
1

�������� �	
���
�� �

��������� �������

I. Reentrancy and Atomic Operations
II. Pulse-width modulation

III. Color

�������� �	
���
�� �

�������������������������

 !�������"

�������� �	
���
�� #

���������������������� !�������"

� 3 rules:

� Use shared variables in an atomic way

� Don’t call non-reentrant functions

� Don’t use hardware in a non-atomic way

�������� �	
���
�� $

��%&�����������������'

temp = foobar;

temp += 1;

foobar = temp;

OR

foobar+=1;

What does the compiler do?

2

�������� �	
���
�� �

���!�
����&�!&�'

(x86 compiler)

moveax,[foobar]

incax

mov[foobar],ax

Atomic version:

inc[foobar]

�� �� �� �� � �	 	 �
 �	 ��
 �
 � �� � �� � �

�������� �	
���
�� �

�&��������(����)
�"

int foo;

void some_function(void) {

foo++;

}

void some_function(void) {

int foo;

foo++;

}

�������� �	
���
�� �

*��!������������������

long I;

void do_something(void) {

disable_interrupts();

i+=0x1234;

enable_interrupts();

}

Doesn’t work! if called from code with interrupts disabled…

�������� �	
���
�� +

,�����'

long I;

void do_something(void) {

push interrupt_state;

disable_interrupts();

i+=0x1234;

pop interrupt_state;

}

Or, use semaphores or RTOS locking mechanism

3

�������� �	
���
�� -

.���/��������������
int timer_hi;

interrupt timer(){

++timer_hi;

}

long read_timer(void) {

unsigned int low, high;

low = inword(hardware_register);

high=timer_hi;

return (high<<16 + low);

}

This code will fail, occasionally…

�������� �	
���
�� �0

 ���1��
&�������'

1. read_timer reads the hardware and gets 0xffff

2. immediately the timer hardware increments to 0x000

3. The overflow triggers an interrupt. The ISR runs, and
increments timer_hi to 0x0001, not 0x0000 as in step 1

4. The ISR returns, our read_timer concatenates the new
0x0001 with the previously read 0xffff, and returns 0x1ffff–
WRONG!!!

�������� �	
���
�� ��

 �2�/��
��������&!�"�������"�)
��'

1. read_timer starts. The timer is 0xffff with no
overflows.

2. Before much else happens it increments to 0x0000.
With interrupts off the pending interrupt gets deferred.

3. read_timer returns a value of 0x0000 instead of the
correct 0x10000, or the reasonable 0xffff.

A once-a-month bug? How do you find it?

�������� �	
���
�� ��

��
&����"'

� Stop the timer BEFORE reading!
Downside: we lose time.

� Or, read timer_hi, then the hardware timer, then re-
read timer_hi. Iterate until the two variable reads are
equal.

Downside: can take a long time in a heavily loaded
system

4

�������� �	
���
�� �#

�����&
"��	�����
��&
�����

�������� �	
���
�� �$

�&
"��/��������&
�����

� Pulse a digital signal to get an average “analog” value
� The longer the pulse width, the higher the voltage

Pulse-width ratio =
ton

tperiod

t

t

t

average
valuetperiod ton

�������� �	
���
�� ��

	���!&
"��/��������&
������/��3"

� Most mechanical systems are low-pass filters
� Consider frequency components of pulse-width modulated signal
� Low frequency components affect components

� They pass through

� High frequency components are too fast to fight inertia
� They are “filtered out”

� Electrical RC-networks are low-pass filters
� Time constant (τ = RC) sets “cutoff” frequency

that separates low and high frequencies

�������� �	
���
�� ��

�����
��3�)��3��"�"���

� Rear wheel controller/anti-lock brake system
� Normal operation

� Regulate velocity of rear wheel
� Brake pressed

� Gradually increase amount of breaking
� If skidding (front wheel is moving much faster than rear wheel)

then temporarily reduce amount of breaking

� Inputs
� Brake pedal
� Front wheel speed
� Rear wheel speed

� Outputs
� Pulse-width modulation rear wheel velocity
� Pulse-width modulation brake on/off

5

�������� �	
���
�� ��

�����/���
�������

��4�����
��3�)��3��"�"���

micro
controller

brake pedal pressed

front wheel velocity

rear wheel velocity

brake on/off

move rear wheel

�������� �	
���
�� �+

,�"����4 �!���"�5)��3�"6

� Check if brake pedal pressed – or interrupt
� brakePressed = read (brakePedalPort)

� Turn brake on/off
� write (brakePort, onOff)

� Move rear wheel
� write (rearWheel, onOff)

micro
controller

brake on/off

move rear wheel

GPIO
port

brake pedal pressed

front wheel velocity

rear wheel velocity

GPIO
port

�������� �	
���
�� �-

��

����("��������&!�"

� Software must repeatedly check
� Brake pedal port
� How often?
� Need to make sure not to forget to do so (use timer)

� Use automatic detection capability of processor
� Connect brake pedal to input capture or external interrupt pin
� Interrupt on level change
� Interrupt handler for brake pedal

micro
controller

GPIO
portbrake pedal pressed

�������� �	
���
�� �0

�&
"��/��������&
������1���)��3�"

� To pump the brakes gradually increase the duty-cycle
(ton) until car stops

t

t

6

�������� �	
���
�� ��

� Use timer to turn brake on and off
� Apply brake
� Set timer to interrupt after “on” time
� Disengage brake
� Set time to interrupt after “off” time
� Repeat

� How do we tell which interrupt is which?

,��3��!&�!�"��&!

t

start timer running

set timer to go off at each edge

�������� �	
���
�� ��

� Change value of “on” time to change analog average
� average output = (on + off) / (period)

� How do we decide on the period of the pulses?
� Using two timers

� One to set period (auto-reload)
� One to turn it off at the right duty cycle

,��3��!&�!�"��&!�5����7�6

t

start timer running

set timer to go off at each edge

�������� �	
���
�� �#

,������8�9

� Easy to control intensity of light through pulse-width
modulation

� Duty-cycle is averaged by human eye
� Light is really turning on and off each period
� Too quickly for human retina (or most video cameras)
� Period must be short enough (< 1ms is a sure bet)

� LED output is low to turn on light, high to turn it off
� Active low output

�������� �	
���
�� �$

���!
�������1���8�9

� Varying PWM output
volatile uint8_t width; /* positive pusle width */
volatile uint8_t delay; /* used to slow the pulse width changing */

SIGNAL (SIG_OVERFLOW2)
{

if(delay++ == 20) { OCR2 = width++; delay = 0; }
}

int main (void)
{

/* must make OC2 pin an output for the PWM to visible */
DDRD = _BV(DDD7);
/* use Timer 2 FastPWM and the overflow interrupt to update duty-cycle */
TCCR2 = _BV (WGM21) | _BV (WGM20) | _BV (COM21) | _BV(COM20) | _BV(CS21) | _BV(CS20);
TIMSK = _BV (TOIE2);
/* setup initial conditions */
delay = 0;
/* enable interrupts */
sei ();
for (;;)
{ ; /* LOOP FOREVER as the interrupt will make necessary adjustment */ }
return (0);

}

7

�������� �	
���
�� ��

%�"���	

�������� �	
���
�� ��

8�9��	
�������

� Control three LEDs: Red, Green, and Blue
� Active Low, 15 ms period, 256 possible values for LED
� Timer 0 interrupt 15ms/256
� Each interrupt, dec. count and decide if each LED is on

� if count is 0, count is 255 and all LEDs are off

15 ms

LED 1
on

LED 2
on

LED 3
on

�������� �	
���
�� ��

�������
��

�������� �	
���
�� �+

��
��

� Color perception usually involves three quantities:
� Hue: Distinguishes between colors like red, green, blue, etc
� Saturation: How far the color is from a gray of equal intensity
� Lightness: The perceived intensity of a reflecting object

� Sometimes lightness is called brightness if the object is emitting light instead of
reflecting it.

� In order to use color precisely in computer graphics, we need to be able to
specify and measure colors.

8

�������� �	
���
�� �-

�Definition: A mapping of color components onto a Cartesian
coordinate system in three or more dimensions.

�RGB, CMY, XYZ, HSV, HLS, Lab, UVW, YUV, YCrCb, Luv,
L* u* v*, ..

�Different Purposes: display, editing, computation,
compression, ..

�Equally distant colors may not be equally perceivable

��
����!���"

�������� �	
���
�� #0

������(��
���
'

5�:,���"���6

� R, G, B normalized on orthogonal axes
� All representable colors inside the unit cube
� Color Monitors mix R, G and B
� Video cameras pick up R, G and B
� CIE (Commission Internationale de l’Eclairage)

standardized in 1931: B: 435.8 nm, G: 546.1 nm, R: 700
nm.

� 3 fixed components acting alone can’t generate all
spectrum colors.

�������� �	
���
�� #�

�:,���
���"!���

�������� �	
���
�� #�

���)
��"�/�����:,

� Only a small range of potential perceivable colors (particularly for
monitor RGB)

� It isn’t easy for humans to say how much of RGB to use to get a
given color
� How much R, G and B is there in “brown”?

� Perceptually non-linear
� Two points, a certain distance apart, may be perceptually different in one

part of the space, but could be same in another part of the space.

9

�������� �	
���
�� ##

�&)������(������
�5�
;���"���6
� Color results from removal of light from the

illumination source
� Pigments absorb R, G or B and so give C, M or Y

� Used in deskjet/ inkjet printers.
� No ink (pigment) = white

�������� �	
���
�� #$

�
;���
���"!���

�������� �	
���
�� #�

Converting between RGB and CMY

�������� �	
���
�� #�

�!���1�������
��

� Color perception usually involves three quantities:
� Hue: Distinguishes between colors like red, green, blue, etc
� Saturation: How far the color is from a gray of equal intensity
� Lightness: The perceived intensity of a reflecting object

� Sometimes lightness is called brightness if the object is
emitting light instead of reflecting it.

10

�������� �	
���
�� #�

.�/�9������"�"�9����<

� Artists often specify color as tints, shades, and tones of saturated
(pure) pigments

� Tint: Gotten by adding white to a pure pigment, decreasing
saturation

� Shade: Gotten by adding
black to a pure pigment,
decreasing lightness

� Tone: Gotten by adding
white and black to a pure
pigment

White

Pure Color

Black

Grays

Tints

Shades
Tones

�������� �	
���
�� #+

.�=���
����!���

� Computer scientists frequently use an intuitive color
space that corresponds to tint, shade, and tone:

� Hue - The color we see (red, green, purple)

� Saturation - How far is the color from gray (pink is less saturated
than red, sky blue is less saturated than royal blue)

� Brightness (Luminance) - How bright is the color (how bright are
the lights illuminating the object?)

�������� �	
���
�� #-

HSV Color space

�������� �	
���
�� $0

.�=���
���
���

� Hue (H) is the angle
around the vertical axis

� Saturation (S) is a value
from 0 to 1 indicating
how far from the vertical
axis the color lies

� Value (V) is the height of the
hexcone”

11

�������� �	
���
�� $�

.�=���
����!���

� A more intuitive color space
� H = Hue
� S = Saturation
� V = Value (or brightness)

http://www.cs.rit.edu/~ncs/color/a_spaces.html �������� �	
���
�� $�

� Normally represented as a cone or hexcone
� Hue is the angle around the circle or the regular

hexagon; 0 � H � 360
� Saturation is the distance from the center; 0 � S � 1
� Value is the position along the axis of the cone or

hexcone; 0 � V � 1
� Value is not perceptually-based, so colors of the

same value may have slightly different brightness
� Main axis is grey scale

���������	

�������� �	
���
�� $#

if (S == 0) //HSV values = From 0 to 1
{

R = V * 255 //RGB results = From 0 to 255
G = V * 255
B = V * 255

}
else
{

var_h = H * 6
var_i = int(var_h) //Or ... var_i = floor(var_h)
var_1 = V * (1 - S)
var_2 = V * (1 - S * (var_h - var_i))
var_3 = V * (1 - S * (1 - (var_h - var_i)))

if (var_i == 0) { var_r = V ; var_g = var_3 ; var_b = var_1 }
else if (var_i == 1) { var_r = var_2 ; var_g = V ; var_b = var_1 }
else if (var_i == 2) { var_r = var_1 ; var_g = V ; var_b = var_3 }
else if (var_i == 3) { var_r = var_1 ; var_g = var_2 ; var_b = V }
else if (var_i == 4) { var_r = var_3 ; var_g = var_1 ; var_b = V }
else { var_r = V ; var_g = var_1 ; var_b = var_2 }

R = var_r * 255 //RGB results = From 0 to 255
G = var_g * 255
B = var_b * 255
}

}

�����
���

�
������
�

