
1

CSE466

Audio Synthesis Basics

Analog Synthesis
Intro to Digital Oscillators

Page 2

What is SAMPLING?

� Process by which an analog
signal is measured or
reconstructed, often millions
of times per second for
video, in order to convert the
analog signal to digital.

2

Page 3

Quantization

The height of
each vertical bar
can take on only
certain values,
shown by
horizontal dashed
lines, which are
sometimes higher
and sometimes
lower than the
original signal,
indicated by the
dashed curve.

Page 4

Nyquist Theorem

� A theorem, developed by Harry
Nyquist, which states that an
analog signal waveform may be
uniquely reconstructed, without
error, from samples taken at equal
time intervals.

3

Page 5

Nyquist Theorem

� The sampling rate must be
equal to, or greater than,
twice the highest frequency
component in the analog
signal.

Page 6

Nyquist Theorem

� Stated differently:
� The highest frequency which

can be accurately
represented is one-half of
the sampling rate.

4

Page 7

Analog Synthesis Overview
� Sound is created by controlling electrical

current within synthesizer, and amplifying
result.

� Basic components:
� Oscillators
� Filters
� Envelope generators
� Noise generators

� Voltage control

Page 8

Oscillators

� Creates periodic fluctuations in current,
usually with selectable waveform.

� Different waveforms have different
harmonic content, or frequency spectra.

5

Page 9

Filters
� Given an input signal, attenuate or

boost a frequency range to produce an
output signal

� Basic Types:
� Low pass
� High pass
� Band pass
� Band reject (notch)

Page 10

Envelope Generators

� Generate a control function that can be
applied to various synthesis
parameters, including amplitude, pitch,
and filter controls.

6

Page 11

Noise Generators

� Generate a random, or semi-random
fluctuation in current that produces a
signal with all frequencies present.

Page 12

Digital Synthesis Overview
� Sound is created by manipulating numbers,

converting those numbers to an electrical
current, and amplifying result.

� Numerical manipulations are the same
whether they are done with software or
hardware.

� Same capabilities (components) as analog
synthesis, plus significant new abilities

7

Page 13

Digital Oscillators

� Everything is a Table
� A table is an indexed list of elements (or

values)
� The index is the address used to find a

value

Page 14

Generate a Sine Tone
Digitally (1)
� Compute the sine in real time, every time it is needed.

� equation:

� t = a point in time; r = the radius, or amplitude of the signal;
w (omega) = 2pi*f the frequency

� Advantages: It’s the perfect sine tone. Every value that you need
will be the exact value from the unit circle.

� Disadvantages: must generate every sample of every oscillator
present in a synthesis patch from an algorithm. This is very
expensive computationally, and most of the calculation is
redundant.

signal(t) = rsin(ωt)

8

Page 15

Generate a Sine Tone
Digitally (2)
� Compute the sine tone once, store it in a

table, and have all oscillators look in the table
for needed values.

� Advantages: Much more efficient, hence faster, for
the computer. You are not, literally, re-inventing
the wheel every time.

� Disadvantages: Table values are discrete points in
time. Most times you will need a value that falls
somewhere in between two already computed
values.

Page 16

Table Lookup Synthesis

� Sound waves are very repetitive.
� For an oscillator, compute and store

one cycle (period) of a waveform.
� Read through the wavetable repeatedly

to generate a periodic sound.

9

Page 17

Changing Frequency
� The Sample Rate doesn’t change within a

synthesis algorithm.

� You can change the speed that the table is
scanned by skipping samples.

� skip size is the increment, better known as
the phase increment.

***phase increment is a very important
concept***

Page 18

Algorithm for a Digital
Oscillator

� Basic, two-step program:

� phase_index = modL(previous_phase + increment)
� output = amplitude x wavetable[phase_index]

� increment = (TableLength x DesiredFrequency)
SampleRate

10

Page 19

If You’re Wrong, it’s Noise
� What happens when the phase increment

doesn’t land exactly at an index location in
the table?
� It simply looks at the last index location passed for

a value.
In other words, the phase increment is truncated
to the integer.

� Quantization
� Noise
� The greater the error, the more the noise.

Page 20

Interpolation
� Rather than truncate the phase location…

� look at the values stored before and after the
calculated phase location

� calculate what the value would have been at the
calculated phase location if it had been generated
and stored.

Interpolate

� More calculations, but a much cleaner signal.

11

Page 21

How to select the sample

� Important: Desired sample is between
real samples!

� We can:
� 1: Select the nearest sample
� 2: Linearly interpolate between samples
� 3: Resample

Page 22

Selecting the nearest sample

� Simply round and access your wave
table
� return wave(int(sample + 0.5));

� Works, but is somewhat noisy

12

Page 23

Quantization noise

inV

QV

2/δ

2/δ−

Digital output
Dout

Analog input
vin

000

001

010

011

100

101

110

111

δ

FSRV

•N-bit converter: N
FSRV

2
=δ

Page 24

Linear interpolation

� Interpolate between two audio samples

� More accurate, yet still efficient

double inbetween = fmod(sample, 1);
return (1. – inbetween) * wave[int(sample)] +

inbetween * wave[int(sample) + 1];

1021 10221021.35

13

Page 25

Envelopes

� What if we use looping to make an
efficient piano sound?
� Looping does not decay, but a piano sound

does

� We commonly will make samples with
fixed amplitudes, then make a synthetic
envelope for the sound event.

Page 26

Attack and Release

Time

A
m

pl
itu

de

Attack Release

14

Page 27

ADSR
� ADSR: Attack, decay, sustain, release

A
m

pl
itu

de

Attack Decay Sustain Release
Su

st
ai

n
le

ve
l

Page 28

OPB Audio Controller
� The opb_audio_controller unit is used to

communicate with the audio boards mounted on the
AFX BG560 boards. The chip requires that all
communications with it be in a serial format.

� This controller allows you to have memory mapped
I/O to the component so that you can build software
to communicate with the audio chip.

15

Page 29

CSE
Audio Board

Page 30

AK4529 Serial Timing

16

Page 31

Audio Controller Register Map

R/W Output1 Right channel BASEADDR + 0x10

R/W Output1 Left channel BASEADDR + 0x0C

R Input Right channel BASEADDR + 0x08

R Input Left channel BASEADDR + 0x04

R/W Control register BASEADDR + 0x00

� All registers are 32 bits wide, however, only
the lower order 24 bits are used in the input
and output registers. They are signed 24-
bit values, however they are sign extended
to 32-bits when you read them.

Page 32

Audio Controller Register Map

R/W Output1 Right channel BASEADDR + 0x10

R/W Output1 Left channel BASEADDR + 0x0C

R Input Right channel BASEADDR + 0x08

R Input Left channel BASEADDR + 0x04

R/W Control register BASEADDR + 0x00

� There are only 2 flags in the control register. The lowest
order bit (0x00000001) is the enable bit and enables the
codec. It is tied to the PDN pin. The next bit (0x00000002) is
the interrupt enable. When this is high, an interrupt is
generated every time the codec is ready for a new sample.
The interrupt is cleared by writing or reading from any
register in the codec.

17

Page 33

OPB Audio Controller
� The codec requires several different clocks so this

component contains a DLL to generate these clock
signals.

� All other component's clock inputs to use an internal
net that is connected to the SYS_CLK output of the
opb_audio_controller.

� Connect the XTAL_CLK input of the
opb_audio_controller to the off-chip crystal clock
source (probably an external net that gets connected
to AL17).

Page 34

Lab- Interrupt routine
void audio_interrupt_handler(void *InstancePtr)
{

/*
* TODO: calculate the next sample and give it to the audio controller.
*
* Note that this interrupt will happen every 23 microseconds, or
* at 43.4kHz (the sample rate of the codec)
*/

/* this currently makes a triangle wave */
if(curr_value == HIGH_VALUE) climbing = 0;
if(curr_value == LOW_VALUE) climbing = 1;
if(climbing)
{

curr_value++;
}
else
{

curr_value--;
}

XAudio_mWriteOutput(XPAR_AUDIO_BASEADDR, LEFT, 0, curr_value << SHIFT_AMOUNT);
}

18

Page 35

Lab- Main
int main()
{

/* TODO: initialization code should go here */

curr_value = 0;
climbing = 1;

/* register for the interrupts */
XIntc_InterruptVectorTable[0].Handler = audio_interrupt_handler;
XIntc_InterruptVectorTable[0].CallBackRef = NULL;
XIntc_mEnableIntr(XPAR_INTC_SINGLE_BASEADDR, XPAR_AUDIO_INTERRUPT_MASK);
XIntc_mMasterEnable(XPAR_INTC_SINGLE_BASEADDR);

/* globally enable the interrupts on the microblaze */
microblaze_enable_interrupts();

/* enable the audio codec and make it interrupt me every time it wants new data */
XAudio_mSetControlReg(XPAR_AUDIO_BASEADDR, AUDIO_CR_INT_ENABLE_MASK

AUDIO_CR_ENABLE_MASK);

for(;;)
{

/* do nothing, just let the interrupts handle the rest of the work */
}
return 0; /* never reached */

}

Page 36

Tidbits
� The sample rate of the codec is 43.4kHz. Use a table length of 256

entries.
� The Microblaze has no floating point operations. If you use floating point,

the compiler will emulate it, however, it will be extremely slow, so you
should not use floating point.

� The Microblaze does not have a hardware multiplier, so multiplies are
done in software. As a result, they are very slow. You probably have
about enough time between samples to do about 2 multiplies, maybe 3.

� Don't even think about doing a divide by a number other than a power of
2 (bit shift).

� The audio codec takes 24-bit signed numbers, centered at 0. This
means that:
� The highest value it can receive is 2^23 - 1, or 8388607, or 0x007FFFFF.
� The lowest value it can receive is -(2^23) or -8388608, or 0xFF800000.

