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Logistics

• Lab1a is in! 
• Every group turned in something on-time, excellent!

• Lab1b is due next week
• Wednesday is current deadline, may get pushed to thur/fri

• Lab2 goes out next week when lab1b is due
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Paper Discussion Time!

“Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and 
Other Systems”

Paul C. Kocher

• Quick discussion only

• We’ll revisit timing channels later in the quarter, time permitting…
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DES and 56 bit keys

• 56 bit keys are quite short

• 1999:  EFF DES Crack + distributed machines
• < 24 hours to find DES key

• DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)
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3DES

• Two-key 3DES increases security 
of DES by doubling the key length
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But wait… what about 2DES?

• Suppose you are given plaintext-ciphertext 
pairs (P1,C1), (P2,C2), (P3,C3)

• Suppose Key1 and Key2 are each 56-bits 
long

• Can you figure out Key1 and Key2 if you try 
all possible values for both (2112

possibilities) → Yes

• Can you figure out Key1 and Key2 more 
efficiently than that? → Discuss!
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But wait… what about 2DES?

• Meet-in-the-middle attack: guess K1 and K2 independently!
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Meet-in-the-Middle Attack

• Guess 256 values for Key1, and create a 
table from P1 to a middle value M1 for 
each key guess (M1G1, M1G2, M1G3, …)

• Guess 256 values for Key2, and create a 
table from C1 to a middle value M’1 for 
each key guess (M’1G1, M’1G2, M’1G3, …)

• Look for collision in the middle values → if 
only one collision, found Key1 and Key2; 
otherwise repeat for (P2,C2), …

CSEP 564  - Fall 2022

Plaintext

Ciphertext

Key1 DES

Key2 DES



CSEP 564  - Fall 2022



Defining the strength of a scheme

• Effective Key Strength
• Amount of ‘work’ the adversary needs to do

• DES: 56-bits
• 2^56 encryptions to try ‘all keys’

• 2DES: 57-bits
• 2*(2^56) encryptions = 2^57

• 3DES: 112-bits (or sometimes 80-bits)
• Meet-in-the-middle + more work = 2^112 (for 3 keys, e.g. K1, K2, K3)

• Various attacks = 2^80 (for 2 keys, e.g. K1, K2, K1)
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Standard Block Ciphers

• DES: Data Encryption Standard
• Feistel structure: builds invertible function using non-invertible ones

• Invented by IBM, issued as federal standard in 1977

• 64-bit blocks, 56-bit key + 8 bits for parity

• AES: Advanced Encryption Standard
• New federal standard as of 2001

• NIST: National Institute of Standards & Technology

• Based on the Rijndael algorithm

• Selected via an open process

• 128-bit blocks, keys can be 128, 192 or 256 bits
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Encrypting a Large Message

• So, we’ve got a good block cipher, but our plaintext is larger than 128-
bit block size

• What should we do?
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128-bit plaintext

(arranged as 4x4 array of 8-bit bytes)

128-bit ciphertext



Electronic Code Book (ECB) Mode
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Electronic Code Book (ECB) Mode
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Electronic Code Book (ECB) Mode

CSEP 564  - Fall 2022

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

key key key key key

• Identical blocks of plaintext produce identical blocks of ciphertext
• No integrity checks: can mix and match blocks



Information Leakage in ECB Mode
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Encrypt in ECB mode



Oops
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https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-
look-at-the-confidentiality-of-zoom-meetings/

https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/


Cipher Block Chaining (CBC) Mode: Encryption
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• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity



CBC Mode: Decryption
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ECB vs. CBC
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AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)



Initialization Vector Dangers
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Initialization
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be random)
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ciphertext

DES DES DES DES

   

Found in the source code for Diebold voting machines:
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,

totalSize, DESKEY, NULL, DES_ENCRYPT)

key key key key



Counter Mode (CTR): Encryption
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• Identical blocks of plaintext encrypted differently
• Still does not guarantee integrity; Fragile if ctr repeats



Information Leakage in CTR Mode (poorly)
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Encrypt in CTR mode:
But with the same 
counter for each
frame!



Counter Mode (CTR): Decryption
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Ok, so what mode do I use?

• Don’t choose a mode, use established libraries ☺

• Good modes:
• GCM - Galois/Counter Mode

• CTR (sometimes)

• Even ECB is fine in ‘the right circumstance’

• AES-128 is standard
• Be concerned if something says “AES 1024”…
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https://research.kudelskisecurity.com/2022/05/11/practical-bruteforce-of-aes-1024-military-grade-encryption/



When is an Encryption Scheme “Secure”?

• Hard to recover the key?

• What if attacker can learn plaintext without learning the key?
• Hard to recover plaintext from ciphertext?

• What if attacker learns some bits or some function of bits?
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How Can a Cipher Be Attacked?

• Attackers knows ciphertext and encryption algorithm
• What else does the attacker know? Depends on the application in which the 

cipher is used!

• Ciphertext-only attack

• KPA: Known-plaintext attack (stronger)
• Knows some plaintext-ciphertext pairs

• CPA: Chosen-plaintext attack (even stronger)
• Can obtain ciphertext for any plaintext of choice

• CCA: Chosen-ciphertext attack (very strong)
• Can decrypt any ciphertext except the target
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Chosen Plaintext Attack
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Crook #1 changes
his PIN to a number
of his choice

cipher(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value



Very Informal Intuition

• Security against chosen-plaintext attack (CPA)
• Ciphertext leaks no information about the plaintext

• Even if the attacker correctly guesses the plaintext, he cannot verify his guess

• Every ciphertext is unique, encrypting same message twice produces 
completely different ciphertexts
• Implication: encryption must be randomized or stateful

• Security against chosen-ciphertext attack (CCA)
• Integrity protection – it is not possible to change the plaintext by modifying 

the ciphertext
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Minimum security 
requirement for a 
modern encryption scheme



The shape of the formal approach

• INDistinguishability under Chosen Plaintext Attack
• IND-CPA

• Formalized cryptographic game

• Adversary submits pairs of plaintexts (M_a, M_b)
• Gets back ONE of the ciphertexts (C_x)

• Adversary must guess which ciphertext this is (C_a or C_b)
• If they can do better than 50/50, they win
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So Far: Achieving Privacy
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Alice Bob

M C
Encrypt

K

Decrypt

K

M

K K

Adversary

Message = M

Ciphertext = C

Encryption schemes:  A tool for protecting privacy.



Now: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



Reminder: CBC Mode Encryption
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• Identical blocks of plaintext encrypted differently
• Last cipherblock depends on entire plaintext

• Still does not guarantee integrity
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CBC-MAC
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• Not secure when system may MAC messages of different lengths 
• Use a different key – not encryption key
• NIST recommends a derivative called CMAC [FYI only]



Another Tool: Hash Functions
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Hash Functions: Main Idea
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bit strings of any length n-bit bit strings

. .
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y

hash function H

• Hash function H is a lossy compression function

– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message 
“digest”

message



Property 1: One-Way

• Intuition: hash should be hard to invert
• “Preimage resistance”

• Let h(x’) = y in {0,1}n for a random x’ 

• Given y, it should be hard to find any x such that h(x)=y

• How hard?
• Brute-force: try every possible x, see if h(x)=y

• SHA-1 (common hash function) has 160-bit output
• Expect to try 2159 inputs before finding one that hashes to y.
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Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

CSEP 564  - Fall 2022



Birthday Paradox
• Are there two people in the ~first page of people on 

Zoom (depending on the size of your window) that have 
the same birthday?
• 365 days in a year (366 some years)

• Pick one person.  To find another person with same birthday would 
take on the order of 365/2 = 182.5 people

• Expect birthday “collision” with a room of only 23 people.
• For simplicity, approximate when we expect a collision as sqrt(365).

• Why is this important for cryptography?
• 2128 different 128-bit values

• Pick one value at random. To exhaustively search for this value 
requires trying on average 2127 values.

• Expect “collision” after selecting approximately 264 random values.
• 64 bits of security against collision attacks, not 128 bits.
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Property 2: Collision Resistance

• Should be hard to find x≠x’ such that h(x)=h(x’)

• Birthday paradox means that brute-force collision search is only 
O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)
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One-Way vs. Collision Resistance

One-wayness does not imply collision resistance.

Collision resistance does not imply one-wayness.

You can prove this by constructing a function that has one property but 
not the other. 
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One-Way vs. Collision Resistance
(Details here mainly FYI)

• One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except the last bit

• h is one-way (to invert h, must invert g)
• Collisions for h are easy to find: for any x, h(x0)=h(x1)

• Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define y=h(x) to be 0x if x is n-bit long, 1g(x) otherwise

• Collisions for h are hard to find: if y starts with 0, then there are no collisions, if y starts 
with 1, then must find collisions in g

• h is not one way: half of all y’s (those whose first bit is 0) are easy to invert (how?); 
random y is invertible with probab. ½ 
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Property 3: Weak Collision Resistance

• Given randomly chosen x, hard to find x’ such that h(x)=h(x’)
• Attacker must find collision for a specific x. By contrast, to break collision 

resistance it is enough to find any collision.

• Brute-force attack requires O(2n) time

• Weak collision resistance does not imply collision resistance.
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Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
• A ciphertext can be decrypted with a decryption key… hashes have no 

equivalent of “decryption”

• Hash(x) looks “random” but can be compared for equality with 
Hash(x’)
• Hash the same input twice → same hash value

• Encrypt the same input twice → different ciphertexts

• Crytographic hashes are also known as “cryptographic 
checksums” or “message digests”
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Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with 
the entry in the password file

• Why is hashing better than encryption here?
• Breakout
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Application: Password Hashing

• Instead of user password, store hash(password)

• When user enters a password, compute its hash and compare with 
the entry in the password file

• Why is hashing better than encryption here?

• System does not store actual passwords!

• Don’t need to worry about where to store the key!

• Cannot go from hash to password!
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Application: Password Hashing

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?
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Application: Password Hashing + Salting

• Salting
• We ‘salt’ hashes for password by adding a randomized suffix to the password

• E.g. Hash(“coolpassword”+”35B67C2A”)

• We then store the salt with the hashed password!

• Server generates the salt

• The goal is to prevent precomputation attacks
• If the adversary doesn’t know the salt, they can’t precompute common 

passwords
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Hash Functions Review

• Map large domain to small range (e.g., range of all 160- or 256-bit 
values)

• Properties:
• Collision Resistance: Hard to find two distinct inputs that map to same output

• One-wayness: Given a point in the range (that was computed as the hash of a 
random domain element), hard to find a preimage

• Weak Collision Resistance: Given a point in the domain and its hash in the 
range, hard to find a new domain element that maps to the same range 
element
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Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received by 
users without modification. 

Idea: given goodFile and hash(goodFile), very hard to find 
badFile such that hash(goodFile)=hash(badFile)
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Application: Software Integrity

• Which property do we need?
• One-wayness?

• (At least weak) Collision resistance?

• Both?
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Which Property Do We Need?
One-wayness, Collision Resistance, Weak CR?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if 

considering malicious developers

• d
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Which Property Do We Need?

• UNIX passwords stored as hash(password)
• One-wayness: hard to recover the/a valid password

• Integrity of software distribution
• Weak collision resistance
• But software images are not really random… may need full collision resistance if 

considering malicious developers

• Commitments (e.g. auctions)
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B (this may mean that they need 

to hash some randomness with B too)
• Collision resistance: Alice should not be able to change their mind to bid B’ such 

that H(B)=H(B’)
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Commitments
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Common Hash Functions

• SHA-2: SHA-256, SHA-512, SHA-224, SHA-384

• SHA-3:  standard released by NIST in August 2015

• MD5 – Don’t Use!
• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

• RIPEMD
• 160-bit version is OK
• 128-bit version is not good

• SHA-1 (Secure Hash Algorithm) – Don’t Use!
• 160-bit output
• US government (NIST) standard as of 1993-95
• Theoretically broken 2005; practical attack 2017!
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SHA-1 Broken in Practice (2017)
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https://shattered.io

https://shattered.io/


Aside: How we evaluate hash functions

• Speed
• Is it amenable to hardware implementations?

• Diffusion
• Does changing 1 bit in the input affect all output bits?

• Resistance to attack approaches
• Collisions?

• Length extensions?

• etc
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Recall: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



HMAC

• Construct MAC from a cryptographic hash function
• Invented by Bellare, Canetti, and Krawczyk (1996)

• Used in SSL/TLS, mandatory for IPsec

• Why not encryption? (Historical reasons)
• Hashing is faster than block ciphers in software

• Can easily replace one hash function with another

• There used to be US export restrictions on encryption
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MAC with SHA3

• SHA3(Key || Message)

• SHA3 is designed to get the same safety properties as HMAC 
constructions
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Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• Is this fine? (Pollev)
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Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
• Obvious approach: Encrypt-and-MAC

• Problem: MAC is deterministic! same plaintext → same MAC
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Authenticated Encryption

• Instead: 

Encrypt then MAC.

• (Not as good:                    
MAC-then-Encrypt)
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Ciphertext C



Back to cryptography land
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Stepping Back: 
Flavors of Cryptography
• Symmetric cryptography

• Both communicating parties have access to a shared random string K, called 
the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.  
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Symmetric Setting
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Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.



Asymmetric Setting
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Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary



Public Key Crypto: Basic Problem
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate themself

public key

public key

Alice
Bob

Ignore for now: How do we 
know it’s REALLY Bob’s??



Applications of Public Key Crypto

• Encryption for confidentiality
• Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
• Can “sign” a message with your private key

• Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

CSEP 564  - Fall 2022



Session Key Establishment
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Modular Arithmetic

• Given g and prime p, compute:  g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*
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Diffie-Hellman Protocol (1976) 
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Diffie-Hellman Protocol (1976) 
• Alice and Bob never met and share no secrets

• Public info: p and g
• p is a large prime, g is a generator of Zp*

• Zp*={1, 2 … p-1}; a Zp*  i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p
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Alice Bob

Pick secret, random x Pick secret, random y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Example Diffie Hellman Computation
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Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem: 

given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this

• This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:

given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem: 

given gx and gy, it’s hard to tell the difference between      gxy mod p and gr mod p

where r is random
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More on Diffie-Hellman 
Key Exchange
• Important Note:

• We have discussed discrete logs modulo integers

• Significant advantages in using elliptic curve groups
• Groups with some similar mathematical properties (i.e., are “groups”) but have better security and 

performance (size) properties
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Diffie-Hellman: Conceptually

CSEP 564  - Fall 2022

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p



Diffie-Hellman Caveats

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-
Hellman protocol is a secure key establishment protocol against passive
attackers
• Common recommendation:

• Choose p=2q+1, where q is also a large prime
• Choose g that generates a subgroup of order q in Z_p*
• DDH is hard in this group

• Eavesdropper can’t tell the difference between the established key and a random 
value

• In practice, often hash gxy mod p, and use the hash as the key
• Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide authentication (against 
active attackers)
• Person in the middle attack (also called “man in the middle attack”)
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Example from Earlier

• Given g and prime p, compute:  g1 mod p, g2 mod p, … g100 mod p

• For p=11, g=10
• 101 mod 11 = 10, 102 mod 11 = 1, 103 mod 11 = 10, …

• Produces cyclic group {10, 1} (order=2)

• For p=11, g=7
• 71 mod 11 = 7, 72 mod 11 = 5, 73 mod 11 = 2, …

• Produces cyclic group {7,5,2,3,10,4,6,9,8,1} (order = 10)

• g=7 is a “generator” of Z11*

• For p=11, g=3
• 31 mod 11 = 3, 32 mod 11 = 9, 33 mod 11 = 5, …

• Produces cyclic group {3,9,5,4,1} (order = 5) (5 is a prime)

• g=3 generates a group of prime order
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Stepping Back: Asymmetric Crypto

• We’ve just seen session key establishment
• Can then use shared key for symmetric crypto

• Next: public key encryption 
• For confidentiality

• Then: digital signatures
• For authenticity
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Requirements for Public Key Encryption

• Key generation: computationally easy to generate a pair (public key 
PK, private key SK)

• Encryption: given plaintext M and public key PK, easy to compute 
ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private key SK, easy to 
compute plaintext M
• Infeasible to learn anything about M from C without SK

• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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Some Number Theory Facts

• Euler totient function ϕ(n) (n≥1) is the number of integers in the 
[1,n] interval that are relatively prime to n
• Two numbers are relatively prime if their greatest common divisor 

(gcd) is 1

• Easy to compute for primes: ϕ(p) = p-1

• Note that ϕ(ab) = ϕ(a) ϕ(b) if a & b are relatively prime

CSEP 564  - Fall 2022



RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)

• Encryption of m:  c = me mod n

• Decryption of c:   cd mod n = (me)d mod n = m
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Why is RSA Secure?

• RSA problem: given c, n=pq, and e such that                                              
gcd(e, ϕ(n))=1, find m such that me=c mod n
• In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c 

modulo n

• There is no known efficient algorithm for doing this without knowing p and q

• Factoring problem: given positive integer n, find primes p1, …, pk such that 
n=p1

e1p2
e2…pk

ek

• If factoring is easy, then RSA problem is easy (knowing factors means you can 
compute d = inverse of e mod (p-1)(q-1))
• It may be possible to break RSA without factoring n -- but if it is, we don’t know how
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RSA Encryption Caveats

• Encrypted message needs to be interpreted as an integer less than n

• Don’t use RSA directly for privacy – output is deterministic! Need to 
pre-process input somehow

• Plain RSA also does not provide integrity
• Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt             
M⊕ G(r) || r⊕ H(M⊕ G(r))

• r is random and fresh, G and H are hash functions
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Review: RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:
• Generate large primes p, q

• Say, 2048 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)
• Choose small e, relatively prime to ϕ(n)

• Typically, e=3 or e=216+1=65537

• Compute unique d such that ed ≡ 1 mod ϕ(n)
• Modular inverse: d ≡ e-1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)

• Encryption of m:  c = me mod n

• Decryption of c:   cd mod n = (me)d mod n = m
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Actually, RSA is busted

• Math is OK, implementation isn’t
• Yes, all the implementations

• https://blog.trailofbits.com/2019/07/08/fuck-rsa/

• Sorry I just spent time teaching it to you
• Maybe you would’ve preferred projected coordinate math on elliptic curves? 
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Digital Signatures: Basic Idea
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?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob



RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m:  s = md mod n

• Signing & decryption are same underlying operation in RSA
• It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:   
verify that se mod n = (md)e mod n = m
• Just like encryption (for RSA primitive)
• Anyone who knows n and e (public key) can verify signatures produced with d 

(private key)

• In practice, also need padding & hashing
• Without padding and hashing: Consider multiplying two signatures together
• Standard padding/hashing schemes exist for RSA signatures
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DSS Signatures

• Digital Signature Standard (DSS)
• U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x

• Each signing operation picks a new random value, to use during 
signing. Security breaks if two messages are signed with that same 
value.

• Security of DSS requires hardness of discrete log
• If could solve discrete logarithm problem, would extract x (private key) from 

gx mod p (public key)

• Again: We’ve discussed discrete logs modulo integers; significant advantages to 
using elliptic curve groups instead.
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Post-Quantum

• If quantum computer become a reality
• It becomes much more efficient to break conventional asymmetric encryption 

schemes (e.g., factoring becomes “easy”)

• There exists efforts to make quantum-resilient asymmetric encryption 
schemes
• (Check out NIST’s PQC competition!)
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Authenticity of Public Keys
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?

Problem: How does Alice know that the public key
they received is really Bob’s public key?

private key

Alice
Bob

public key



Threat: Person-in-the Middle
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Distribution of Public Keys

• Public announcement or public directory
• Risks: forgery and tampering

• Public-key certificate
• Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)
• Additional information often signed as well (e.g., expiration date)

• Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves their identity and 

knowledge of the private key to obtain CA’s certificate for the public key 
(offline)

• Every computer is pre-configured with CA’s public key
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You encounter this every day…
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SSL/TLS High Level

• SSL/TLS consists of two protocols
• Familiar pattern for key exchange protocols

• Handshake protocol
• Use public-key cryptography to establish a shared secret key between 

the client and the server

• Record protocol
• Use the secret symmetric key established in the handshake protocol to 

protect communication between the client and the server
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• Single CA certifying every public key is impractical

• Instead, use a trusted root authority (e.g., Verisign)
• Everybody must know                                                                     

the root’s public key
• Instead of single cert,                                                                  

use a certificate chain
• sigVerisign(“AnotherCA”, PKAnotherCA),                                        

sigAnotherCA(“Alice”, PKA)

• Not shown in figure but important:
• Signed as part of each cert is whether                                                                       

party is a CA or not

• What happens if root authority is ever compromised?

Hierarchical Approach
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