! ¢ 1 R
Megenta, H _ Lsreen . Ml=|1|—-|G
T A Y 1 B
H 5 | \
' K | A
A I P PR C) Megenta
»T - f R 1 C
. A - Y Gl=|1|-| M
221 / A / me % B 1 Y
N N
\)
Black (U, L, L) ‘White {1 1 1) Whize (U,U,0; Blzeki’,1,1)
The RGB Cube The CMY Cube

G
N

35

M
Grayscale
Magenta
s Blue
Red
7 |Black
- | Cyan
White // C
Yellow Green
\4
CSEP567 PWM-Color 34
Specifying Color

= Color perception usually involves three quantities:
o Hue: Distinguishes between colors like red, green, blue, etc
o Saturation: How far the color is from a gray of equal intensity
o Lightness: The perceived intensity of a reflecting object

= Sometimes lightness is called brightness if the object is
emitting light instead of reflecting it.

CSEP567 PWM-Color 36

How Do Artists Do It?

= Artists often specify color as tints, shades, and tones of saturated
(pure) pigments

= Tint:

= Shade: Gotten by adding
black to a pure pigment,
decreasing lightness

HSV Color Space

= Computer scientists frequently use an intuitive color
space that corresponds to tint, shade, and tone:

u Hue - The color we see (red, green, purple)

o Saturation - How far is the color from gray (pink is less saturated
than red, sky blue is less saturated than royal blue)

o Brightness (Luminance) - How bright is the color (how bright are
the lights illuminating the object?)

= Tone: Gotten by adding White
white and black to a pure
pigment
Grays | Tones Pure Color
S
Black
CSEP567 PWM-Color 37
HSV Color space

Saturation
Value

CSEP567 PWM-Color 39

[|
CSEP567 PWM-Color 38
HSV Color Model

V(Value) = Hue (H) is the angle

around the vertical axis

Green Yellow

= Saturation (S) is a value
o from 0 to 1 indicating
how far from the vertical
axis the color lies

Cyan

= Value (V) is the height of the
hexcone”

< H (Hue Angle)

V=0
(Black) S (Saturation)

CSEP567 PWM-Color 40

10

HSV Color Space HSV System

Normally represented as a cone or hexcone

Hue is the angle around the circle or the regular
hexagon; 0 £ H< 360

Saturation is the distance from the center; 0 < S<1
Value is the position along the axis of the cone or

A more intuitive color space
o H=Hue
o S = Saturation
o V = Value (or brightness)

Biis 0.46 hexcone; 0 < V<1
il s || Value is not perceptually-based, so colors of the
Saturation 057 same value may have slightly different brightness
A * . . .
- — - Main axis is grey scale
value 0.88
2l _
httpAwww.cs.rit.edu/~ncs/colora -spaces.htmi 4 CSEPSGT PYAL-Color
HSV to RGB i{f (S==0) //HSV values = From 0 to 1
Conversion R=V*255 //RGB results = From 0 to 255
G=V*255
B=V*255
}
else
var_h=H*6
var_i =int(var_h) /IOr ... var_i = floor(var_h)

var 1=V*(1-8)
var 2=V *(1-S*(var_h-var_i))
var 3=V*(1-S*(1-(var_h-var_i)))

if (var_i==0){varr=V ;var_g=var_3;var_b=var_ 1}
elseif (var_i==1){var_r=var_ 2;var g=V ;var_b=var_1}
else if (var_i y{var_r=var_1;var g=V ;var_b=var 3}
elseif (var_i==3){var_r=var_1;var g=var 2;var b=V }
elseif (var_i==4){var_r=var_3;var g=var_1;var b=V }
else {var_r=V ;var_g=var_1;var_ b=var 2}
R =var_r* 255 //RGB results = From 0 to 255

G =var_g* 255

B =var_b* 255
}

CSEP567) PWM-Color 43

