
CSEP 564: Computer Security and Privacy

Software Security [Wrap-Up]

Cryptography

Fall 2022

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Admin

• Lab 1a: Oct 21
• That is, sploits 1-3

• Make sure to use the handin script!

CSEP 564 - Fall 202210/21/2022 2

Timing Attacks

• Assume there are no “typical” bugs in the software
• No buffer overflow bugs

• No format string vulnerabilities

• Good choice of randomness

• Good design

• The software may still be vulnerable to timing attacks
• Software exhibits input-dependent timings

• Complex and hard to fully protect against

CSEP 564 - Fall 202210/21/2022 3

Hey what about if its over a network?

• “Remote timing attacks are practical” - 2005
• David Brumley, Dan Boneh

10/21/2022 CSEP 564 - Fall 2022 4

Other Examples

• Plenty of other examples of timings attacks
• Timing cache misses

• Extract cryptographic keys…

• Spectre/Meltdown attacks

• Duration of a rendering operation
• Extract webpage information

• Duration of a failed decryption attempt
• Different failures mean different thing (e.g., Padding oracles)

CSEP 564 - Fall 202210/21/2022 5

Side-channels

• Timing is only one possibility

• Consider:
• Power usage

• Audio

• EM Outputs

CSEP 564 - Fall 202210/21/2022 6

General Principles

• Check inputs

• Check all return values

• Least privilege

• Securely clear memory (passwords, keys, etc.)

• Failsafe defaults

• Defense in depth
• Also: prevent, detect, respond

CSEP 564 - Fall 202210/21/2022 7

General Principles

• Reduce size of trusted computing base (TCB)

• Simplicity, modularity
• But: Be careful at interface boundaries!

• Minimize attack surface

• Use vetted components

• Security by design
• But: tension between security and other goals

• Open design? Open source? Closed source?
• Different perspectives

CSEP 564 - Fall 202210/21/2022 8

Does Open Source Help?

• Different perspectives…

• Positive example?
• Linux kernel backdoor attempt thwarted (2003)

(http://www.freedom-to-tinker.com/?p=472)

• Negative example?
• Heartbleed (2014)

• Vulnerability in OpenSSL that allowed attackers to read arbitrary memory from
vulnerable servers (including private keys)

CSEP 564 - Fall 202210/21/2022 9

http://www.freedom-to-tinker.com/?p=472

Vulnerability Analysis and Disclosure

• What do you do if you’ve found a security problem in a real
system?

• Say
• A commercial website?

• UW grade database?

• Boeing 787?

• TSA procedures?

CSEP 564 - Fall 2022

Breakout Groups:
What would you do? What ethical questions come up?

10/21/2022 10

Vulnerability Analysis and Disclosure

• Suppose companies A, B, and C all have a vulnerability, but have not made the
existence of that vulnerability public

• Company A has a software update prepared and ready to go that, once shipped,
will fix the vulnerability; but B and C are still working on developing a patch for
the vulnerability

• Company A learns that attackers are exploiting this vulnerability in the wild

• Should Company A release their patch, even if doing so means that the
vulnerability now becomes public and other actors can start exploiting Companies
B and C?

• Or should Company A wait until Companies B and C have patches?

10/21/2022 CSEP 564 - Fall 2022 11

Next Major Section of the Course:
Cryptography

10/21/2022 CSEP 564 - Fall 2022 12

Terminology Note: “crypto”

• For this course: crypto means “cryptography”

10/21/2022 CSEP 564 - Fall 2022 13

“If you think cryptography will solve your
problem, you don't understand cryptography
and you don't understand your problem”
- A cryptographer (its complicated)

10/21/2022 CSEP 564 - Fall 2022 14

“If you think cryptography will solve your
problem, you don't understand cryptography
and you don't understand your problem”
- A cryptographer (its complicated)

Probably either wJim Morris or Lampson or Needham

10/21/2022 CSEP 564 - Fall 2022 15

Common Communication Security Goals

10/21/2022 CSEP 564 - Fall 2022 16

Privacy of data:

Prevent exposure of

information

Integrity of data:

Prevent modification of

information

Alice

Bob

Mallory

Eve

Recall Bigger Picture

• Cryptography only one small piece of a larger system

• Must protect entire system
• Physical security

• Operating system security

• Network security

• Users

• Cryptography (following slides)

• Recall the weakest link

• Still, cryptography is a crucial part of our toolbox

10/21/2022 CSEP 564 - Fall 2022 17

Rubber-hose cryptanalysis: http://xkcd.com/538/

10/21/2022 CSEP 564 - Fall 2022 18

http://xkcd.com/538/

Paper Discussion Time!

“An Empirical Study of Cryptographic Misuse in Android Applications“

Manuel Egele, David Brumley, Yanick Fratantonio, Christopher Kruegel

(2013)

• Pick one of these and ask about it/describe it to your neighbor briefly
• Any of the “six rules” for cryptography
• PBE – Password-Based Encryption
• Any of the specific broken usages they found
• Building better cryptographic APIs
• Something else from the paper

10/21/2022 CSEP 564 - Fall 2022 19

Paper Discussion Time!

“An Empirical Study of Cryptographic Misuse in Android Applications“

Manuel Egele, David Brumley, Yanick Fratantonio, Christopher Kruegel

(2013)

• What is something you learned from this paper?

10/21/2022 CSEP 564 - Fall 2022 20

History of cryptography

• Substitution Ciphers
• Caesar Cipher

• Transposition Ciphers

• Codebooks

• Machines

10/21/2022 CSEP 564 - Fall 2022 21

History: Caesar Cipher (Shift Cipher)

• Plaintext letters are
replaced with letters a
fixed shift away in
the alphabet.

• Example:

• Plaintext: The quick brown fox jumps over the lazy dog

• Key: Shift 3

ABCDEFGHIJKLMNOPQRSTUVWXYZ

DEFGHIJKLMNOPQRSTUVWXYZABC

• Ciphertext: WKHTX LFNEU RZQIR AMXPS VRYHU WKHOD CBGRJ

10/21/2022 CSEP 564 - Fall 2022 22

History: Caesar Cipher (Shift Cipher)

• ROT13: shift 13 (encryption and decryption are symmetric)

• What is the key space?
• 26 possible shifts.

• How to attack shift ciphers?
• Brute force.

10/21/2022 CSEP 564 - Fall 2022 23

History: Substitution Cipher

• Superset of shift ciphers: each letter is substituted for another one.

• One way to implement: Add a secret key

• Example:
• Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ

• Cipher: ZEBRASCDFGHIJKLMNOPQTUVWXY

• “State of the art” for thousands of years

10/21/2022 CSEP 564 - Fall 2022 24

History: Substitution Cipher

• What is the key space?

• How to attack?
• Frequency analysis.

10/21/2022 CSEP 564 - Fall 2022 25

Trigrams:
1. the

2. and

3. tha

4. ent

5. ing

Bigrams:
th 1.52% en 0.55% ng 0.18%

he 1.28% ed 0.53% of 0.16%

in 0.94% to 0.52% al 0.09%

er 0.94% it 0.50% de 0.09%

an 0.82% ou 0.50% se 0.08%

re 0.68% ea 0.47% le 0.08%

nd 0.63% hi 0.46% sa 0.06%

at 0.59% is 0.46% si 0.05%

on 0.57% or 0.43% ar 0.04%

nt 0.56% ti 0.34% ve 0.04%

ha 0.56% as 0.33% ra 0.04%

es 0.56% te 0.27% ld 0.02%

st 0.55% et 0.19% ur 0.02%

6. ion

7. tio

8. for

9. nde

10.has

11. nce

12. edt

13. tis

14. oft

15. sth

26! ~= 2^88

History: Enigma Machine
Uses rotors (substitution cipher)
that change position after each
key.

10/21/2022 CSEP 564 - Fall 2022 26

Key = initial setting of rotors

Key space?

26^n for n rotors

How Cryptosystems Work Today

• Layered approach: Cryptographic protocols (like “CBC mode encryption”) built on
top of cryptographic primitives (like “block ciphers”)

• Flavors of cryptography: Symmetric (private key) and asymmetric (public key)

• Public algorithms (Kerckhoff’s Principle)

• Security proofs based on assumptions (not this course)

• Don’t go inventing your own! (If you just want to use some crypto in your system,
use vetted libraries!)

10/21/2022 CSEP 564 - Fall 2022 27

The Cryptosystem Stack

• Primitives:
• AES / DES / etc
• RSA / ElGamal / Elliptic Curve (ed25519)

• Modes:
• Block modes (CBC, ECB, CTR, GCM, …)
• Padding structures

• Protocols:
• TLS / SSL / SSH / tc

• Usage of Protocols:
• Browser security
• Secure remote logins

10/21/2022 CSEP 564 - Fall 2022 28

Kerckhoff’s Principle

• Security of a cryptographic object should depend only on the secrecy
of the secret (private) key.

• Security should not depend on the secrecy of the algorithm itself.

• Foreshadow: Need for randomness – the key to keep private

10/21/2022 CSEP 564 - Fall 2022 29

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Hard concept to understand, and revolutionary! Inventors won Turing Award
☺

10/21/2022 CSEP 564 - Fall 2022 30

Symmetric Setting

10/21/2022 CSEP 564 - Fall 2022 31

Alice Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Both communicating parties have access to a shared
random string K, called the key.

Asymmetric Setting

10/21/2022 CSEP 564 - Fall 2022 32

Each party creates a public key pk and a secret key sk.

pkB
pkAAlice Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Adversary

Public keys, Private keys, Secret keys…

• Secret key
• The single key used in symmetric encryption

• The non-public key in asymmetric

• Private keys
• The non-public key in asymmetric

• Public key
• The… public key in asymmetric

• Key
• Generally means private/secret

10/21/2022 CSEP 564 - Fall 2022 33

10/21/2022 CSEP 564 - Fall 2022 34

Received April 4, 1977

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

10/21/2022 CSEP 564 - Fall 2022 35

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Challenge: How do you validate a public key?

10/21/2022 CSEP 564 - Fall 2022 36

Flavors of Cryptography

• Symmetric cryptography
• Both communicating parties have access to a shared random string K, called

the key.

• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Each party creates a public key pk and a secret key sk.

• Challenge: How do you validate a public key?

• Key building block: Randomness – something that the adversaries
won’t know and can’t predict and can’t figure out

10/21/2022 CSEP 564 - Fall 2022 37

Detour: Randomness

10/21/2022 CSEP 564 - Fall 2022 38

Ingredient: Randomness

• Many applications (especially security ones) require randomness

• Explicit uses:
• Generate secret cryptographic keys

• Generate random initialization vectors for encryption

• Other “non-obvious” uses:
• Generate passwords for new users

• Shuffle the order of votes (in an electronic voting machine)

• Shuffle cards (for an online gambling site)

10/21/2022 CSEP 564 - Fall 2022 39

C’s rand() Function

• C has a built-in random function: rand()
unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;

}

• Problem: don’t use rand() for security-critical applications!
• Given a few sample outputs, you can predict subsequent ones

10/21/2022 CSEP 564 - Fall 2022 40

10/21/2022 CSEP 564 - Fall 2022 41

10/21/2022 CSEP 564 - Fall 2022 42

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer_gambling.php

http://www.cigital.com/papers/download/developer_gambling.php

PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3

• Key used to sign software – now can load any software on PS3 and it
will execute as “trusted”

• Due to bad random number: same “random” value used to sign all
system updates

10/21/2022 CSEP 564 - Fall 2022 43

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

http://www.engadget.com/2010/12/29/hackers-obtain-ps3-private-cryptography-key-due-to-epic-programm/

A recent example: keypair

• keypair is a JS library for generating (asymmetric) keypairs

10/21/2022 CSEP 564 - Fall 2022 44

https://securitylab.github.com/advisories/GHSL-2021-1012-keypair/

The output from the Lehmer LCG is encoded incorrectly. The specific line with the flaw is:

b.putByte(String.fromCharCode(next & 0xFF))

The definition of putByte is
[…]putByte = function(b) { this.data += String.fromCharCode(b); };

Since we are masking with 0xFF, we can determine that 97% of the output from the LCG are converted to zeros. The
only outputs that result in meaningful values are outputs 48 through 57, inclusive.

The impact is that each byte in the RNG seed has a 97% chance of being 0 due to incorrect conversion. When it is not,
the bytes are 0 through 9.

How might we get “good” random numbers?

10/21/2022 CSEP 564 - Fall 2022 45

Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically
secure pseudorandom numbers”

• Libraries include cryptographically secure
pseudorandom number generators (CSPRNG)

10/21/2022 CSEP 564 - Fall 2022 46

Obtaining Pseudorandom Numbers

• Linux:
• /dev/random – blocking (waits for enough entropy)

• /dev/urandom – nonblocking, possibly less entropy

• getrandom() – syscall! – by default, blocking

• Internally:
• Entropy pool gathered from multiple sources

• e.g., mouse/keyboard/network timings

• Challenges with embedded systems, saved VMs

10/21/2022 CSEP 564 - Fall 2022 47

Obtaining Random Numbers

• Better idea:
• AMD/Intel’s on-chip random number generator

• RDRAND

• Hopefully no hardware bugs!

10/21/2022 CSEP 564 - Fall 2022 48

Back to encryption

10/21/2022 CSEP 564 - Fall 2022 49

Confidentiality: Basic Problem

Given (Symmetric Crypto): both parties know the same secret.

Goal: send a message confidentially.

10/21/2022 CSEP 564 - Fall 2022 50

?

Ignore for now: How is this achieved in practice??

One weird bit-level trick

• XOR!
• Just XOR with a random bit!

• Why?
• Uniform output

• Independent of ‘message’ bit

10/21/2022 CSEP 564 - Fall 2022 51

One-Time Pad

10/21/2022 CSEP 564 - Fall 2022 52

= 10111101…

= 00110010…

10001111…
00110010… =


10111101…

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext =
plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

Advantages of One-Time Pad

• Easy to compute
• Encryption and decryption are the same operation

• Bitwise XOR is very cheap to compute

• As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, regardless of attacker’s

computational resources

• …as long as the key sequence is truly random
• True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
• But how does sender communicate the key to receiver?

10/21/2022 CSEP 564 - Fall 2022 53

Problems with the One-Time Pad?

• Discuss and pollev

• What potential security problems do you see with the one-time pad?

• (Try not to look ahead and next slides)

• Recall two key goals of cryptography: confidentiality and integrity

10/21/2022 CSEP 564 - Fall 2022 54

One-Time Pad - Reminder

10/21/2022 CSEP 564 - Fall 2022 55

= 10111101…

= 00110010…

10001111…
00110010… =


10111101…

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon, 1949)

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext =
plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

Dangers of Reuse

10/21/2022 CSEP 564 - Fall 2022 56

= 00000000…

= 00110010…

00110010…
00110010… =


00000000…P1

C1

= 11111111…

= 00110010…

11001101…

P2
C2

Learn relationship between plaintexts
C1C2 = (P1K)(P2K) =
(P1P2)(KK) = P1P2

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

10/21/2022 CSEP 564 - Fall 2022 57

Integrity?

10/21/2022 CSEP 564 - Fall 2022 58

= 10111101…

= 00110010…

10001111…
00110010… =


10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext =
plaintext  key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext  key =
(plaintext  key)  key =
plaintext  (key  key) =
plaintext

0

0

Problems with One-Time Pad

• (1) Key must be as long as the plaintext
• Impractical in most realistic scenarios

• Still used for diplomatic and intelligence traffic

• (2) Insecure if keys are reused
• Attacker can obtain XOR of plaintexts

• (3) Does not guarantee integrity
• One-time pad only guarantees confidentiality

• Attacker cannot recover plaintext, but can easily change it to something else

10/21/2022 CSEP 564 - Fall 2022 59

Reducing Key Size

• What to do when it is infeasible to pre-share huge random keys?
• When one-time pad is unrealistic…

• Use special cryptographic primitives: block ciphers, stream ciphers
• Single key can be re-used (with some restrictions)

• Not as theoretically secure as one-time pad

10/21/2022 CSEP 564 - Fall 2022 60

What if we try something simple?

• Alice and Bob synchronize their clocks perfectly, then generate OTPs

• Hash(time)

• Hash(time, key)

10/21/2022 CSEP 564 - Fall 2022 61

Block Ciphers

• Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES

• Each key defines a different permutation

• Same key is reused for each block (can use short keys)

10/21/2022 CSEP 564 - Fall 2022 62

Plaintext

Ciphertext

block
cipherKey

Keyed Permutation

10/21/2022 CSEP 564 - Fall 2022 63

input
possible
output

possible
output etc.

000 010 111 …

001 111 110 …

010 101 000 …

011 110 101 …

… … …

111 000 110 …

For N-bit input, 2N! possible permutations
For K-bit key, 2K possible keys

Key = 00
Key = 01

Keyed Permutation

• Not just shuffling of input bits!
• Suppose plaintext = “111”.

• Then “111” is not the only possible ciphertext!

• Instead:
• Permutation of possible outputs

• Use secret key to pick a permutation

10/21/2022 CSEP 564 - Fall 2022 64

Plaintext

Ciphertext

block
cipherKey

Block Cipher Security

• Result should look like a random permutation on the inputs
• Recall: not just shuffling bits. N-bit block cipher permutes over 2N

inputs.

• Only computational guarantee of secrecy
• Not impossible to break, just very expensive

• If there is no efficient algorithm (unproven assumption!), then can only break by
brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value and/or useful
lifetime of protected information

10/21/2022 CSEP 564 - Fall 2022 65

Block Cipher Operation (Simplified)

10/21/2022 CSEP 564 - Fall 2022 66

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Standard Block Ciphers

• DES: Data Encryption Standard
• Feistel structure: builds invertible function using non-invertible ones

• Invented by IBM, issued as federal standard in 1977

• 64-bit blocks, 56-bit key + 8 bits for parity

10/21/2022 CSEP 564 - Fall 2022 67

DES and 56 bit keys

• 56 bit keys are quite short

• 1999: EFF DES Crack + distributed machines
• < 24 hours to find DES key

• DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

10/21/2022 CSEP 564 - Fall 2022 68

3DES

• Two-key 3DES increases security
of DES by doubling the key length

10/21/2022 CSEP 564 - Fall 2022 69

Plaintext

Ciphertext

Key1 DES

Key2 DES-1

Key1 DES

But wait… what about 2DES?

• Suppose you are given plaintext-ciphertext
pairs (P1,C1), (P2,C2), (P3,C3)

• Suppose Key1 and Key2 are each 56-bits
long

• Can you figure out Key1 and Key2 if you try
all possible values for both (2112

possibilities) → Yes

• Can you figure out Key1 and Key2 more
efficiently than that? → Discuss!

10/21/2022 CSEP 564 - Fall 2022 70

Plaintext

Ciphertext

Key1 DES

Key2 DES

