
CSEP 564: Computer Security and Privacy

Cryptography [2]

Fall 2022

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

CSEP 564 - Fall 2022

Logistics

• Lab1a is in!
• Every group turned in something on-time, excellent!

• Lab1b is due next week
• Wednesday is current deadline, may get pushed to thur/fri

• Lab2 goes out next week when lab1b is due

CSEP 564 - Fall 2022

Paper Discussion Time!

“Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems”

Paul C. Kocher

• Quick discussion only

• We’ll revisit timing channels later in the quarter, time permitting…

CSEP 564 - Fall 2022

DES and 56 bit keys

• 56 bit keys are quite short

• 1999: EFF DES Crack + distributed machines
• < 24 hours to find DES key

• DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

CSEP 564 - Fall 2022

3DES

• Two-key 3DES increases security
of DES by doubling the key length

CSEP 564 - Fall 2022

Plaintext

Ciphertext

Key1 DES

Key2 DES-1

Key1 DES

But wait… what about 2DES?

• Suppose you are given plaintext-ciphertext
pairs (P1,C1), (P2,C2), (P3,C3)

• Suppose Key1 and Key2 are each 56-bits
long

• Can you figure out Key1 and Key2 if you try
all possible values for both (2112

possibilities) → Yes

• Can you figure out Key1 and Key2 more
efficiently than that? → Discuss!

CSEP 564 - Fall 2022

Plaintext

Ciphertext

Key1 DES

Key2 DES

But wait… what about 2DES?

• Meet-in-the-middle attack: guess K1 and K2 independently!

CSEP 564 - Fall 2022

Meet-in-the-Middle Attack

• Guess 256 values for Key1, and create a
table from P1 to a middle value M1 for
each key guess (M1G1, M1G2, M1G3, …)

• Guess 256 values for Key2, and create a
table from C1 to a middle value M’1 for
each key guess (M’1G1, M’1G2, M’1G3, …)

• Look for collision in the middle values → if
only one collision, found Key1 and Key2;
otherwise repeat for (P2,C2), …

CSEP 564 - Fall 2022

Plaintext

Ciphertext

Key1 DES

Key2 DES

CSEP 564 - Fall 2022

Defining the strength of a scheme

• Effective Key Strength
• Amount of ‘work’ the adversary needs to do

• DES: 56-bits
• 2^56 encryptions to try ‘all keys’

• 2DES: 57-bits
• 2*(2^56) encryptions = 2^57

• 3DES: 112-bits (or sometimes 80-bits)
• Meet-in-the-middle + more work = 2^112 (for 3 keys, e.g. K1, K2, K3)

• Various attacks = 2^80 (for 2 keys, e.g. K1, K2, K1)

CSEP 564 - Fall 2022

Standard Block Ciphers

• DES: Data Encryption Standard
• Feistel structure: builds invertible function using non-invertible ones

• Invented by IBM, issued as federal standard in 1977

• 64-bit blocks, 56-bit key + 8 bits for parity

• AES: Advanced Encryption Standard
• New federal standard as of 2001

• NIST: National Institute of Standards & Technology

• Based on the Rijndael algorithm

• Selected via an open process

• 128-bit blocks, keys can be 128, 192 or 256 bits

CSEP 564 - Fall 2022

Encrypting a Large Message

• So, we’ve got a good block cipher, but our plaintext is larger than 128-
bit block size

• What should we do?

CSEP 564 - Fall 2022

128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit ciphertext

Electronic Code Book (ECB) Mode

CSEP 564 - Fall 2022

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

Electronic Code Book (ECB) Mode

CSEP 564 - Fall 2022

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

Electronic Code Book (ECB) Mode

CSEP 564 - Fall 2022

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

• Identical blocks of plaintext produce identical blocks of ciphertext
• No integrity checks: can mix and match blocks

Information Leakage in ECB Mode

CSEP 564 - Fall 2022

Encrypt in ECB mode

Oops

CSEP 564 - Fall 2022

https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-
look-at-the-confidentiality-of-zoom-meetings/

https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/

Cipher Block Chaining (CBC) Mode: Encryption

CSEP 564 - Fall 2022

Sent with ciphertext

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher


Initialization
vector
(random)

  key key key key

• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

CBC Mode: Decryption

CSEP 564 - Fall 2022

plaintext

ciphertext

decrypt decrypt decrypt decrypt


Initialization
vector   key key key key

ECB vs. CBC

CSEP 564 - Fall 2022
slide 21

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

Initialization Vector Dangers

CSEP 564 - Fall 2022

Initialization
vector
(supposed to
be random)

plaintext

ciphertext

DES DES DES DES

   

Found in the source code for Diebold voting machines:
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

totalSize, DESKEY, NULL, DES_ENCRYPT)

key key key key

Counter Mode (CTR): Encryption

CSEP 564 - Fall 2022

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt

Key Key Key Key

ciphertext

• Identical blocks of plaintext encrypted differently
• Still does not guarantee integrity; Fragile if ctr repeats

Information Leakage in CTR Mode (poorly)

CSEP 564 - Fall 2022

Encrypt in CTR mode:
But with the same
counter for each
frame!

Counter Mode (CTR): Decryption

CSEP 564 - Fall 2022

ct ct ctct

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

pt pt pt pt

Key Key Key Key

⊕ ⊕ ⊕ ⊕

Ok, so what mode do I use?

• Don’t choose a mode, use established libraries ☺

• Good modes:
• GCM - Galois/Counter Mode

• CTR (sometimes)

• Even ECB is fine in ‘the right circumstance’

• AES-128 is standard
• Be concerned if something says “AES 1024”…

CSEP 564 - Fall 2022

https://research.kudelskisecurity.com/2022/05/11/practical-bruteforce-of-aes-1024-military-grade-encryption/

When is an Encryption Scheme “Secure”?

• Hard to recover the key?

• What if attacker can learn plaintext without learning the key?
• Hard to recover plaintext from ciphertext?

• What if attacker learns some bits or some function of bits?

CSEP 564 - Fall 2022

How Can a Cipher Be Attacked?

• Attackers knows ciphertext and encryption algorithm
• What else does the attacker know? Depends on the application in which the

cipher is used!

• Ciphertext-only attack

• KPA: Known-plaintext attack (stronger)
• Knows some plaintext-ciphertext pairs

• CPA: Chosen-plaintext attack (even stronger)
• Can obtain ciphertext for any plaintext of choice

• CCA: Chosen-ciphertext attack (very strong)
• Can decrypt any ciphertext except the target

CSEP 564 - Fall 2022

Chosen Plaintext Attack

CSEP 564 - Fall 2022

Crook #1 changes
his PIN to a number
of his choice

cipher(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

Very Informal Intuition

• Security against chosen-plaintext attack (CPA)
• Ciphertext leaks no information about the plaintext

• Even if the attacker correctly guesses the plaintext, he cannot verify his guess

• Every ciphertext is unique, encrypting same message twice produces
completely different ciphertexts
• Implication: encryption must be randomized or stateful

• Security against chosen-ciphertext attack (CCA)
• Integrity protection – it is not possible to change the plaintext by modifying

the ciphertext

CSEP 564 - Fall 2022

Minimum security
requirement for a
modern encryption scheme

The shape of the formal approach

• INDistinguishability under Chosen Plaintext Attack
• IND-CPA

• Formalized cryptographic game

• Adversary submits pairs of plaintexts (M_a, M_b)
• Gets back ONE of the ciphertexts (C_x)

• Adversary must guess which ciphertext this is (C_a or C_b)
• If they can do better than 50/50, they win

CSEP 564 - Fall 2022

So Far: Achieving Privacy

CSEP 564 - Fall 2022

Alice Bob

M C
Encrypt

K

Decrypt

K

M

K K

Adversary

Message = M

Ciphertext = C

Encryption schemes: A tool for protecting privacy.

Now: Achieving Integrity

CSEP 564 - Fall 2022

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

Reminder: CBC Mode Encryption

CSEP 564 - Fall 2022

• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher


Initialization
vector
(random)

  key key key key

Sent with ciphertext

CBC-MAC

CSEP 564 - Fall 2022

TAG

plaintext

block
cipher

block
cipher

block
cipher

block
cipher

   
key key key key

• Not secure when system may MAC messages of different lengths
• Use a different key – not encryption key
• NIST recommends a derivative called CMAC [FYI only]

Another Tool: Hash Functions

CSEP 564 - Fall 2022

Hash Functions: Main Idea

CSEP 564 - Fall 2022

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message
“digest”

message

Property 1: One-Way

• Intuition: hash should be hard to invert
• “Preimage resistance”

• Let h(x’) = y in {0,1}n for a random x’

• Given y, it should be hard to find any x such that h(x)=y

• How hard?
• Brute-force: try every possible x, see if h(x)=y

• SHA-1 (common hash function) has 160-bit output
• Expect to try 2159 inputs before finding one that hashes to y.

CSEP 564 - Fall 2022

Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

CSEP 564 - Fall 2022

Birthday Paradox
• Are there two people in the ~first page of people on

Zoom (depending on the size of your window) that have
the same birthday?
• 365 days in a year (366 some years)

• Pick one person. To find another person with same birthday would
take on the order of 365/2 = 182.5 people

• Expect birthday “collision” with a room of only 23 people.
• For simplicity, approximate when we expect a collision as sqrt(365).

• Why is this important for cryptography?
• 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value
requires trying on average 2127 values.

• Expect “collision” after selecting approximately 264 random values.
• 64 bits of security against collision attacks, not 128 bits.

CSEP 564 - Fall 2022

Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

• Birthday paradox means that brute-force collision search is only
O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)

CSEP 564 - Fall 2022

One-Way vs. Collision Resistance

One-wayness does not imply collision resistance.

Collision resistance does not imply one-wayness.

You can prove this by constructing a function that has one property but
not the other.

CSEP 564 - Fall 2022

One-Way vs. Collision Resistance
(Details here mainly FYI)

• One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except the last bit

• h is one-way (to invert h, must invert g)
• Collisions for h are easy to find: for any x, h(x0)=h(x1)

• Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define y=h(x) to be 0x if x is n-bit long, 1g(x) otherwise

• Collisions for h are hard to find: if y starts with 0, then there are no collisions, if y starts
with 1, then must find collisions in g

• h is not one way: half of all y’s (those whose first bit is 0) are easy to invert (how?);
random y is invertible with probab. ½

CSEP 564 - Fall 2022

Property 3: Weak Collision Resistance

• Given randomly chosen x, hard to find x’ such that h(x)=h(x’)
• Attacker must find collision for a specific x. By contrast, to break collision

resistance it is enough to find any collision.

• Brute-force attack requires O(2n) time

• Weak collision resistance does not imply collision resistance.

CSEP 564 - Fall 2022

Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
• A ciphertext can be decrypted with a decryption key… hashes have no

equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with
Hash(x’)
• Hash the same input twice → same hash value

• Encrypt the same input twice → different ciphertexts

• Crytographic hashes are also known as “cryptographic
checksums” or “message digests”

CSEP 564 - Fall 2022

Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with
the entry in the password file

• Why is hashing better than encryption here?
• Breakout

CSEP 564 - Fall 2022

Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with
the entry in the password file

• Why is hashing better than encryption here?

• System does not store actual passwords!

• Don’t need to worry about where to store the key!

• Cannot go from hash to password!

CSEP 564 - Fall 2022

Application: Password Hashing

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?

CSEP 564 - Fall 2022

Application: Password Hashing + Salting

• Salting
• We ‘salt’ hashes for password by adding a randomized suffix to the password

• E.g. Hash(“coolpassword”+”35B67C2A”)

• We then store the salt with the hashed password!

• Server generates the salt

• The goal is to prevent precomputation attacks
• If the adversary doesn’t know the salt, they can’t precompute common

passwords

CSEP 564 - Fall 2022

Hash Functions Review

• Map large domain to small range (e.g., range of all 160- or 256-bit
values)

• Properties:
• Collision Resistance: Hard to find two distinct inputs that map to same output

• One-wayness: Given a point in the range (that was computed as the hash of a
random domain element), hard to find a preimage

• Weak Collision Resistance: Given a point in the domain and its hash in the
range, hard to find a new domain element that maps to the same range
element

CSEP 564 - Fall 2022

Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received by
users without modification.

Idea: given goodFile and hash(goodFile), very hard to find
badFile such that hash(goodFile)=hash(badFile)

CSEP 564 - Fall 2022

goodFile
BigFirm™

User

VIRUS

badFile

The NYTimes

hash(goodFile)

Application: Software Integrity

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?

CSEP 564 - Fall 2022

Which Property Do We Need?
One-wayness, Collision Resistance, Weak CR?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if

considering malicious developers

• d

CSEP 564 - Fall 2022

Which Property Do We Need?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if

considering malicious developers

• Commitments (e.g. auctions)
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B (this may mean that they need

to hash some randomness with B too)
• Collision resistance: Alice should not be able to change their mind to bid B’ such

that H(B)=H(B’)

CSEP 564 - Fall 2022

Commitments

CSEP 564 - Fall 2022

Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3: standard released by NIST in August 2015

• MD5 – Don’t Use!
• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

• RIPEMD
• 160-bit version is OK
• 128-bit version is not good

• SHA-1 (Secure Hash Algorithm) – Don’t Use!
• 160-bit output
• US government (NIST) standard as of 1993-95
• Theoretically broken 2005; practical attack 2017!

CSEP 564 - Fall 2022

SHA-1 Broken in Practice (2017)

CSEP 564 - Fall 2022

https://shattered.io

https://shattered.io/

Aside: How we evaluate hash functions

• Speed
• Is it amenable to hardware implementations?

• Diffusion
• Does changing 1 bit in the input affect all output bits?

• Resistance to attack approaches
• Collisions?

• Length extensions?

• etc

CSEP 564 - Fall 2022

Recall: Achieving Integrity

CSEP 564 - Fall 2022

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

HMAC

• Construct MAC from a cryptographic hash function
• Invented by Bellare, Canetti, and Krawczyk (1996)

• Used in SSL/TLS, mandatory for IPsec

• Why not encryption? (Historical reasons)
• Hashing is faster than block ciphers in software

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption

CSEP 564 - Fall 2022

MAC with SHA3

• SHA3(Key || Message)

• SHA3 is designed to get the same safety properties as HMAC
constructions

CSEP 564 - Fall 2022

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• Is this fine? (Pollev)

CSEP 564 - Fall 2022

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

MACKm MACKm

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
• Obvious approach: Encrypt-and-MAC

• Problem: MAC is deterministic! same plaintext → same MAC

CSEP 564 - Fall 2022

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

Authenticated Encryption

• Instead:

Encrypt then MAC.

• (Not as good:
MAC-then-Encrypt)

CSEP 564 - Fall 2022

Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C

Back to cryptography land

CSEP 564 - Fall 2022

Stepping Back:
Flavors of Cryptography
• Symmetric cryptography

• Both communicating parties have access to a shared random string K, called
the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

CSEP 564 - Fall 2022

Symmetric Setting

CSEP 564 - Fall 2022

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.

Asymmetric Setting

CSEP 564 - Fall 2022

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Public Key Crypto: Basic Problem

CSEP 564 - Fall 2022

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate themself

public key

public key

Alice
Bob

Ignore for now: How do we
know it’s REALLY Bob’s??

Applications of Public Key Crypto

• Encryption for confidentiality
• Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
• Can “sign” a message with your private key

• Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

CSEP 564 - Fall 2022

Session Key Establishment

CSEP 564 - Fall 2022

Modular Arithmetic

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

CSEP 564 - Fall 2022

Diffie-Hellman Protocol (1976)

CSEP 564 - Fall 2022

Diffie-Hellman Protocol (1976)
• Alice and Bob never met and share no secrets

• Public info: p and g
• p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a Zp* i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p

CSEP 564 - Fall 2022

Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Example Diffie Hellman Computation

CSEP 564 - Fall 2022

Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem:

given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this

• This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:

given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem:

given gx and gy, it’s hard to tell the difference between gxy mod p and gr mod p

where r is random

CSEP 564 - Fall 2022

More on Diffie-Hellman
Key Exchange
• Important Note:

• We have discussed discrete logs modulo integers

• Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) but have better security and

performance (size) properties

CSEP 564 - Fall 2022

Diffie-Hellman: Conceptually

CSEP 564 - Fall 2022

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

Diffie-Hellman Caveats

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against passive
attackers
• Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

• Eavesdropper can’t tell the difference between the established key and a random
value

• In practice, often hash gxy mod p, and use the hash as the key
• Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide authentication (against
active attackers)
• Person in the middle attack (also called “man in the middle attack”)

CSEP 564 - Fall 2022

Example from Earlier

• Given g and prime p, compute: g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

• For p=11, g=3
• 31 mod 11 = 3, 32 mod 11 = 9, 33 mod 11 = 5, …

• Produces cyclic group {3,9,5,4,1} (order = 5) (5 is a prime)

• g=3 generates a group of prime order

CSEP 564 - Fall 2022

Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
• Can then use shared key for symmetric crypto

• Next: public key encryption
• For confidentiality

• Then: digital signatures
• For authenticity

CSEP 564 - Fall 2022

Requirements for Public Key Encryption

• Key generation: computationally easy to generate a pair (public key
PK, private key SK)

• Encryption: given plaintext M and public key PK, easy to compute
ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private key SK, easy to
compute plaintext M
• Infeasible to learn anything about M from C without SK

• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

CSEP 564 - Fall 2022

Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the
[1,n] interval that are relatively prime to n
• Two numbers are relatively prime if their greatest common divisor

(gcd) is 1

• Easy to compute for primes: ϕ(p) = p-1

• Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime

CSEP 564 - Fall 2022

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n); private key = (d,n)

• Encryption of m: c = me mod n

• Decryption of c: cd mod n = (me)d mod n = m

CSEP 564 - Fall 2022

How to
compute?

Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that
gcd(e, ϕ(n))=1, find m such that me=c mod n
• In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c

modulo n

• There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing factors means you can
compute d = inverse of e mod (p-1)(q-1))
• It may be possible to break RSA without factoring n -- but if it is, we don’t know how

CSEP 564 - Fall 2022

RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less than n

• Don’t use RSA directly for privacy – output is deterministic! Need to
pre-process input somehow

• Plain RSA also does not provide integrity
• Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt
M⊕ G(r) || r⊕ H(M⊕ G(r))

• r is random and fresh, G and H are hash functions

CSEP 564 - Fall 2022

Review: RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n); private key = (d,n)

• Encryption of m: c = me mod n

• Decryption of c: cd mod n = (me)d mod n = m

CSEP 564 - Fall 2022

How to
compute?

Actually, RSA is busted

• Math is OK, implementation isn’t
• Yes, all the implementations

• https://blog.trailofbits.com/2019/07/08/fuck-rsa/

• Sorry I just spent time teaching it to you
• Maybe you would’ve preferred projected coordinate math on elliptic curves?

CSEP 564 - Fall 2022

https://blog.trailofbits.com/2019/07/08/fuck-rsa/

Digital Signatures: Basic Idea

CSEP 564 - Fall 2022

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m: s = md mod n

• Signing & decryption are same underlying operation in RSA
• It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:
verify that se mod n = (md)e mod n = m
• Just like encryption (for RSA primitive)
• Anyone who knows n and e (public key) can verify signatures produced with d

(private key)

• In practice, also need padding & hashing
• Without padding and hashing: Consider multiplying two signatures together
• Standard padding/hashing schemes exist for RSA signatures

CSEP 564 - Fall 2022

DSS Signatures

• Digital Signature Standard (DSS)
• U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x

• Each signing operation picks a new random value, to use during
signing. Security breaks if two messages are signed with that same
value.

• Security of DSS requires hardness of discrete log
• If could solve discrete logarithm problem, would extract x (private key) from

gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers; significant advantages to
using elliptic curve groups instead.

CSEP 564 - Fall 2022

Post-Quantum

• If quantum computer become a reality
• It becomes much more efficient to break conventional asymmetric encryption

schemes (e.g., factoring becomes “easy”)

• There exists efforts to make quantum-resilient asymmetric encryption
schemes
• (Check out NIST’s PQC competition!)

CSEP 564 - Fall 2022

Authenticity of Public Keys

CSEP 564 - Fall 2022

?

Problem: How does Alice know that the public key
they received is really Bob’s public key?

private key

Alice
Bob

public key

Threat: Person-in-the Middle

CSEP 564 - Fall 2022

Google.comUser

Distribution of Public Keys

• Public announcement or public directory
• Risks: forgery and tampering

• Public-key certificate
• Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)
• Additional information often signed as well (e.g., expiration date)

• Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves their identity and

knowledge of the private key to obtain CA’s certificate for the public key
(offline)

• Every computer is pre-configured with CA’s public key

CSEP 564 - Fall 2022

You encounter this every day…

CSEP 564 - Fall 2022

SSL/TLS: Encryption & authentication for connections

SSL/TLS High Level

• SSL/TLS consists of two protocols
• Familiar pattern for key exchange protocols

• Handshake protocol
• Use public-key cryptography to establish a shared secret key between

the client and the server

• Record protocol
• Use the secret symmetric key established in the handshake protocol to

protect communication between the client and the server

CSEP 564 - Fall 2022

CSEP 564 - Fall 2022

• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)
• Everybody must know

the root’s public key
• Instead of single cert,

use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA),

sigAnotherCA(“Alice”, PKA)

• Not shown in figure but important:
• Signed as part of each cert is whether

party is a CA or not

• What happens if root authority is ever compromised?

Hierarchical Approach

CSEP 564 - Fall 2022

