
CSE P564:
Computer Security and Privacy

Cryptography Part 2

Autumn 2024

David Kohlbrenner

dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials

Paper discussion
Four Attacks and a Proof for Telegram

10/23/2024 CSE P564 - Fall 2024 2

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9833666

Pick one/more of the following to discuss

• The authors give an unusually specific motivation for the paper. How
did it affect your understanding of the work?

• What was one of the attacks? What did it break about Telegram?

• Did the paper adjust your perception of Telegram?

• The authors describe several core security principles they wanted the
protocol to uphold. Identify one and discuss what it would mean to
the end user.

10/23/2024 CSE P564 - Fall 2024 3

Cryptography!

10/23/2024 CSE P564 - Fall 2024 4

Encrypting a Large Message

• So, we’ve got a good block cipher, but our plaintext is larger than 128-
bit block size

• What should we do?

CSE P564 - Fall 2024

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit ciphertext

10/23/2024 5

Electronic Code Book (ECB) Mode

CSE P564 - Fall 2024

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

10/23/2024 6

Electronic Code Book (ECB) Mode

CSE P564 - Fall 2024

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

10/23/2024 7

Canvas: What properties of ECB aren’t great?

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

10/23/2024 CSE P564 - Fall 2024 8

Electronic Code Book (ECB) Mode

CSE P564 - Fall 2024

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

• Identical blocks of plaintext produce identical blocks of ciphertext
• No integrity checks: can mix and match blocks

10/23/2024 9

Information Leakage in ECB Mode

CSE P564 - Fall 2024

Encrypt in ECB mode

10/23/2024 10

Oops

CSE P564 - Fall 2024

https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-
look-at-the-confidentiality-of-zoom-meetings/

10/23/2024 11

https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/

Cipher Block Chaining (CBC) Mode: Encryption

CSE P564 - Fall 2024

Sent with ciphertext

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initialization
vector
(random)

 key key key key

• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

10/23/2024 12

CBC Mode: Decryption

CSE P564 - Fall 2024

plaintext

ciphertext

decrypt decrypt decrypt decrypt

Initialization
vector key key key key

10/23/2024 13

ECB vs. CBC

CSE P564 - Fall 2024
slide 14

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

10/23/2024 14

Initialization Vector Dangers

CSE P564 - Fall 2024

Initialization
vector
(supposed to
be random)

plaintext

ciphertext

DES DES DES DES

Found in the source code for Diebold voting machines:
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

totalSize, DESKEY, NULL, DES_ENCRYPT)

key key key key

10/23/2024 15

Counter Mode (CTR): Encryption

CSE P564 - Fall 2024

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt

Key Key Key Key

ciphertext

• Identical blocks of plaintext encrypted differently
• Still does not guarantee integrity; Fragile if ctr repeats

10/23/2024 16

Counter Mode (CTR): Decryption

CSE P564 - Fall 2024

ct ct ctct

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

pt pt pt pt

Key Key Key Key

⊕ ⊕ ⊕ ⊕

10/23/2024 17

Information Leakage in CTR Mode (poorly)

CSE P564 - Fall 2024

Encrypt in CTR mode:
But with the same
counter for each
frame!

10/23/2024 18

Ok, so what mode do I use?

• Don’t choose a mode, use established libraries ☺

• Modes that might be good:
• GCM-SIV - Galois/Counter Mode + more

• CCM – CTR + CBC-MAC (we’ll get to that next time)

• CTR (sometimes its fine!)

• AES-128 is standard (AES-256 is… fine)
• Be concerned if something says “AES 1024”…

CSE P564 - Fall 2024

https://research.kudelskisecurity.com/2022/05/11/practical-bruteforce-of-aes-1024-military-grade-encryption/

10/23/2024 19

When is an Encryption Scheme “Secure”?

CSE P564 - Fall 202410/23/2024 20

• Hard to recover the key?
• What if attacker can learn plaintext without learning the key?

• Hard to recover plaintext from ciphertext?
• What if attacker learns some bits or some function of bits?

How Can a Cipher Be Attacked?

• Attackers knows ciphertext and encryption algorithm
• What else does the attacker know? Depends on the application in which the

cipher is used!

• Ciphertext-only attack

• KPA: Known-plaintext attack (stronger)
• Knows some plaintext-ciphertext pairs

• CPA: Chosen-plaintext attack (even stronger)
• Can obtain ciphertext for any plaintext of choice

• CCA: Chosen-ciphertext attack (very strong)
• Can decrypt any ciphertext except the target

CSE P564 - Fall 202410/23/2024 21

Chosen Plaintext Attack

CSE P564 - Fall 2024

Crook #1 changes
his PIN to a number
of his choice

cipher(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

10/23/2024 22

The shape of the formal approach

• INDistinguishability under Chosen Plaintext Attack
• IND-CPA

• Formalized cryptographic game

• Adversary submits pairs of plaintexts (M_a, M_b)
• Gets back ONE of the ciphertexts (C_x)

• Adversary must guess which ciphertext this is (C_a or C_b)
• If they can do better than 50/50, they win

CSE P564 - Fall 202410/23/2024 23

Very Informal Intuition

• Security against chosen-plaintext attack (CPA)
• Ciphertext leaks no information about the plaintext

• Even if the attacker correctly guesses the plaintext, he cannot verify his guess

• Every ciphertext is unique, encrypting same message twice produces
completely different ciphertexts
• Implication: encryption must be randomized or stateful

• Security against chosen-ciphertext attack (CCA)
• Integrity protection – it is not possible to change the plaintext by modifying

the ciphertext

CSE P564 - Fall 2024

Minimum security
requirement for a
modern encryption scheme

10/23/2024 24

So Far: Achieving Privacy

CSE P564 - Fall 2024

Alice Bob

M C
Encrypt

K

Decrypt

K

M

K K

Adversary

Message = M

Ciphertext = C

Encryption schemes: A tool for protecting privacy.

10/23/2024 25

Now: Achieving Integrity

CSE P564 - Fall 2024

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

10/23/2024 26

Reminder: CBC Mode Encryption

CSE P564 - Fall 2024

• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initialization
vector
(random)

 key key key key

Sent with ciphertext

10/23/2024 27

CBC-MAC

CSE P564 - Fall 2024

TAG

plaintext

block
cipher

block
cipher

block
cipher

block
cipher

key key key key

• Not secure when system may MAC messages of different lengths
• Use a different key – not encryption key
• NIST recommends a derivative called CMAC [FYI only]

10/23/2024 28

Another Tool: Hash Functions

CSE P564 - Fall 202410/23/2024 29

Hash Functions: Main Idea

CSE P564 - Fall 2024

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message
“digest”

message

10/23/2024 30

Property 1: One-Way

• Intuition: hash should be hard to invert
• “Preimage resistance”

• Let h(x’) = y in {0,1}n for a random x’

• Given y, it should be hard to find any x such that h(x)=y

• How hard?
• Brute-force: try every possible x, see if h(x)=y

• SHA-1 (common hash function) has 160-bit output
• Expect to try 2159 inputs before finding one that hashes to y.

CSE P564 - Fall 202410/23/2024 31

Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

CSE P564 - Fall 202410/23/2024 32

Birthday Paradox

• Are there two people in your part of the classroom that have the
same birthday?
• 365 days in a year (366 some years)

• Pick one person. To find another person with same birthday would take on the order of
365/2 = 182.5 people

• Expect birthday “collision” with a room of only 23 people.
• For simplicity, approximate when we expect a collision as sqrt(365).

• Why is this important for cryptography?
• 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value requires trying on average
2127 values.

• Expect “collision” after selecting approximately 264 random values.
• 64 bits of security against collision attacks, not 128 bits.

10/23/2024 CSE P564 - Fall 2024 33

Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

• Birthday paradox means that brute-force collision search is only
O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)

CSE P564 - Fall 202410/23/2024 34

One-Way vs. Collision Resistance

One-wayness does not imply collision resistance.

Collision resistance does not imply one-wayness.

You can prove this by constructing a function that has one property but
not the other.

CSE P564 - Fall 202410/23/2024 35

Property 3: Weak Collision Resistance

• Given randomly chosen x, hard to find x’ such that h(x)=h(x’)
• Attacker must find collision for a specific x. By contrast, to break collision

resistance it is enough to find any collision.

• Brute-force attack requires O(2n) time

• Weak collision resistance does not imply collision resistance.
• … Does it imply one-way-ness/preimage resistance?

CSE P564 - Fall 202410/23/2024 36

One-Way vs. Collision Resistance
(Details here mainly FYI)

• One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except drop the last bit

• h is one-way (to invert h, must invert g)
• Collisions for h are easy to find: for any x, h(x0)=h(x1)

• Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define y=h(x) to be 0x if x is n-bit long, 1g(x) otherwise

• Collisions for h are hard to find: if y starts with 0, then there are no collisions, if y starts
with 1, then must find collisions in g

• h is not one way: half of all y’s (those whose first bit is 0) are easy to invert (how?);
random y is invertible with probability ½

CSE P564 - Fall 202410/23/2024 37

Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
• A ciphertext can be decrypted with a decryption key… hashes have no

equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with
Hash(x’)
• Hash the same input twice → same hash value

• Encrypt the same input twice → different ciphertexts

• Crytographic hashes are also known as “cryptographic
checksums” or “message digests”

CSE P564 - Fall 202410/23/2024 38

Application: Password Hashing

• Gradesceope!

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with
the entry in the password file

• Why is hashing better than encryption here?

• How might you migrate a system from encryption to hashing?

CSE P564 - Fall 202410/23/2024 39

Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with
the entry in the password file

• Why is hashing better than encryption here?

• System does not store actual passwords!

• Don’t need to worry about where to store the key!

• Cannot go from hash to password!

CSE P564 - Fall 202410/23/2024 40

Application: Password Hashing

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?

CSE P564 - Fall 202410/23/2024 41

Application: Password Hashing + Salting

• Salting
• We ‘salt’ hashes for password by adding a randomized suffix to the password

• E.g. Hash(“coolpassword”+”35B67C2A”)

• We then store the salt with the hashed password!

• Server generates the salt

• The goal is to prevent precomputation attacks
• If the adversary doesn’t know the salt, they can’t precompute common

passwords

CSE P564 - Fall 202410/23/2024 42

Hash Functions Review

• Map large domain to small range (e.g., range of all 160- or 256-bit
values)

• Properties:
• Collision Resistance: Hard to find two distinct inputs that map to same output

• One-wayness: Given a point in the range (that was computed as the hash of a
random domain element), hard to find a preimage

• Weak Collision Resistance: Given a point in the domain and its hash in the
range, hard to find a new domain element that maps to the same range
element

CSE P564 - Fall 202410/23/2024 43

Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received by
users without modification.

Idea: given goodFile and hash(goodFile), very hard to find
badFile such that hash(goodFile)=hash(badFile)

CSE P564 - Fall 2024

goodFile
BigFirm™

User

VIRUS

badFile

Well Known Site

hash(goodFile)

10/23/2024 44

Application: Software Integrity

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?

CSE P564 - Fall 202410/23/2024 45

Which Property Do We Need?

• Passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if

considering malicious developers

• Commitments (e.g. auctions)
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B (this may mean that they need

to hash some randomness with B too)
• Collision resistance: Alice should not be able to change their mind to bid B’ such

that H(B)=H(B’)

CSE P564 - Fall 202410/23/2024 46

Commitments

CSE P564 - Fall 202410/23/2024 47

Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3: standard released by NIST in August 2015
• MD5 – Don’t Use!

• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

• SHA-1 (Secure Hash Algorithm) – Don’t Use!
• 160-bit output
• US government (NIST) standard as of 1993-95
• Theoretically broken 2005; practical attack 2017!

• Plenty of others, some OK some not
• E.g. The BLAKE family seems fine

CSE P564 - Fall 202410/23/2024 48

SHA-1 Broken in Practice (2017)

CSE P564 - Fall 2024

https://shattered.io

10/23/2024 49

https://shattered.io/

Aside: How we evaluate hash functions

• Speed
• Is it amenable to hardware implementations?

• Diffusion
• Does changing 1 bit in the input affect all output bits?

• Resistance to attack approaches
• Collisions?

• Length extensions?

• etc

CSE P564 - Fall 202410/23/2024 50

Recall: Achieving Integrity

CSE P564 - Fall 2024

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

10/23/2024 51

HMAC

• Construct MAC from a cryptographic hash function
• Invented by Bellare, Canetti, and Krawczyk (1996)

• Used in SSL/TLS, mandatory for IPsec

• Why not encryption? (Historical reasons)
• Hashing is faster than block ciphers in software

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption

CSE P564 - Fall 202410/23/2024 52

MAC with SHA3

• SHA3(Key || Message)

• SHA3 is designed to get the same safety properties as HMAC
constructions

CSE P564 - Fall 202410/23/2024 53

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• Is this fine? (Gradescope!)

CSE P564 - Fall 2024

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

MACKm MACKm

10/23/2024 54

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
• Obvious approach: Encrypt-and-MAC

• Problem: MAC is deterministic! same plaintext → same MAC

CSE P564 - Fall 2024

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

10/23/2024 55

Authenticated Encryption

• Instead:

Encrypt then MAC.

• (Not as good:
MAC-then-Encrypt)

CSE P564 - Fall 2024

Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C

10/23/2024 56

Back to asymmetric cryptography

CSE P564 - Fall 202410/23/2024 57

Stepping Back:
Flavors of Cryptography
• Symmetric cryptography

• Both communicating parties have access to a shared random string K, called
the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

CSE P564 - Fall 202410/23/2024 58

Symmetric Setting

CSE P564 - Fall 2024

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.

10/23/2024 59

Asymmetric Setting

CSE P564 - Fall 2024

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

10/23/2024 60

Public Key Crypto: Basic Problem

CSE P564 - Fall 2024

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate themself

public key

public key

Alice
Bob

Ignore for now: How do we
know it’s REALLY Bob’s??

10/23/2024 61

Applications of Public Key Crypto

• Encryption for confidentiality
• Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
• Can “sign” a message with your private key

• Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

CSE P564 - Fall 202410/23/2024 62

Session Key Establishment

CSE P564 - Fall 202410/23/2024 63

Modular Arithmetic

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

CSE P564 - Fall 202410/23/2024 64

Diffie-Hellman Protocol (1976)

CSE P564 - Fall 202410/23/2024 65

Diffie-Hellman Protocol (1976)
• Alice and Bob never met and share no secrets

• Public info: p and g
• p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a Zp* i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p

CSE P564 - Fall 2024

Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

10/23/2024 66

Example Diffie Hellman Computation

CSE P564 - Fall 202410/23/2024 67

Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem:

given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this

• This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:

given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem:

given gx and gy, it’s hard to tell the difference between gxy mod p and gr mod p

where r is random

CSE P564 - Fall 202410/23/2024 68

More on Diffie-Hellman Key Exchange

• Important Note:
• We have discussed discrete logs modulo integers

• Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) but have better security and

performance (size) properties

CSE P564 - Fall 202410/23/2024 69

Diffie-Hellman: Conceptually

CSE P564 - Fall 2024

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

10/23/2024 70

Diffie-Hellman Caveats

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against passive
attackers
• Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

• Eavesdropper can’t tell the difference between the established key and a random
value

• In practice, often hash gxy mod p, and use the hash as the key
• Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide authentication (against
active attackers)
• Person in the middle attack (also called “man in the middle attack”)

CSE P564 - Fall 202410/23/2024 71

Example from Earlier

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

• For p=11, g=3
• 31 mod 11 = 3, 32 mod 11 = 9, 33 mod 11 = 5, …

• Produces cyclic group {3,9,5,4,1} (order = 5) (5 is a prime)

• g=3 generates a group of prime order

CSE P564 - Fall 202410/23/2024 72

Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
• Can then use shared key for symmetric crypto

• Next: public key encryption
• For confidentiality

• Then: digital signatures
• For authenticity

CSE P564 - Fall 202410/23/2024 73

Requirements for Public Key Encryption

• Key generation: computationally easy to generate a pair (public key
PK, private key SK)

• Encryption: given plaintext M and public key PK, easy to compute
ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private key SK, easy to
compute plaintext M
• Infeasible to learn anything about M from C without SK

• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

CSE P564 - Fall 202410/23/2024 74

Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the
[1,n] interval that are relatively prime to n
• Two numbers are relatively prime if their greatest common divisor

(gcd) is 1

• Easy to compute for primes: ϕ(p) = p-1

• Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime

CSE P564 - Fall 202410/23/2024 75

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1
mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

CSE P564 - Fall 2024

Public key = (e,n);

Secret key = (d,n)

Encryption of m: c = me mod n

Decryption of c: cd mod n =

(me)d mod n = m

10/23/2024 76

Why is RSA Secure?

• RSA problem:
• Given c, n=pq, and e such that gcd(e, ϕ(n))=1

• Find m such that me=c mod n

• In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c
modulo n

• There is no known efficient algorithm for doing this without knowing p and q

CSE P564 - Fall 202410/23/2024 77

Why is RSA Secure?

• There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing factors means you can
compute d = inverse of e mod (p-1)(q-1))
• It may be possible to break RSA without factoring n -- but if it is, we don’t know how

CSE P564 - Fall 202410/23/2024 78

RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less than n

• Don’t use RSA directly for privacy – output is deterministic! Need to
pre-process input somehow

• Plain RSA also does not provide integrity
• Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt
M ⊕ G(r) || r ⊕ H(M ⊕ G(r))

• r is random and fresh, G and H are hash functions

CSE P564 - Fall 202410/23/2024 79

RSA OAEP

CSE P564 - Fall 2024

M ⊕ G(r) || r ⊕ H(M ⊕ G(r))

10/23/2024 80

Review: RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n); private key = (d,n)

• Encryption of m: c = me mod n

• Decryption of c: cd mod n = (me)d mod n = m

CSE P564 - Fall 202410/23/2024 81

Actually, RSA is bad and stop using it

• Math is OK, implementation isn’t
• Yes, all the implementations

• https://blog.trailofbits.com/2019/07/08/fuck-rsa/

• Sorry I just spent time teaching it to you
• Maybe you would’ve preferred projected coordinate math on elliptic curves?

CSE P564 - Fall 202410/23/2024 82

https://blog.trailofbits.com/2019/07/08/fuck-rsa/

Using public key cryptography… backwards

CSE P564 - Fall 202410/23/2024 83

Digital Signatures: Basic Idea

CSE P564 - Fall 2024

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

10/23/2024 84

RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m: s = md mod n

• Signing & decryption are same underlying operation in RSA
• It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:
verify that se mod n = (md)e mod n = m
• Just like encryption (for RSA primitive)
• Anyone who knows n and e (public key) can verify signatures produced with d

(private key)

• In practice, also need padding & hashing
• Without padding and hashing: Consider multiplying two signatures together
• Standard padding/hashing schemes exist for RSA signatures

CSE P564 - Fall 202410/23/2024 85

DSS Signatures

• Digital Signature Standard (DSS)
• U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x

• Each signing operation picks a new random value, to use during
signing. Security breaks if two messages are signed with that same
value.

• Security of DSS requires hardness of discrete log
• If could solve discrete logarithm problem, would extract x (private key) from

gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers; significant advantages to
using elliptic curve groups instead.

CSE P564 - Fall 202410/23/2024 86

Post-Quantum

• If quantum computer become a reality
• It becomes much more efficient to break conventional asymmetric encryption

schemes (e.g., factoring becomes “easy”)

• Easy is a very relative term, but Shor’s Algorithm is compelling.

• There exists efforts to make quantum-resilient asymmetric encryption
schemes
• (Check out NIST’s PQC competition!)

• Current likely winner for most things is Kyber aka ML-KEM

CSE P564 - Fall 202410/23/2024 87

https://en.wikipedia.org/wiki/Shor%27s_algorithm

Authenticity of Public Keys

CSE P564 - Fall 2024

?

Problem: How does Alice know that the public key
they received is really Bob’s public key?

private key

Alice
Bob

public key

10/23/2024 88

Person-in-the Middle/On-path-attacker

CSE P564 - Fall 2024

Google.comUser

10/23/2024 89

Distribution of Public Keys

• Public announcement or public directory
• Risks: forgery and tampering

• Public-key certificate
• Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)
• Additional information often signed as well (e.g., expiration date)

• Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves their identity and

knowledge of the private key to obtain CA’s certificate for the public key
(offline)

• Every computer is pre-configured with CA’s public key

CSE P564 - Fall 202410/23/2024 90

You encounter this every day…

CSE P564 - Fall 2024

SSL/TLS: Encryption & authentication for connections

10/23/2024 91

SSL/TLS High Level

• SSL/TLS consists of two protocols
• Familiar pattern for key exchange protocols

• Handshake protocol
• Use public-key cryptography to establish a shared secret key between

the client and the server

• Record protocol
• Use the secret symmetric key established in the handshake protocol to

protect communication between the client and the server

CSE P564 - Fall 202410/23/2024 92

CSE P564 - Fall 202410/23/2024 94

• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)
• Everybody must know

the root’s public key
• Instead of single cert,

use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA),

sigAnotherCA(“Alice”, PKA)

• Not shown in figure but important:
• Signed as part of each cert is whether

party is a CA or not

• What happens if root authority is ever compromised?

Hierarchical Approach

CSE P564 - Fall 202410/23/2024 95

