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Logistics

• Lab3a due next week

• One more reading, different expectations for writeup
• See Canvas

• Next week may be run slightly differently
• Part of lecture may not be recorded, I’ll post an announcement
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Lab 3 discussion

• Slightly “role-playing” exercise

• For things like severity in the writeup, we are looking for a coherent 
argument, not a specific value.

• Try and treat this like a software project you work on!

12/6/2022 CSEP 564 - Fall 2022 3



Side-Channel Attacks
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Side-channels: conceptually

• A program’s implementation (that is, the final compiled version) is 
different from the conceptual description

• Side-effects of the difference between the implementation and 
conception can reveal unexpected information
• Thus: Side-channels
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Detour: Covert-channels

• We’ll see many unusual ways to have information flow from thing A 
to thing B

• If this is an intentional usage of side effects, it is a covert channel

• Unintentional means it is a side-channel

• The same mechanism can be used as a covert-channel, or abused as a 
side-channel
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Side Channel Attacks

• Most commonly discussed in the context of cryptosystems

• But also prevalent in many contexts
• E.g., we discussed the TENEX password implementation

• E.g., we discussed browser fingerprinting
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Why should we care about side-channels?

• Compromises happen via ‘simple’ methods
• Phishing

• Straight-forward attacks

• Embedded systems do see side-channel attacks

• “High Security” systems do see side-channel attacks
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And they are getting more impactful…

• “The Secret Network has been vulnerable to the xAPIC and MMIO 
vulnerabilities that were publicly disclosed on August 9, 2022. These 
vulnerabilities could be used to extract the consensus seed, a master 
decryption key for the private transactions on the Secret Network. 
Exposure of the consensus seed would enable the complete 
retroactive disclosure of all Secret-4 private transactions since the 
chain began. We have helped Secret Network to deploy mitigations, 
especially the Registration Freeze on October 5, 2022.”
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Timing Side-Channels

• Duration of a program (or operation) reveals information

• TENEX case
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TENEX attack (for real)

• TENEX had an early memory paging system

• The original attack used page faults, not timing
• Timing would’ve also worked ☺
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Timing side-channels: round 2

• Cryptographic implementations fall down
• #1 target for timing attacks

• Extremely common to find vulnerabilities

• “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and 
Other Systems”
• Was very far from the last paper on the topic
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Attacking cryptography with side-channels

• ANY leakage is bad
• E.g. 1 bit of key leaking is ‘catastrophic’

• Cryptographic implementations are complex
• Many layers of protocols
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Example Timing Attacks

• RSA: Leverage key-dependent timings of modular exponentiations
• https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-

other-systems/

• http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

• Block Ciphers: Leverage key-dependent cache hits/misses
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How odd can this get?

• Lets look at the sequel to Paul Stone’s attacks
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The SVG-filter pixel-stealing timing attack

● Attacker:
○ Hosts webpage

● Victim:
○ Visits attacker
○ Logged into target

● Target:
○ Website hosting private visual 

information

attacker.com targeted.com
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SVG-filter Pixel-stealing attack overview
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SVG-filter Pixel-stealing attack overview
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Paul Stone’s Version
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Stone, 2013
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Stone, 2013
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Stone, 2013
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Implemented with 
Floating-point math
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Variable time instructions?
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Intel i5-4460 double-precision floating-point multiply
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Intel i5-4460 double-precision floating-point multiply
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Intel i5-4460 double-precision floating-point multiply

secret x 1e-320
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Intel i5-4460 double-precision floating-point multiply
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Intel i5-4460 double-precision floating-point divide
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Can we find unsafe math operations?
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Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);
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Firefox lighting code - Core loop
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Attacker JS parameter
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Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
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Attacker JS parameter Secret Pixel data
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Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
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Secret Pixel data
{1,0}
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Firefox lighting code - Core loop
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13  cycles -----------
283 cycles -----------
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Attack in Action

Attacker’s Web Server

Very Real News Website

Very important news here
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Pixel stealing takeaways

● Combines web security, hardware knowledge, and software design

● Side-channels are real, and viable ☺

● And they just keep coming back
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Aside: Power side-channels
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Power-side channels

● The amount of power used by a computer is related to what it is doing

● How can you use this?

○ Think broadly.

○ What if power is only coarsely related to work? (E.g. doing a GPU operation vs a 
CPU one)

○ What if power is very finely related to work? (E.g. adding 0+0 takes less power 
than adding 0xffffffff + 0xffffffff)

● How might you, the attacker, measure power usage?
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Cache side-channels
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Cache side-channels

• Idea: The cache’s current state implies something about prior 
memory accesses

• Insight: Prior memory accesses can tell you a lot about a program!
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Cache Basics

• Cache lines : fixed-size units of data

• Cache set : holds multiple cache lines

• Set index : assigns cache line to cache set

• Eviction : removing cache lines to make room

• L1, L2, L3 : different levels of cache

• Inclusive : lines in L1/L2 must also be in L3Cache set 0 Cache set 2Cache set 1

64 bytes

L3 Cache

L2 Cache L2 Cache

L1 
Inst

L1 
Data

L1 
Inst

L1 
Data

Core 1 Core 2
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Many thanks to Craig Disselkoen for the animations.
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Cache Attacks: Structure

AnalysisActive AttackPre-Attack
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Many thanks to Craig Disselkoen for the animations.

12/6/2022 CSEP 564 - Fall 2022



Timing threshold

Eviction set

Prime 
targeted 
set

Wait
[Timed]
Prime targeted 
set

Victim access if
time > threshold

AnalysisActive AttackPre-Attack

Victim accesses targeted set

FLUSH+RELOADPRIME+PROBE

Pre-existing data Attacker’s data Victim’s data

Cache set 0 Cache set 2Cache set 1

64

(requires shared memory)

Many thanks to Craig Disselkoen for the animations.
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FLUSH + RELOAD

• Even simpler!

• Kick line L out of cache

• Let victim run

• Access L
• Fast? Victim touched it

• Slow? Victim didn’t touch it
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Cache attacks wrapup

• Cache attacks are a core element of many side-channels

• Generally “assumed to work” these days

• New variations/tricks/mitigations published constantly

• Randomized caches are the current hotness
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Speculative Execution Attacks –
Spectre & Co.
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Paper Discussion Time!

“Spectre Attacks: Exploiting Speculative Execution”
Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas 

Prescher, Michael Schwarz, Yuval Yarom

Choose one/more and discuss with neighbors:

• What does Variant 1 (Bounds-check-bypass) let an attacker do?

• What does Variant 2 (Indirect Branches) let an attacker do?

• Why is a cache side-channel critical to these attacks?

• What code might contain a Spectre ‘gadget’?

• Speculative execution was a known optimization for 20 years, why now?
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Spectre + Friends

• First reported in 2017

• Disclosed in 2018
• https://googleprojectzero.blogspot.com/2018/01/reading-privileged-

memory-with-side.html

• Novel class of attack: speculative execution attacks
• Aka: Spectre-class attacks

• (Academic paper published 2019… long story)
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Speculative Execution (the fast version)

• All modern processors are capable of speculative execution

• How much, in what ways, and when differs

• Speculative execution allows a processor to ‘guess’ about the result of 
an instruction
• And either confirm or correct itself later

• A branch predictor bases a guess on the program’s previous behavior

12/6/2022 CSEP 564 - Fall 2022 70



Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];

int x = *address;

if( x < 100 ){

y = globalarray[10];

}

return y;

}

12/6/2022 CSEP 564 - Fall 2022 71



Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];

int x = *address;

if( x < 100 ){

y = globalarray[10];

}

return y;

}

12/6/2022 CSEP 564 - Fall 2022 72



Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];

int x = *address;

if( x < 100 ){

y = globalarray[10];

}

return y;

}

12/6/2022 CSEP 564 - Fall 2022 73



Example: Speculate on indirect branch
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int caller(int(*fptr)()){

int y = fptr();

return y;

}

int foo(){

return 10;

}

int bar(){

return 0;

}



What happens when we speculate wrong?

• Eventually, a squash occurs
• All work done under the incorrect guess is undone

• Bad guess on branch?
• Undo everything in the branch!

• Undo everything related!

• World reverts back to before guess …almost
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Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];  // Brought into cache

int x = *address; // Brought into cache

if( x < 100 ){

y = globalarray[10]; // Brought into cache maybe

}

return y;

}
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Speculative attacks

Three stages:

1. Mistrain predictor

2. Run mistrained code with adversarial input

3. Recover leftover state information
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Spectre variant 1

• “Bounds-check bypass”

if( x < len(array))

array[x];
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Spectre variant 1

• “Bounds-check bypass”

if( x < len(array))

array2[array[x] * 4096];
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Spectre variant 2

• “Branch target injection”
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int caller(int(*fptr)()){

int y = fptr(x);

return y;

}

int foo(x){

array2[array1[x] * 4096];

}

int bar(x){

return x;

}



It’s A Party
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More and more:

● Foreshadow – attacks SGX

● SPOILER – mem dependence

● Etc. etc. 



What about ‘Meltdown’?

• Also called Spectre variant 3 (“rogue data cache load”)

• Spectre v1/v2 require the victim program to have the vulnerable code 
pattern
• Just like the victim program has to have a buffer overflow!

• Spectre is a global problem with speculation conceptually

• Meltdown allows the attacking program to do whatever it wants!
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Meltdown: An Intel specific problem

• Memory permissions weren’t checked during speculation
• At least for some cases

"Imagine the following instruction executed in usermode
mov rax,[somekernelmodeaddress]

It will cause an interrupt when retired, [...]"
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Enduring legacy: MDS

• Microarchitectural Data Sampling attacks
• Related type of speculative attack

• Still ‘a bug’ not ‘a feature’

• Leaks from ‘leftover’ or ‘in-flight’ data via:
• Store/forward buffers

• Uncacheable memory

• Line fill buffers

• L1 cache

• Load ports
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Speculative Attacks wrapup

• Spectre vulnerabilities are here to stay, for a long time

• MDS+Meltdown (hopefully) aren’t
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Pollev

• Browsers had to scramble to deal with Spectre type vulnerabilities as 
they were exploitable from webpages and allowed for arbitrary 
memory reads.

• How would you have tried to handle receiving a disclosure like this as 
the browser vendors?

• You can either discuss technical ideas or policy objectives for a 
strategy to handle the vulnerabilities.
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Frequency Attacks – “Hertzbleed”
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DVFS on a modern Intel CPU

88
Hertzbleed: Turning Power Side-Channel Attacks Into Remote 

Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella
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DVFS on a modern Intel CPU
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DVFS on a modern Intel CPU
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Frequency Depends on Power
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Frequency Depends on Data

• Only vary the data values being processed (“Input”).

Hertzbleed: Turning Power Side-Channel Attacks Into Remote 
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella
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Frequency Depends on Data

• Only vary the data values being processed (“Input”).

Hertzbleed: Turning Power Side-Channel Attacks Into Remote 
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella
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Frequency Depends on Data

• Only vary the data values being processed (“Input”).

Hertzbleed: Turning Power Side-Channel Attacks Into Remote 
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella
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Theory:

• If power depends on secrets

• And heat depends on power

• And processor frequency depends on heat+power

• And execution time depends on frequency

• Thus, execution time depends on secrets
• Even if the code takes the exact same number of CPU cycles no matter what!
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Remote Timing Attack Model

Hertzbleed: Turning Power Side-Channel Attacks Into Remote 
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella
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Remote Timing Attack Model

Hertzbleed: Turning Power Side-Channel Attacks Into Remote 
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella
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Remote Timing Attack Model

Hertzbleed: Turning Power Side-Channel Attacks Into Remote 
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella
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Remote Timing Attack Results

CIRCL:

Recovered full key 
in 36 hours

Hertzbleed: Turning Power Side-Channel Attacks Into Remote 
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella
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Remote Timing Attack Results

CIRCL:

Recovered full key 
in 36 hours

PQCrypto-SIDH:

Recovered full key 
in 89 hours

Hertzbleed: Turning Power Side-Channel Attacks Into Remote 
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella
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Mitigating Side-Channels
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Several approaches

• Remove the source of leakage in code

• Fix the problem in hardware

• Mask the leakage

• Isolation
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Spectre Defenses

• Disable User/Kernel memory space sharing
• KAISER/KPTI defense

• “Fence” dangerous code patterns
• Extra instruction that block speculation past some point

• Microcode updates for processors
• MDS-class fixes
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Cache Side-Channel Defenses

• Isolation:
• Partition the cache into discrete parts, don’t share them

• Randomization:
• Cache placement is randomized

• Code changes:
• Write code that never makes a secret-dependent memory access
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Generalized Timing Attacks

• Rewrite code to be timing-independent
• “Always do” every operation, don’t branch

• Delay results until the maximum response time

• Randomize timing information

• Granularize timing information
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Wrapping up side-channels
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