CSE P564: Lab 1

Buffer Overflows

Part A Due (Sploits 1+2): Thursday, October, 10, 11:59pm
Part B Due (Sploits 3,5,6): Thursday, October, 24, 11:59pm
Extra Credit (Sploit 4,7,8): Thursday, October, 24, 11:59pm
Turn in: All parts on Gradescope, see Deliverables
Individual or group: Individual or partners
Points:

10 per sploit (Extra credit is worth 5)

5 per writeup (Individually done)

EC worth 2 per sploit, 1 per writeup.

Before you start:

e Make sure you can SSH into the CSE Linux servers: umnak .cs.washington.edu
o This uses the same credentials as attu.cs.washington.edu

Overview

Goal:

e The goal of this assignment is to gain hands-on experience with the effects of buffer
overflow bugs and similar problems. We strongly suggest doing all work on
umnak.cs.washington.edu

e You are given the source code for seven exploitable programs (targets/targetN)

e Your goal is to write seven exploit programs (sploitT, ..., sploit7). Program
sploit[i] will execute program . ./targets/target[i], giving it an input you
construct that results in shellcode running.

e Each exploit, when run including checkcode . h (instead of shellcode.h) should print
a success message.

o When run including shellcode.h it should start a new (nested) shell.

e Sploits 1,2,3,5,6 are required. Sploits 4,7,8 are extra credit.

Contents:

First, you will need to make a fork of the lab1 gitlab:
https://gitlab.cs.washington.edu/dkohlbre/buffer-lab-24au
e Please make this fork private so that other students don't find it!
e Share this fork with your partner if you have one.



https://gitlab.cs.washington.edu/dkohlbre/buffer-lab-24au

e Then clone your fork to wherever you are working (probably umnak)

The Targets (targets/)

e Read the source files carefully, along with any header files they include.

o Note that the extra bits included (strlcpy and tmalloc) are standard
implementations: they don’t have bugs we care about, but you will want to read
them and understand what they do.

Make sure to build the targets.
Do not modify the targets, even for debugging purposes.

e You should examine the target binaries, and will find value in using objdump to get the
assembly of the targets.

The Exploits (sploits/)

The sploits/ directory contains skeletons for each of the sploits you will write, a Makefile
for building them, and two options for shellcode: shellcode.h and checkcode.h.
checkcode . h will try to run the check script, rather than start a shell.

Build them with make, do not build manually.

Printf exercises (printf-exercises/)

These are a few small exploitable programs that use printf in bad ways.

Toy1: Your goal is to give an input to the program that will cause it to print out the secret string.
Toy2: Your goal is to give an input to the program that will change the value of a variable such
that the toy prints out a success message.

These are a great way to get some experience working with printf exploits before you try sploit6.

Extra Credit

Targets 4 and 7 are similar to earlier sploits, but with interesting wrinkles.

Target 8 requires a different exploit technique! For 8, you can see that the source code is exactly
the same as target0, except this time, the stack is not executable. You might want to try a
return2libc attack. Here’s a good tutorial for it: RET2LIBC (starting from page 52).

Deliverables (See Gradescope)

Lab 1a:

e Your sploitl.candsploit2.c files.


https://lira.epac.to/DOCS-TECH/Hacking/security.cs.rpi.edu/courses/binexp-spring2015/lectures/11/07_lecture.pdf

e An individual writeup explaining your exploit strategies for sploits 1+2

Lab 1b:

e Your sploit3.c, sploit5.c,and sploit6.c files.
e An individual writeup explaining your exploit strategies for sploits 3, 5, and 6

Writeups

You should produce a brief writeup for each of the sploits you solved. Writeups are individual,
each exploit writeup should be The goal here is that if teammate B discovered the key insight for
exploit3, teammate A needs to really understand that insight to do the writeup. Your writeups
should be in your own words, and written solely by you. If your whole team submits
copies of the same writeups, you won’t get full credit for this.

A writeup should explain what your exploit does, and what goals it accomplishes along the way.
This writeup should be relative to the complexity of the exploit, and should be at most 2
paragraphs long for the most complex ones. Maximum length of 500 words per-exploit. If you
aren’t sure, consider what you'd tell a TA if they asked you “how did you exploit this?”

A sploit 0 writeup is quite simple, and might say:

“Unfortunately, strcpy does not have a bounds check, so the copy is able to go past the end of
the stack buffer in foo if our input is larger than the buffer. We use this to write arbitrary values to
anything above the buffer on the stack. Specifically, we write over the return pointer on the stack
for fo (e.g. the one that points back into main) with the address of the stack buffer buf. This
buffer was first filled with our shellcode, so when foo returns it does not return to main, and
instead executes our shellcode.”

Important: For sploit1, you should not simply copy/lightly reword the sploit0 example above.
That is one of many, many reasonable ways to explain sploitO or 1. Write a new one, in your
own words, to demonstrate that you really understand what’s going on! We do understand that
you and your partner will have similar writeups for many exploits, but make sure you do them
independently.

Miscellaneous

gdb

You will want to use gdb. We recommend using extensions to gdb if you are comfortable
learning them:
e gef (https://hugsy.github.io/gef/) is an exploitation-focused set of gdb extensions. To use

it, download the gef.py file to wherever you are using gdb and then add loading gef . py


https://hugsy.github.io/gef/

to your .gdbinit. In gef, if you lost the original nice display, you can use context to
tell it to reprint it. We highly recommend learning gef .

There's lots of online documentation for gdb. Here's one you might start with: GDB Notes
(formerly hosted at CMU)

gdb is your best friend in this assignment, particularly to understand what's going on.
Specifically, note the disassemble and stepi commands.

The layout command is helpful for seeing multiple things, e.g. layout src will show
the source code of the target and the location of breakpoints.

The info register command is helpful in printing out the contents of registers such
as ebp and esp. The 'info frame' command also tells you useful information, such as
where the return eip is saved.

You may find the x(eXamine) command useful to examine memory (and the different
ways you can print the contents such as /a /i after x.

Since you are running sploit but want to debug target you will need to catch the
switch from sploit to target. This can be done with catch exec which will break
once exec is called. Now you can set your breakpoints for the target. Note that if you
try to set breakpoints in target before you have hit exec, it won’t work as expected.

Hints

Remember 351’s bomblab? This is similar, but there are many points of difference.
Notably this is 32-bit, not 64-bit.

Read Aleph One's "Smashing the Stack for Fun and Profit." Carefully! We also
recommend reading Chien and Szor's "Blended Attacks" paper. These readings will help
you have a good understanding of what happens to the stack, program counter, and
relevant registers before and after a function call, but you may wish to experiment as
well. It will be helpful to have a solid understanding of the basic buffer overflow exploits
before reading the more advanced exploits.

Read “once upon a free()” http:/phrack.org/issues/57/9.html

Read scut's "format strings" paper. You may also wish to read
http://seclists.org/buatraq/2000/Sep/214.

gdb . Really. Before you ask a TA, try walking through before and after your exploit
triggers any state corruption using gdb.

objdump is a great tool as well, it will let you print out the assembly of a program for
further reference.

Make sure that your exploits work on the server if you did some work locally.

Start early!!! Theoretical knowledge of exploits does not readily translate into the
ability to write working exploits. Target1 is relatively simple and the other problems are
quite a bit more complicated.

Find more FAQs answered in the FAQ doc linked on the assignment page.


http://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/gdbnotes.pdf
http://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/gdbnotes.pdf
https://courses.cs.washington.edu/courses/csep564/22au/assignments/smashthestack.pdf
https://www.semanticscholar.org/paper/BLENDED-ATTACKS-EXPLOITS%2C-VULNERABILITIES-AND-IN-Chien-Sz%C3%B6r/6ad8a8944ca7386dfbea96f1efdda863a5833f5c
http://phrack.org/issues/57/9.html
http://courses.cs.washington.edu/courses/cse484/15sp/labs/lab1/formatstrings.pdf
http://seclists.org/bugtraq/2000/Sep/214

Warnings

Aleph One gives code that calculates addresses on the target's stack based on addresses on
the exploit's stack. Addresses on the exploit's stack can change based on how the exploit is
executed (working directory, arguments, environment, etc.); in our testing, we do not guarantee
to execute your exploits as bash does. You must therefore hard-code target stack locations
in your exploits. You should not use a function such as get_sp() in the exploits you hand in.

Credits

This project was originally designed for Dan Boneh and John Mitchell's CS155 course at
Stanford, and was then also extended by Hovav Shacham at UCSD. Thanks Dan, John, and
Hovav! Previous UW security instructors David Kohlbrenner and Yoshi Kohno also contributed
significantly to the UW version of this lab.



