
CSEP 564 : Computer Security and Privacy

Side-Channel Attacks

Fall 2022

David Kohlbrenner

dkohlbre@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides
and materials ...

mailto:dkohlbre@cs.washington.edu

Logistics

• Lab3a due next week

• One more reading, different expectations for writeup
• See Canvas

• Next week may be run slightly differently
• Part of lecture may not be recorded, I’ll post an announcement

12/6/2022 CSEP 564 - Fall 2022 2

Lab 3 discussion

• Slightly “role-playing” exercise

• For things like severity in the writeup, we are looking for a coherent
argument, not a specific value.

• Try and treat this like a software project you work on!

12/6/2022 CSEP 564 - Fall 2022 3

Side-Channel Attacks

12/6/2022 CSEP 564 - Fall 2022 4

Side-channels: conceptually

• A program’s implementation (that is, the final compiled version) is
different from the conceptual description

• Side-effects of the difference between the implementation and
conception can reveal unexpected information
• Thus: Side-channels

12/6/2022 CSEP 564 - Fall 2022 5

Detour: Covert-channels

• We’ll see many unusual ways to have information flow from thing A
to thing B

• If this is an intentional usage of side effects, it is a covert channel

• Unintentional means it is a side-channel

• The same mechanism can be used as a covert-channel, or abused as a
side-channel

12/6/2022 CSEP 564 - Fall 2022 6

Side Channel Attacks

• Most commonly discussed in the context of cryptosystems

• But also prevalent in many contexts
• E.g., we discussed the TENEX password implementation

• E.g., we discussed browser fingerprinting

12/6/2022 CSEP 564 - Fall 2022 7

Why should we care about side-channels?

• Compromises happen via ‘simple’ methods
• Phishing

• Straight-forward attacks

• Embedded systems do see side-channel attacks

• “High Security” systems do see side-channel attacks

12/6/2022 CSEP 564 - Fall 2022 8

And they are getting more impactful…

• “The Secret Network has been vulnerable to the xAPIC and MMIO
vulnerabilities that were publicly disclosed on August 9, 2022. These
vulnerabilities could be used to extract the consensus seed, a master
decryption key for the private transactions on the Secret Network.
Exposure of the consensus seed would enable the complete
retroactive disclosure of all Secret-4 private transactions since the
chain began. We have helped Secret Network to deploy mitigations,
especially the Registration Freeze on October 5, 2022.”

12/6/2022 CSEP 564 - Fall 2022 9

https://scrt.network/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/stale-data-read-from-xapic.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html

Timing Side-Channels

• Duration of a program (or operation) reveals information

• TENEX case

12/6/2022 CSEP 564 - Fall 2022 10

TENEX attack (for real)

• TENEX had an early memory paging system

• The original attack used page faults, not timing
• Timing would’ve also worked ☺

12/6/2022 CSEP 564 - Fall 2022 11

Timing side-channels: round 2

• Cryptographic implementations fall down
• #1 target for timing attacks

• Extremely common to find vulnerabilities

• “Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and
Other Systems”
• Was very far from the last paper on the topic

12/6/2022 CSEP 564 - Fall 2022 12

https://paulkocher.com/doc/TimingAttacks.pdf

Attacking cryptography with side-channels

• ANY leakage is bad
• E.g. 1 bit of key leaking is ‘catastrophic’

• Cryptographic implementations are complex
• Many layers of protocols

12/6/2022 CSEP 564 - Fall 2022 13

Example Timing Attacks

• RSA: Leverage key-dependent timings of modular exponentiations
• https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-

other-systems/

• http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

• Block Ciphers: Leverage key-dependent cache hits/misses

12/6/2022 CSEP 564 - Fall 2022 14

https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-other-systems/
http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

How odd can this get?

• Lets look at the sequel to Paul Stone’s attacks

12/6/2022 CSEP 564 - Fall 2022 15

The SVG-filter pixel-stealing timing attack

● Attacker:
○ Hosts webpage

● Victim:
○ Visits attacker
○ Logged into target

● Target:
○ Website hosting private visual

information

attacker.com targeted.com

16

The SVG-filter pixel-stealing timing attack

● Attacker:
○ Hosts webpage

● Victim:
○ Visits attacker
○ Logged into target

● Target:
○ Website hosting private visual

information

attacker.com

targeted.com

iframe

17

The SVG-filter pixel-stealing timing attack

● Attacker:
○ Hosts webpage

● Victim:
○ Visits attacker
○ Logged into target

● Target:
○ Website hosting private visual

information

attacker.com

targeted.com

iframe

???

18

The SVG-filter pixel-stealing timing attack

● Attacker:
○ Hosts webpage

● Victim:
○ Visits attacker
○ Logged into target

● Target:
○ Website hosting private visual

information

attacker.com

targeted.com

iframe

19

SVG-filter Pixel-stealing attack overview

12/6/2022 CSEP 564 - Fall 2022 20

SVG-filter Pixel-stealing attack overview

21

SVG-filter Pixel-stealing attack overview

22

SVG-filter Pixel-stealing attack overview

23

SVG-filter Pixel-stealing attack overview

24

SVG-filter Pixel-stealing attack overview

25

SVG-filter Pixel-stealing attack overview

26

Paul Stone’s Version

27

Stone, 2013

28

Stone, 2013

29

Stone, 2013

30

31

32

Implemented with
Floating-point math

33

Variable time instructions?

34

Intel i5-4460 double-precision floating-point multiply

12/6/2022 CSEP 564 - Fall 2022 35

Intel i5-4460 double-precision floating-point multiply

12/6/2022 CSEP 564 - Fall 2022 36

Intel i5-4460 double-precision floating-point multiply

secret x 1e-320

12/6/2022 CSEP 564 - Fall 2022 37

Intel i5-4460 double-precision floating-point multiply

12/6/2022 CSEP 564 - Fall 2022 38

Intel i5-4460 double-precision floating-point divide

12/6/2022 CSEP 564 - Fall 2022 39

43

Can we find unsafe math operations?

44

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);
Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

45

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

46

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

47

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

48

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

Attacker JS parameter

49

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

Attacker JS parameter Secret Pixel data

50

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

Attacker JS parameter

subnormal

Secret Pixel data
{1,0}

51

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

Attacker JS parameter

subnormal

Secret Pixel data
{1,0}

52

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

Attacker JS parameter

subnormal

Secret Pixel data
{1,0}

53

Firefox lighting code - Core loop

int32_t sourceIndex = y * sourceStride + x;
int32_t targetIndex = y * targetStride + 4 * x;

Point3D normal = GenerateNormal(sourceData, sourceStride,
x, y, mSurfaceScale,
aKernelUnitLengthX, aKernelUnitLengthY);

IntPoint pointInFilterSpace(aRect.x + x, aRect.y + y);

Float Z = mSurfaceScale * sourceData[sourceIndex] / 255.0f;
Point3D pt(pointInFilterSpace.x, pointInFilterSpace.y, Z);
Point3D rayDir = mLight.GetVectorToLight(pt);
uint32_t color = mLight.GetColor(lightColor, rayDir);

Attacker JS parameter

subnormal

Secret Pixel data
{1,0}

13 cycles -----------
283 cycles -----------

54

55

Attack in Action

Attacker’s Web Server

Very Real News Website

Very important news here

56

Pixel stealing takeaways

● Combines web security, hardware knowledge, and software design

● Side-channels are real, and viable ☺

● And they just keep coming back

57

Aside: Power side-channels

58

Power-side channels

● The amount of power used by a computer is related to what it is doing

● How can you use this?

○ Think broadly.

○ What if power is only coarsely related to work? (E.g. doing a GPU operation vs a
CPU one)

○ What if power is very finely related to work? (E.g. adding 0+0 takes less power
than adding 0xffffffff + 0xffffffff)

● How might you, the attacker, measure power usage?

59

Cache side-channels

60

Cache side-channels

• Idea: The cache’s current state implies something about prior
memory accesses

• Insight: Prior memory accesses can tell you a lot about a program!

12/6/2022 CSEP 564 - Fall 2022 61

Cache Basics

• Cache lines : fixed-size units of data

• Cache set : holds multiple cache lines

• Set index : assigns cache line to cache set

• Eviction : removing cache lines to make room

• L1, L2, L3 : different levels of cache

• Inclusive : lines in L1/L2 must also be in L3Cache set 0 Cache set 2Cache set 1

64 bytes

L3 Cache

L2 Cache L2 Cache

L1
Inst

L1
Data

L1
Inst

L1
Data

Core 1 Core 2

62

Many thanks to Craig Disselkoen for the animations.

12/6/2022 CSEP 564 - Fall 2022

Cache Attacks: Structure

AnalysisActive AttackPre-Attack

63

Many thanks to Craig Disselkoen for the animations.

12/6/2022 CSEP 564 - Fall 2022

Timing threshold

Eviction set

Prime
targeted
set

Wait
[Timed]
Prime targeted
set

Victim access if
time > threshold

AnalysisActive AttackPre-Attack

Victim accesses targeted set

FLUSH+RELOADPRIME+PROBE

Pre-existing data Attacker’s data Victim’s data

Cache set 0 Cache set 2Cache set 1

64

(requires shared memory)

Many thanks to Craig Disselkoen for the animations.

12/6/2022 CSEP 564 - Fall 2022

FLUSH + RELOAD

• Even simpler!

• Kick line L out of cache

• Let victim run

• Access L
• Fast? Victim touched it

• Slow? Victim didn’t touch it

12/6/2022 CSEP 564 - Fall 2022 65

Cache attacks wrapup

• Cache attacks are a core element of many side-channels

• Generally “assumed to work” these days

• New variations/tricks/mitigations published constantly

• Randomized caches are the current hotness

12/6/2022 CSEP 564 - Fall 2022 66

Speculative Execution Attacks –
Spectre & Co.

12/6/2022 CSEP 564 - Fall 2022 67

Paper Discussion Time!

“Spectre Attacks: Exploiting Speculative Execution”
Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

Prescher, Michael Schwarz, Yuval Yarom

Choose one/more and discuss with neighbors:

• What does Variant 1 (Bounds-check-bypass) let an attacker do?

• What does Variant 2 (Indirect Branches) let an attacker do?

• Why is a cache side-channel critical to these attacks?

• What code might contain a Spectre ‘gadget’?

• Speculative execution was a known optimization for 20 years, why now?

CSEP 564- Fall 202212/6/2022 68

Spectre + Friends

• First reported in 2017

• Disclosed in 2018
• https://googleprojectzero.blogspot.com/2018/01/reading-privileged-

memory-with-side.html

• Novel class of attack: speculative execution attacks
• Aka: Spectre-class attacks

• (Academic paper published 2019… long story)

12/6/2022 CSEP 564 - Fall 2022 69

Speculative Execution (the fast version)

• All modern processors are capable of speculative execution

• How much, in what ways, and when differs

• Speculative execution allows a processor to ‘guess’ about the result of
an instruction
• And either confirm or correct itself later

• A branch predictor bases a guess on the program’s previous behavior

12/6/2022 CSEP 564 - Fall 2022 70

Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];

int x = *address;

if(x < 100){

y = globalarray[10];

}

return y;

}

12/6/2022 CSEP 564 - Fall 2022 71

Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];

int x = *address;

if(x < 100){

y = globalarray[10];

}

return y;

}

12/6/2022 CSEP 564 - Fall 2022 72

Example: Speculate on branch

int foo(int* address){

int y = globalarray[0];

int x = *address;

if(x < 100){

y = globalarray[10];

}

return y;

}

12/6/2022 CSEP 564 - Fall 2022 73

Example: Speculate on indirect branch

12/6/2022 CSEP 564 - Fall 2022 74

int caller(int(*fptr)()){

int y = fptr();

return y;

}

int foo(){

return 10;

}

int bar(){

return 0;

}

What happens when we speculate wrong?

• Eventually, a squash occurs
• All work done under the incorrect guess is undone

• Bad guess on branch?
• Undo everything in the branch!

• Undo everything related!

• World reverts back to before guess …almost

12/6/2022 CSEP 564 - Fall 2022 75

Example: Speculate on branch

int foo(int* address){

int y = globalarray[0]; // Brought into cache

int x = *address; // Brought into cache

if(x < 100){

y = globalarray[10]; // Brought into cache maybe

}

return y;

}

12/6/2022 CSEP 564 - Fall 2022 76

Speculative attacks

Three stages:

1. Mistrain predictor

2. Run mistrained code with adversarial input

3. Recover leftover state information

12/6/2022 CSEP 564 - Fall 2022 77

Spectre variant 1

• “Bounds-check bypass”

if(x < len(array))

array[x];

12/6/2022 CSEP 564 - Fall 2022 78

Spectre variant 1

• “Bounds-check bypass”

if(x < len(array))

array2[array[x] * 4096];

12/6/2022 CSEP 564 - Fall 2022 79

Spectre variant 2

• “Branch target injection”

12/6/2022 CSEP 564 - Fall 2022 80

int caller(int(*fptr)()){

int y = fptr(x);

return y;

}

int foo(x){

array2[array1[x] * 4096];

}

int bar(x){

return x;

}

It’s A Party

12/6/2022 CSEP 564 - Fall 2022 81[From Canella et al.]

More and more:

● Foreshadow – attacks SGX

● SPOILER – mem dependence

● Etc. etc.

What about ‘Meltdown’?

• Also called Spectre variant 3 (“rogue data cache load”)

• Spectre v1/v2 require the victim program to have the vulnerable code
pattern
• Just like the victim program has to have a buffer overflow!

• Spectre is a global problem with speculation conceptually

• Meltdown allows the attacking program to do whatever it wants!

12/6/2022 CSEP 564 - Fall 2022 82

Meltdown: An Intel specific problem

• Memory permissions weren’t checked during speculation
• At least for some cases

"Imagine the following instruction executed in usermode
mov rax,[somekernelmodeaddress]

It will cause an interrupt when retired, [...]"

12/6/2022 CSEP 564 - Fall 2022 83

Enduring legacy: MDS

• Microarchitectural Data Sampling attacks
• Related type of speculative attack

• Still ‘a bug’ not ‘a feature’

• Leaks from ‘leftover’ or ‘in-flight’ data via:
• Store/forward buffers

• Uncacheable memory

• Line fill buffers

• L1 cache

• Load ports

12/6/2022 CSEP 564 - Fall 2022 84

https://mdsattacks.com/

Speculative Attacks wrapup

• Spectre vulnerabilities are here to stay, for a long time

• MDS+Meltdown (hopefully) aren’t

12/6/2022 CSEP 564 - Fall 2022 85

Pollev

• Browsers had to scramble to deal with Spectre type vulnerabilities as
they were exploitable from webpages and allowed for arbitrary
memory reads.

• How would you have tried to handle receiving a disclosure like this as
the browser vendors?

• You can either discuss technical ideas or policy objectives for a
strategy to handle the vulnerabilities.

12/6/2022 CSEP 564 - Fall 2022 86

Frequency Attacks – “Hertzbleed”

12/6/2022 CSEP 564 - Fall 2022 87

DVFS on a modern Intel CPU

88
Hertzbleed: Turning Power Side-Channel Attacks Into Remote

Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

DVFS on a modern Intel CPU

89
Hertzbleed: Turning Power Side-Channel Attacks Into Remote

Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

[⋅⋅⋅]

DVFS on a modern Intel CPU

90
Hertzbleed: Turning Power Side-Channel Attacks Into Remote

Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Max

Turbo

State

[⋅⋅⋅]

DVFS on a modern Intel CPU

91
Hertzbleed: Turning Power Side-Channel Attacks Into Remote

Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Max

Turbo

State

Steady

State

[⋅⋅⋅]

DVFS on a modern Intel CPU

92
Hertzbleed: Turning Power Side-Channel Attacks Into Remote

Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Steady

State

[⋅⋅⋅]

Frequency Depends on Power

93
Hertzbleed: Turning Power Side-Channel Attacks Into Remote

Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Frequency Depends on Power

94
Hertzbleed: Turning Power Side-Channel Attacks Into Remote

Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

Power Consumption

Frequency Depends on Power

95
Hertzbleed: Turning Power Side-Channel Attacks Into Remote

Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

CPU FrequencyPower Consumption

Frequency Depends on Data

• Only vary the data values being processed (“Input”).

Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

96

Frequency Depends on Data

• Only vary the data values being processed (“Input”).

Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

97

Power Consumption

Frequency Depends on Data

• Only vary the data values being processed (“Input”).

Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

98

CPU FrequencyPower Consumption

Theory:

• If power depends on secrets

• And heat depends on power

• And processor frequency depends on heat+power

• And execution time depends on frequency

• Thus, execution time depends on secrets
• Even if the code takes the exact same number of CPU cycles no matter what!

12/6/2022 CSEP 564 - Fall 2022 99

Remote Timing Attack Model

Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

100

Client
Server

Remote Timing Attack Model

Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

101

Ciphertext c’

Client
Server

Decap(sk, c’)

CIRCL

PQCrypto-SIDH

Remote Timing Attack Model

Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

102

Ciphertext c’

Client
Server

Decap(sk, c’)

ACK!

How long it takes to

finish n concurrent

requests

CIRCL

PQCrypto-SIDH

Remote Timing Attack Results

CIRCL:

Recovered full key
in 36 hours

Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

103

Remote Timing Attack Results

CIRCL:

Recovered full key
in 36 hours

PQCrypto-SIDH:

Recovered full key
in 89 hours

Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86 – Yingchen Wang & Riccardo Paccagnella

104

Mitigating Side-Channels

12/6/2022 CSEP 564 - Fall 2022 105

Several approaches

• Remove the source of leakage in code

• Fix the problem in hardware

• Mask the leakage

• Isolation

12/6/2022 CSEP 564 - Fall 2022 106

Spectre Defenses

• Disable User/Kernel memory space sharing
• KAISER/KPTI defense

• “Fence” dangerous code patterns
• Extra instruction that block speculation past some point

• Microcode updates for processors
• MDS-class fixes

12/6/2022 CSEP 564 - Fall 2022 107

Cache Side-Channel Defenses

• Isolation:
• Partition the cache into discrete parts, don’t share them

• Randomization:
• Cache placement is randomized

• Code changes:
• Write code that never makes a secret-dependent memory access

12/6/2022 CSEP 564 - Fall 2022 108

Generalized Timing Attacks

• Rewrite code to be timing-independent
• “Always do” every operation, don’t branch

• Delay results until the maximum response time

• Randomize timing information

• Granularize timing information

12/6/2022 CSEP 564 - Fall 2022 109

110

Wrapping up side-channels

111

