CSE P564:
Computer Security and Privacy

More More Binary Exploitation (and Defenses)

Autumn 2024

David Kohlbrenner
dkohlbre@cs

UW Instruction Team: David Kohlbrenner, Yoshi Kohno, Franziska Roesner. Thanks to Dan Boneh, Dieter Gollmann, Dan
Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikoy, Bennet Yee, and many others for sample slides and materials

Paper discussion

The Eternal War in Memory

10/9/2024 CSE P564 - Autumn 2024

Pick one/more of the following to discuss

* How useful do you find the ‘taxonomy-ification” of exploits? Does it
seem complete?

* Were you aware of these protection mechanism? (Have you ever
interacted with hardening settings?)

 What is the primary reason this paper had to be written?

* Would it look the same/different/similar in 20247

Back to binary security

Summary of problems/techniques so far

* Classic overflow: * Variable args/printf:
* Unbounded (sploit 0/1) — Targeting * Using % specifiers to read memory
saved return addresses * Also to manipulate the internal

* Limited overflow (sploit 2/3) — argument pointer!

Targeting saved return addresses OR

frame pointers * Using %n to write to a memory
location
* Remember it expects a pointer as
* Heap management / double free: argument!
 Heap metadata structures are inline
with data

* Reuse of pointers can be dangerous!

Summary of using printf maliciously

* Printf takes a variable number of arguments
— E.g., printf(“Here’s an int: %d”, 10);
* Assumptions about input can lead to trouble
— E.g., printf(buf) when buf=“Hello world” versus when buf=“Hello world %d”

— Can be used to advance printf’s internal argument pointer

— Can read memory

* E.g., printf(“%x”) will print in hex format whatever printf’s internal argument pointer is
pointing to at the time

— Can write memory

* E.g., printf(“Hello%n”); will write “5” to the memory location specified by whatever
printf’s internal argument pointer is pointing to at the time

10/9/2024 CSE P564 - Autumn 2024

How Can We Attack This?

foo() {
char buf[1024];
strncpy(buf, readUntrustedInput(), sizeof(buf)-1);
printf(buf); //vulnerable
} If format string contains % then

printf will expect to find
arguments here...

_Saved FP ret/IP &buf buf Saved FP ret/IP Re=lH @il

~ ~ ~ ~ ~— ~ Addr OxFF...F

Printf’s frame Foo’s frame

What should the string returned by readUntrustedInput() contain?

Different compilers /
compiler options /

10/9/2024 CSE P564 - Autumn 2024 architectures might vary

Discussion time!

foo() {
char buf[1024];
strncpy(buf, readUntrustedInput(), sizeof(buf)-1);
printf(buf); //vulnerable
} If format string contains % then

printf will expect to find
arguments here...

_Saved FP ret/IP &buf buf Saved FP ret/IP Re=lH @il

~ ~ ~ ~ ~— ~ Addr OxFF...F

Printf’s frame Foo’s frame

What should the string returned by readUntrustedInput() contain?

Different compilers /
compiler options /

10/9/2024 CSE P564 - Autumn 2024 architectures might vary

10/9/2024 CSE P564 - Autumn 2024

Using %n to overwrite things

10/9/2024

This portion contains In foo()’s stack frame:
enough % symbols
to advance printf’s
internal arg pointer

Buffer with attacker-supplied input “string”

\ N

Number of characters “in” When %n happens, make sure the location

attackString must be under printf’s arg pointer contains address esgcjlrj?ion to

equal to ... what? of RET; %n will write the number of characters this address
/) in printed so far into RET

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf
to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “ 10”
That is, the %n will write 5, not 2.

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.
(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

10

Heap buffer exploitation

e Read “Once upon a free()” (linked in handout)

* Read through the tmalloc.c implementation
* |tis a complete malloc!
* Manages things in ‘arena’

Chunk header definition

PtrioLeft | PtrtoRight | Data

typedef union CHUNK TAG
{
struct
{
union CHUNK TAG *1; /* Lleftward chunk */

union CHUNK TAG *r; /* rightward chunk + free bit (see below) */
}os;
ALIGN X;
} CHUNK;

/*
* we store the freebit -- 1 if the chunk 1s free, 0 1f it 1s busy --
* in the low-order bit of the chunkR's r pointer.

*/

12

Refer to
https://qgitlab.cs.washington.ed

u/snippets/43 fora tmalloc
implementation.

Chunk Maintenance

One big
free chunk:

Split to malloc:

Split to malloc
(twice):

Free (twice):

Consolidate
free chunks:

=
==
D —

13

https://gitlab.cs.washington.edu/snippets/43

tmalloc.h usage example

Before tmalloc call (line 4):

1. int main(){ Ox804c0O60 <arena>: 0x00000000 0x00000000 0x00000000 0x00000000
2. char* dyn; Ox804c070 <arena+l6>: 0x00000000 0x00000000 0x00000000 0x00000000
3. char* input = Ox804c0O80 <arena+32>: 0x00000000 0x00000000 0x00000000 0x00000000
"\xal\xa2\xa3\xad4\xa5\xa6\xa7\xa8 0Ox804c090 <arena+48>: OXx00000000 0Xx00000000 0Xx00000000 0x00000000
\xa9";
big, happy free space
4. dyn = tmalloc(10);
arena
5. if(dyn == NULL){ 0x804c060
6. fprintf(stderr, “err\n"); After tmalloc call: chunk pointers created
7. exit (EXIT_FAILURE);
8. } Ox804cO60 <arena>: 0x00000000 0x0804c078 0x00000000 0x00000000
) Ox804c070 <arena+l6>: 0x00000000 0x00000000 0x0804c060 0x0805c059
9. memcpy (dyn, input, 18); Ox804c080 <arena+32>: 0x00000000 0x00000000 0x00000000 0x00000000
Ox804c090 <arena+48>: 0x00000000 0x00000000 0x00000000 0x00000000
10. tfree(dyn);
11. return ©; NULL oxo4c0780 16 bytes available for writing e OxB05c0ss |
12. }
arena dyn dyn’s next
0x804c060 0x804c068 0x804c078

Printed with: x /16xw arena 14

N

N

0N O Ui

10.

11.
12.

tmalloc.h usage example

int main(){

char* dyn;

char* input =
"\xal\xa2\xa3\xa4\xa5\xa6\xa7\xa8
\xa9";

dyn = tmalloc(10);
if(dyn == NULL){

fprintf(stderr, “err\n");
exit (EXIT_FAILURE);

}
memcpy(dyn, input, 10);
tfree(dyn);

return 0;

0x804c060
0x804c070
0x804c080
0x804c090

<arena>:

<arena+1l6>:
<arena+32>:
<arena+48>:

arena
0x804c060

Ox804c060 <arena>:

Ox804c070 <arena+l6>:
Ox804c080 <arena+32>:
Ox804c090 <arena+48>:

NULL

After the copy in line 9:

0Xx00000000
0x000000a9
0Xx00000000
0Xx00000000

dyn

0x804c068

After the tfree, the chunk is coalesced (line 10)

0x00000000
0x000000a9
0x00000000
0x00000000

0x805¢c059 1

0x0804c078
0x00000000
0x00000000
0x00000000

Oxada3a2al
0x0804c060
0x00000000
0x00000000

0x0805c059
0x00000000
0x00000000
0x00000000

Oxa1 Oxa2 Oxa3...0xa9 0x00

Oxada3a2al
0x0804c060
0Xx00000000O
0Xx00000000O

0x8049c060

Oxa8a7a6ab
0x0805c059
0x00000000
0x00000000

NULL o070 Oxal Oxa2 Oxa3..0xa9 0x00 e

dyn’s next
0x804c078

Oxa8a7abab5
0x0805c059
0Xx00000000o
0Xx00000000o

0x805c058

arena
0x804c060

dyn

0x804c068

Printed with: x /16xw arena

15

Binary defenses

Buffer Overflow: Causes and Cures

* Classical memory exploit involves code injection

. Eut malicious code at a predictable location in memory, usually masquerading as
ata

* Trick vulnerable program into passing control to it

e Possible defenses:

Prevent execution of untrusted code
Stack “canaries”

Encrypt pointers

Address space layout randomization
Code analysis

Better interfaces

NoUusWNE

10/9/2024 CSE P564 - Autumn 2024

17

Defense: Better string functions!

* strcpy is bad
* strncpy is... also bad (no null terminator! Returns dest!)

Defense: Better string functions!

* strcpy is bad
* strncpy is... also bad (no null terminator! Returns dest!)

* BSD to the rescue: stricpy

» size_t strlcpy(char *dest, const char *src, size_t n);
e Always NUL terminates
e Returns len(src) ...

Ushering out stricpy()

With all of the complex problems that must be solved in the kernel, one might think that copying a string would draw little
attention. Even with the hazards that C strings present, simply moving some bytes should not be all that hard. But string-copy
functions have been a frequent subject of debate over the years, with different variants being in fashion at times. Now it seems

that the BSD-derived stricpy(). function may finally be on its way out of the kernel.

By Jonathan Corbet
August 25, 2022

ASLR: Address Space Randomization

 Randomly arrange address space of key data areas for a process

e Base of executable region
* Position of stack

* Position of heap

e Position of libraries

* Introduced by Linux PaX project in 2001
* Adopted by OpenBSD in 2003
* Adopted by Linux in 2005

ASLR: Address Space Randomization

* Deployment (examples)
* Linux kernel since 2.6.12 (2005+)
* Android 4.0+
* i(0S4.3+;0S X 10.5+
* Microsoft since Windows Vista (2007)

 Attacker goal: Guess or figure out target address (or addresses)
* ASLR more effective on 64-bit architectures

10/9/2024 CSE P564 - Autumn 2024

21

Attacking ASLR

* NOP sleds and heap spraying to increase likelihood for adversary’s
code to be reached (e.g., on heap)

* Brute force attacks or memory disclosures to map out memory on the
fly

* Disclosing a single address can reveal the location of all code within a library,
depending on the ASLR implementation

« Remember our printf vulnerabilities!

10/9/2024 CSE P564 - Autumn 2024 22

Defense: Executable Space Protection

 Mark all writeable memory locations as non-executable
e Example: Microsoft’s Data Execution Prevention (DEP)
* This blocks many code injection exploits

* Hardware support

« AMD “NX” bit (no-execute), Intel “XD” bit (execute disable) (in post-2004
CPUs)

* Makes memory page non-executable
* Widely deployed

 Windows XP SP2+ (2004), Linux since 2004 (check distribution), OS X 10.5+
(10.4 for stack but not heap), Android 2.3+

10/9/2024 CSE P564 - Autumn 2024 23

What Does “Executable Space Protection”
Not Prevent?

 Can still corrupt stack ...
... or function pointers
e ... orcritical data on the heap

* As long as RET points into existing code, executable space protection
will not block control transfer!

- return-to-libc exploits

return-to-libc

* Overwrite saved ret (IP) with address of any library routine

* Does not look like a huge threat?

* Gradescope time

return-to-libc

* Overwrite saved ret (IP) with address of any library routine
* Arrange stack to look like arguments

* Does not look like a huge threat

* We can call any function we want!
* Say, exec ©

return-to-libc++

* Insight: Overwritten saved EIP need not point to the beginning of a
library routine

* Any existing instruction in the code image is fine
* Will execute the sequence starting from this instruction

 What if instruction sequence contains RET?
Execution will be transferred... to where?

Read the word pointed to by stack pointer (SP)
* Guess what? Its value is under attacker’s control!
Use it as the new value for IP
* Now control is transferred to an address of attacker’s choice!

Increment SP to point to the next word on the stack

10/9/2024 CSE P564 - Autumn 2024

27

Chaining RETs

* Can chain together sequences ending in RET

* Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks
exploitation technique” (2005)

* What is this good for?

* Answer [Shacham et al.]: everything
e Turing-complete language
* Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

e Attack can perform arbitrary computation using no injected code at all —
return-oriented programming

* Truly, a “weird machine”

10/9/2024 CSE P564 - Autumn 2024

28

Defense: Run-Time Checking

Gradescope: Why would this be useful?
How could a program use this to protect
against buffer overflows?

buf

v Poi Ret
. ointer to eturn
Local variables previous execution to

frame this address

Choose randomly at the start of the
program execution, keep constant
during this program run.

10/9/2024 CSE P564 - Autumn 2024

Top of
stack

29

Defense: Run-Time Checking: StackGuard

 Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

buf Top of
stack
~ ~" . Y
Local variables P&'Q&%utf execution to

frame this address

10/9/2024 CSE P564 - Autumn 2024 30

Defense: Run-Time Checking: StackGuard

 Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

e
ret Top of
buf sfpo | addr
stack
\ Y J \ Y J
Local variables Pp?rien\fieorutso execution to

frame this address

* Choose random canary string on program start

— Attacker can’t guess what the value of canary will be

* Canary contains: "\0”, newline, linefeed, EOF
— String functions like strcpy won’t copy beyond “\0”

10/9/2024 CSE P564 - Autumn 2024

StackGuard Implementation

e StackGuard requires code recompilation

* Checking canary integrity prior to every function return causes a
performance penalty
* For example, 8% for Apache Web server at one point in time

Defeating StackGuard

e StackGuard can be defeated

— A ssingle memory write where the attacker controls both the value and the destination is
sufficient

* Suppose program contains copy(buf,attacker-input) and copy(dst,buf)
— Example: dst is a local pointer variable
— Attacker controls both buf and dst

buf &dst
H_I
Return execution to
this address
BadPointer, attack code &RET
—/

Overwrite destination of strcpy with RET positio/

/ strcpy will copy
BadPointer here

10/9/2024 CSE P564 - Autumn 2024

Pointer integrity protections (e.g. PointGuard,
PAC, etc.)

* Attack: overwrite a pointer (heap date, ret, function pointer, etc.)

* |dea: encrypt all pointers while in memory
* Generate a random key when program is executed
* Each pointer is encrypted/XOR’d/MAC’d with this key when in memory

* Pointers cannot be overflowed while in registers
e Attacker cannot predict the target program’s key

* If XOR/encrypt: adversary cannot predict what a corrupted pointer will
do (mostly)

* |f integrity (MAC) then the program can detect a modified pointer.

10/9/2024 CSE P564 - Autumn 2024 34

Normal Pointer Dereference

Memory

Memory

1. Fetch pointer value

CPU

2. Access data referenced by pointer

[Cowan]

1. Fetch pointer value

CPU

/ b}
Pointer 5
0x1234 ata

0x1234

2. Access attack code referenced
by corrupted pointer

Corrupt
—T0x1234 |
0x1340

bd pointer

—

Attack
code

Data

0x1234 0x1340

[Cowan]

PointGuard (Old, XOR style) Dereference

10/9/2024

Memory

Memory

CPU

A')a

234

2. Access data referenced by pointer

1. Fetch pointer
value Decrypt
// D"y
Encryptefd pointer
0x7239 Data
0x1234
Decrypts to C P U
ECRIUNEITE 2. Access random address;
0x9786 segmentation fault and crash
1. Fetch pointer
value Decrypt
i
Corrupted pointer Attack T
—T1OxA239] Data
0x1340 code
0x1234 0x1340 0x9786

CSE P564 - Autumn 2024

36

PointGuard Issues

* Must be very fast
* Pointer dereferences are very common

* Compiler issues

* Must encrypt and decrypt only pointers

* |f compiler “spills” registers, unencrypted pointer values end up in
memory and can be overwritten there

» Attacker should not be able to modify the key
 Store key in its own non-writable memory page

* PG’d code doesn’t mix well with normal code
 What if PG’d code needs to pass a pointer to OS kernel?

10/9/2024 CSE P564 - Autumn 2024

37

Modern PAC Dereference

10/9/2024

Memory

Memory

CPU

A‘XOOH?A' MA 2. Access data referenced by pointer

1. Fetch pointer heck
value Check MAC
e
7 '}
MAC+ pQqinter D
OXXX123 ata
0x1234

Throw an error! (Terminate program)

A00134o, MAC’

1. Fetch pointer
value Decrypt
e
Corrupted pointer
—-xxx1234 Data AtLaCk
0xXX1340 code
0x1234 0x1340 0x9786

CSE P564 - Autumn 2024

38

CFl: Control flow integrity

* |[dea: enforce branches to terminate ‘where expected’
* ... which is where?

* Well, at the start of functions!
* We shouldn’t ever ‘call’ into the middle of something!
e Put a special instruction at the start of every function: endbr64

* What about jumps (je, jz..)?

e ... What about ret?

Defense: Shadow stacks

* |dea: protect the backwards edge (return addresses on the stack)!

e Store them on... a different stack!
* A hidden stack

e On function call/return
» Store/retrieve the return address from shadow stack

* Or store on both main stack and shadow stack, and compare for equality at
function return

. %8(2)8{2021 Hardware Support emerges (e.g., Intel Tiger Lake, AMD Ryzen PRO

Challenges With Shadow Stacks

* Where do we put the shadow stack?
e Can the attacker figure out where it is? Can they access it?

 How fast is it to store/retrieve from the shadow stack?
* How big is the shadow stack?
* |s this compatible with all software?

e (Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)

What does a modern program do?

0000122d <foo>: Normal, reasonable gcc config, (no optimizati
122d: f3 of le fb endbr32
1231: 55 push %ebp
1232: 89 e5 mov %esp,%ebp
1234: 53 push %ebx 0 f'
1235; 81 ec 34 01 00 00 sub $0x134,%esp ur custom gcc config
123b: e8 b9 00 00 00 call 1219 < x86.get_pc_thunk.ax>
1240: 05 88 2d 00 00 add $0x2d88, %eax 080491ad <foo>:
1245: 8b 55 08 mov ox8(%ebp) , %edx 80491ad: 55 push %ebp
1248: 89 95 d4 fe ff ff mov %edx, —@lec(%ebp) 80491ae: 89 e5 mov %esp,%ebp
124e: 65 8b @d 14 66 66 60 mov Zgs:@x14,%ecx 80491b0: 81 ec 18 01 00 00 sub $0x118,%esp
1;2: gi i‘g fa "o ;gzi:;gii(“bp) 80491b6: 8b 45 08 mov ©x8(%ebp),%eax
125a: 8b 95 da fe ff f mov -@x12c(%ebp),%edx 80491b9: 83 co 04 add $0x4,%eax
1960 83 c2 o4 2dd $0x4, %edx 80491bc: 8b 00 mov (%eax) ,%eax
1263: 8b 12 mov (%edx) ,%edx 80491be: >0 push %eax
1265 83 ec 08 sub $0x8, %esp 80491b-f: 8d 85 e8 fe ff ff lea -0x118(%ebp) , %eax
1268 52 push %edx 80491c5: 50 push %eax
1269: 8d 95 dc fe ff ff lea -0x124(%ebp) , %edx 80491c6: e8 95 fe ff ff call 8049060 <strcpy@plt>
126f: 52 push %edx 80491cb: 83 c4 08 add $0x8,%esp
1270: 89 c3 mov %»eax, %ebx 80491ce: 90 nop
1272: e8 49 fe ff ff call 10c@ <strcpy@plt> 80491cF: c9 leave
1277: 83 c4 10 add $0x10, %esp 80491d0: c3 ret
127a: 90 nop
127b: 8b 4d f4 mov -oxc(%ebp),%ecx
127e: 65 33 0d 14 00 00 00 xor %gs :0x14,%ecx
1285: 74 05 je 128c <foo+0x5f>
1287: e8 f4 00 00 00 call 1380 < stack chk fail local>
128c: 8b 5d fc mov -0x4(%ebp) ,%ebx
128f: c9 leave
1290: c3 ret

10/9/2024 CSE P564 - Autumn 2024 42

10/9/2024

CSE P564 - Autumn 2024

43

Walit...

Attu/umnak’s gcc config

080491ad <foo>:

80491ad:
80491ae:
80491b0:
80491b6:
80491b9:
80491bc:
80491be:
80491c1:
80491c2:
80491c8:
80491c9:
80491ce:
80491d1:
80491d2:
80491d3:

55
89
81
8b
83
8b
83
50
8d
50
e8
83
90
c9
c3

10/9/2024

e5
ec
45
co
00
ec

85

92
c4

28 01 00 00
08

04 I
08
—

eo fe ff ff

fe ff ff
10

push
mov
sub
mov
add
mov
sub
push
lea
push
call
add
nop
leave
ret

%ebp

%esp, %ebp

$0x128, %esp
ox8(%ebp) , %eax
$0x4, %eax
(%eax),%eax

$0x8, %esp

%eax
-0x120(%ebp) , %eax
%eax

8049060 <strcpy@plt>
$0x10,%esp

080491ad <foo>:
80491ad:
80491ae:
80491b0:
80491b6:
80491b9:
80491bc:

80491be:
80491b7:
80491c5:
80491c6:
80491cb:
80491ce:
80491cT:
80491d0o:

CSE P564 - Autumn 2024

55
89
81
8b
83
8b

50
8d
50
e8
83
90
c9
c3

Our custom gcc config

e5
ec
45
co
00

85

95
c4

18 01 00 00
08
04

e8 fe ff ff

fe ff ff
08

push
mov
sub
mov
add
mov

push
lea
push
call
add
nop
leave
ret

%ebp

%esp, %ebp
$0x118, %esp
ox8(%ebp) , %eax
$0x4, %eax
(%eax),%eax

%eax
-0x118(%ebp) , %eax
%eax

8049060 <strcpy@plt>
$0x8, %esp

44

Other Big Classes of Defenses

* Use safe programming languages, e.g., Java, Rust
 What about legacy C code?

 Static analysis of source code to find overflows

* Dynamic testing: “fuzzing”

10/9/2024 CSE P564 - Autumn 2024

45

Fuzz Testing

* Generate “random” inputs to program
* Sometimes conforming to input structures (file formats, etc.)

* See if program crashes
* |f crashes, found a bug
* Bug may be exploitable

* Surprisingly effective

* Now standard part of development lifecycle

10/9/2024 CSE P564 - Autumn 2024

46

More attack techniques

Other Common Software Security Issues...

Another Class of Vulnerability: (Gradescope)

char buf[80];
void vulnerable() {
long long len = get_int_from_attacker();

SUELP T = R Sl el SR ()2 size t len = read int from _attacker();
int32_t buflen = sizeof(buf); char *buf: - = —

if (len > belen) { . buf = malloc(len+5);
error("length too large”); read(fd, buf, len);

FOUAA: Snippet 2

}
memcpy(buf, p, len);

Snippet 1

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

10/9/2024 CSE 484 - Spring 2024 49

Implicit Cast

char buf[80];
void vulnerable() {
long long len = get _int from attacker();
char *p = get string from attacker();
int32_t buflen = sizeof(buf);
if (len > buflen) { * If lenis negative

error("length too large”); * Then len > buflen may pass
return: * Any memcpy may copy huge amounts of input into buf.
J

}
memcpy(buf, p, len);

Snippet 1

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

10/9/2024 CSE 484 - Spring 2024 50

Integer Overflow

What if len is large (e.g., len = OXFFFFFFFF)?
Then len + 5 =4 (on many platforms)

Result: Allocate a 4-byte buffer, then read a lot
of data into that buffer.

size t len = read int from _attacker();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

Snippet 2

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

10/9/2024 CSE 484 - Spring 2024 51

Another Type of Vulnerability

e Consider this code:

if (access(“file”, W OK) !=0) {
exit(1);
}

fd = open(“file”, O WRONLY);
write(fd, buffer, sizeof(buffer));

e Goal: Write to file only with permission
 What can go wrong?

10/9/2024 CSE 484 - Spring 2024

52

TOCTOU (Race Condition)

e TOCTOU = “Time of Check to Tile of Use”

if (access(“file”, W OK) !=0) {
exit(1);
}

fd = open(“file”, O WRONLY);
write(fd, buffer, sizeof(buffer));

e Goal: Write to file only with permission

 Attacker (in another program) can change meaning of
“file” between access and open:

symlink("/etc/passwd", "file");

10/9/2024 CSE 484 - Spring 2024

53

Something Different: Password Checker

* Functional requirements

 PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
* Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long

10/9/2024 CSE 484 - Spring 2024

54

Password Checker

* Functional requirements

 PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
* Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long

* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for(int 1=0; i<8; i++){
if (RealPwd[i] != CandidatePwd[i])
return FALSE;

}
return TRUE;

* Clearly meets functional description

10/9/2024 CSE 484 - Spring 2024

55

Attacker Model

PwdCheck (RealPwd, CandidatePwd)
for(int i=0; i<8; i++){
if (RealPwd[i] != CandidatePwd[i])
return FALSE;

}
return TRUE;

 Attacker can guess CandidatePwds through some
standard interface

* Naive: Try all 2568 =18,446,744,073,709,551,616
possibilities
* |s it possible to derive password more quickly?

10/9/2024 CSE 484 - Spring 2024

56

Try it

dkohlbre.com/cew

