
CSEP 564: Computer Security and Privacy

Software Security:
Buffer Overflow Defenses

Fall 2022

David Kohlbrenner

dkohlbre@cs

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, David Kohlbrenner, Yoshi Kohno,
Ada Lerner, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

A note on summaries

• Please follow the instructions!
• Don’t just use bullets

• We’re looking for evidence you read the paper carefully and thought
about it
• Might have been harsh on this round, grades posting after class

• Please read our feedback!

10/12/2022 CSEP 564 - Fall 2022 2

Lab 1

• Downtime resolved?

• You should have started by now
• Hopefully deep into, or solved, sploits 1+2

• If sploit 4 didn’t make sense, today should help ☺

10/12/2022 CSEP 564 - Fall 2022 3

Lab 1

10/12/2022 CSEP 564 - Fall 2022 4

• Office hours were pretty packed, good!

• Common questions:
• Around function preludes / epilogues

• I can link some animations/tutorials on ed,
none are perfect

• Around what you can do with the sploit3
1-byte overwrite

Lab 1

• Office hours were pretty packed, good!

• Common questions:
• Around function preludes / epilogues

• I can link some animations/tutorials on ed,
none are perfect

• Around what you can do with the sploit3
1-byte overwrite

10/12/2022 CSEP 564 - Fall 2022 5

Saved eip

Saved ebp

local

local

local

Argument N

Argument N-1

Argument 0

Saved eip

Saved ebp

local

Paper Discussion Time!

“Automated Whitebox Fuzz Testing”

Patrice Godefroid, Michael Y. Levin, and David Molnar

• Pick one of these and ask about it/describe it to your neighbor briefly
• Symbolic execution

• Whitebox vs blockbox fuzzing

• Path constraints

• Code coverage

• Something else from the paper

10/12/2022 CSEP 564 - Fall 2022 6

Paper Discussion Time!

“Automated Whitebox Fuzz Testing”

Patrice Godefroid, Michael Y. Levin, and David Molnar

• What is something you learned from this paper?

10/12/2022 CSEP 564 - Fall 2022 7

Last time…

• Stack smashing and overwriting return pointers

• “Computing” with printf

10/12/2022 CSEP 564 - Fall 2022 8

10/12/2022 CSEP 564 - Fall 2022 9

Summary of Printf Risks

• Printf takes a variable number of arguments
• E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
• E.g., printf(buf) when buf=“Hello world” versus when

buf=“Hello world %d”

• Can be used to advance printf’s internal stack pointer

• Can read memory
• E.g., printf(“%x”) will print in hex format whatever printf’s internal

stack pointer is pointing to at the time

• Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location

specified by whatever printf’s internal SP is pointing to at the time

10/12/2022 CSEP 564 - Fall 2022 10

How Can We Attack This?

foo() {

char buf[…];

strncpy(buf, readUntrustedInput(), sizeof(buf));

printf(buf); //vulnerable

}

What should the string returned by readUntrustedInput() contain??

10/12/2022 CSEP 564 - Fall 2022 11

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

Different compilers /
compiler options /

architectures might vary

Using %n to Overwrite Return Address

10/12/2022 CSEP 564 - Fall 2022 12

RET“… attackString%n”, attack code &RET

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in printed so far into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters “in”
attackString must be
equal to … what?

Why is “in” in quotes? C allows you to concisely specify the “width” to print, causing printf
to pad by printing additional blank characters without reading anything else off the stack.

Example: printf(“%5d%n”, 10) will print three spaces followed by the integer: “ 10”
That is, the %n will write 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

In foo()’s stack frame:

The exploitation twilight zone

• During an exploitation attempt sometimes you have to ‘let it run’
• Overflow a buffer

• Change things

• Let program run for ‘a bit’

• Everything triggers!

• Printf exploit a perfect example

10/12/2022 CSEP 564 - Fall 2022 13

Recommended Reading

• It will be hard to do Lab 1 without:
• Reading (see assignments):

• Smashing the Stack for Fun and Profit

• Exploiting Format String Vulnerabilities

10/12/2022 CSEP 564 - Fall 2022 14

Buffer Overflow: Causes and Cures

• Classical memory exploit involves code injection
• Put malicious code at a predictable location in memory, usually masquerading as

data
• Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization
5. Code analysis
6. Better interfaces
7. …

10/12/2022 CSEP 564 - Fall 2022 15

Defense: Better string functions!

• strcpy is bad

• strncpy is… also bad (no null terminator! Returns dest!)

10/12/2022 CSEP 564 - Fall 2022 16

Defense: Better string functions!

• strcpy is bad

• strncpy is… also bad (no null terminator! Returns dest!)

• BSD to the rescue: strlcpy
• size_t strlcpy(char *dest, const char *src, size_t n);

• Always NUL terminates

• Returns len(src) …

10/12/2022 CSEP 564 - Fall 2022 17

strlcpy – maybe not what we wanted

• How do you check truncation?

• Endless arguments, no glibc implementation (!)

• Programmers instead do this:
• #define strlcpy(dest,src,len) strncpy(dest,src,(len)-1)

10/12/2022 CSEP 564 - Fall 2022 18

Pollev/discussion

• What would you want a C string function to do from a safety
perspective?

• Remember: a C string is an array of bytes terminated with a NUL byte.

• There are no other properties!

10/12/2022 CSEP 564 - Fall 2022 19

strscpy – Maybe this one is good

• ssize_t strscpy(char *dest, const char *src, size_t count);
• NUL terminates no matter what

• Returns len(src)

10/12/2022 CSEP 564 - Fall 2022 20

Should I even care? C string functions? Really?

10/12/2022 CSEP 564 - Fall 2022 21

Should I even care? C string functions? Really?

10/12/2022 CSEP 564 - Fall 2022 22

• https://lwn.net/Articles/905777/

Defense: Executable Space Protection

• Mark all writeable memory locations as non-executable
• Example: Microsoft’s Data Execution Prevention (DEP)

• This blocks many code injection exploits

• Hardware support
• AMD “NX” bit (no-execute), Intel “XD” bit (executed disable) (in post-2004

CPUs)

• Makes memory page non-executable

• Widely deployed
• Windows XP SP2+ (2004), Linux since 2004 (check distribution), OS X 10.5+

(10.4 for stack but not heap), Android 2.3+

10/12/2022 CSEP 564 - Fall 2022 23

Pollev

• What might an attacker be able to accomplish even if they cannot
execute code on the stack?

10/12/2022 CSEP 564 - Fall 2022 24

What Does “Executable Space Protection”
Not Prevent?

• Can still corrupt stack …
• … or function pointers

• … or critical data on the heap

• As long as RET points into existing code, executable space
protection will not block control transfer!
→ return-to-libc exploits

10/12/2022 CSEP 564 - Fall 2022 25

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• Canvas in-class activity, Oct 8!

10/12/2022 CSEP 564 - Fall 2022 26

return-to-libc

• Overwrite saved ret (IP) with address of any library routine
• Arrange stack to look like arguments

• Does not look like a huge threat
• …

• We can call any function we want!

• Say, exec ☺

10/12/2022 CSEP 564 - Fall 2022 27

return-to-libc++

• Insight: Overwritten saved EIP need not point to the beginning of a
library routine

• Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (SP)
• Guess what? Its value is under attacker’s control!

• Use it as the new value for IP
• Now control is transferred to an address of attacker’s choice!

• Increment SP to point to the next word on the stack

10/12/2022 CSEP 564 - Fall 2022 28

Chaining RETs

• Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks

exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
• Turing-complete language

• Build “gadgets” for load-store, arithmetic, logic, control flow, system calls

• Attack can perform arbitrary computation using no injected code at all –
return-oriented programming

• Truly, a “weird machine”

10/12/2022 CSEP 564 - Fall 2022 29

Return-Oriented Programming

10/12/2022 CSEP 564 - Fall 2022 30

Defense: Run-Time Checking: StackGuard

10/12/2022 CSEP 564 - Fall 2022 31

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Defense: Run-Time Checking: StackGuard

10/12/2022 CSEP 564 - Fall 2022 32

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Canary contains: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp
ret

addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function return causes a
performance penalty
• For example, 8% for Apache Web server at one point in time

10/12/2022 CSEP 564 - Fall 2022 33

Defeating StackGuard

10/12/2022 CSEP 564 - Fall 2022 34

• StackGuard can be defeated
– A single memory write where the attacker controls both the value and the destination is

sufficient

• Suppose program contains copy(buf,attacker-input) and copy(dst,buf)
– Example: dst is a local pointer variable
– Attacker controls both buf and dst

buf sfp RET

Return execution to
this address

canary&dst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

ASLR: Address Space Randomization

• Randomly arrange address space of key data areas for a process
• Base of executable region

• Position of stack

• Position of heap

• Position of libraries

• Introduced by Linux PaX project in 2001

• Adopted by OpenBSD in 2003

• Adopted by Linux in 2005

10/12/2022 CSEP 564 - Fall 2022 35

ASLR: Address Space Randomization

• Deployment (examples)
• Linux kernel since 2.6.12 (2005+)

• Android 4.0+

• iOS 4.3+ ; OS X 10.5+

• Microsoft since Windows Vista (2007)

• Attacker goal: Guess or figure out target address (or addresses)

• ASLR more effective on 64-bit architectures

10/12/2022 CSEP 564 - Fall 2022 36

Attacking ASLR

• NOP sleds and heap spraying to increase likelihood for adversary’s
code to be reached (e.g., on heap)

• Brute force attacks or memory disclosures to map out memory on the
fly
• Disclosing a single address can reveal the location of all code within a library,

depending on the ASLR implementation

10/12/2022 CSEP 564 - Fall 2022 37

Aslide: nopsleds

Pretend you can corrupt a saved return address, but you don’t know
where to point it to!

10/12/2022 CSEP 564 - Fall 2022 38

PointGuard

• Attack: overflow a function pointer so that it points to attack
code

• Idea: encrypt all pointers while in memory
• Generate a random key when program is executed

• Each pointer is XORed with this key when loaded from memory to
registers or stored back into memory
• Pointers cannot be overflowed while in registers

• Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will dereference

to a “random” memory address

CSEP 564 - Fall 202210/12/2022 39

Normal Pointer Dereference

CSEP 564 - Fall 2022

CPU

Memory Pointer
0x1234

Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

[Cowan]

10/12/2022 40

PointGuard Dereference

CSEP 564 - Fall 2022

[Cowan]

CPU

Memory Encrypted pointer
0x7239

Data

1. Fetch pointer
value

0x1234

2. Access data referenced by pointer0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer
value

0x9786

Decrypt

Decrypts to
random value

0x9786

10/12/2022 41

PointGuard Issues

• Must be very fast
• Pointer dereferences are very common

• Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values end up in

memory and can be overwritten there

• Attacker should not be able to modify the key
• Store key in its own non-writable memory page

• PG’d code doesn’t mix well with normal code
• What if PG’d code needs to pass a pointer to OS kernel?

CSEP 564 - Fall 202210/12/2022 42

Defense: Shadow stacks

• Idea: don’t store return addresses on the stack!

• Store them on… a different stack!
• A hidden stack

• On function call/return
• Store/retrieve the return address from shadow stack

• Or store on both main stack and shadow stack, and compare for equality at
function return

• 2020/2021 Hardware Support emerges (e.g., Intel Tiger Lake, AMD Ryzen PRO
5000)

CSEP 564 - Fall 202210/12/2022 44

Challenges With Shadow Stacks

• Where do we put the shadow stack?
• Can the attacker figure out where it is? Can they access it?

• How fast is it to store/retrieve from the shadow stack?

• How big is the shadow stack?

• Is this compatible with all software?

• (Still need to consider data corruption attacks, even if attacker can’t
influence control flow.)

CSEP 564 - Fall 202210/12/2022 45

Other Big Classes of Defenses

• Use safe programming languages, e.g., Java, Rust
• What about legacy C code?

• (Though Java doesn’t magically fix all security issues ☺)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”

CSEP 564 - Fall 202210/12/2022 46

Fuzz Testing

• Generate “random” inputs to program
• Sometimes conforming to input structures (file formats, etc.)

• See if program crashes
• If crashes, found a bug

• Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

CSEP 564 - Fall 202210/12/2022 47

What does a modern program do?

10/12/2022 CSEP 564 - Fall 2022 48

(Lab 1 version)
08049196 <foo>:
8049196: 55 push %ebp
8049197: 89 e5 mov %esp,%ebp
8049199: 81 ec b8 01 00 00 sub $0x1b8,%esp
804919f: 8b 45 08 mov 0x8(%ebp),%eax
80491a2: 83 c0 04 add $0x4,%eax
80491a5: 8b 00 mov (%eax),%eax
80491a7: 50 push %eax
80491a8: 8d 85 48 fe ff ff lea -0x1b8(%ebp),%eax
80491ae: 50 push %eax
80491af: e8 9c fe ff ff call 8049050 <strcpy@plt>
80491b4: 83 c4 08 add $0x8,%esp
80491b7: 90 nop
80491b8: c9 leave
80491b9: c3 ret

(Mostly normal x86_32)
080491f6 <foo>:
80491f6: f3 0f 1e fb endbr32
80491fa: 55 push %ebp
80491fb: 89 e5 mov %esp,%ebp
80491fd: 81 ec c0 01 00 00 sub $0x1c0,%esp
8049203: 8b 45 08 mov 0x8(%ebp),%eax
8049206: 89 85 40 fe ff ff mov %eax,-0x1c0(%ebp)
804920c: 65 a1 14 00 00 00 mov %gs:0x14,%eax
8049212: 89 45 fc mov %eax,-0x4(%ebp)
8049215: 31 c0 xor %eax,%eax
8049217: 8b 85 40 fe ff ff mov -0x1c0(%ebp),%eax
804921d: 83 c0 04 add $0x4,%eax
8049220: 8b 00 mov (%eax),%eax
8049222: 50 push %eax
8049223: 8d 85 44 fe ff ff lea -0x1bc(%ebp),%eax
8049229: 50 push %eax
804922a: e8 81 fe ff ff call 80490b0 <strcpy@plt>
804922f: 83 c4 08 add $0x8,%esp
8049232: 90 nop
8049233: 8b 55 fc mov -0x4(%ebp),%edx
8049236: 65 33 15 14 00 00 00 xor %gs:0x14,%edx
804923d: 74 05 je 8049244 <foo+0x4e>
804923f: e8 4c fe ff ff call 8049090 <__stack_chk_fail@plt>
8049244: c9 leave
8049245: c3 ret

Other Common Software Security Issues…

CSEP 564 - Fall 202210/12/2022 49

Another Type of Vulnerability: pollev!

CSEP 564 - Fall 2022

char buf[80];

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > sizeof buf) {

error("length too large");

return;

}

memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

10/12/2022 50

size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

Snippet 2

Snippet 1

Implicit Cast

• Consider this code:

CSEP 564 - Fall 2022

char buf[80];

void vulnerable() {

int len = read_int_from_network();

char *p = read_string_from_network();

if (len > sizeof buf) {

error("length too large, nice try!");

return;

}

memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may
copy huge amounts of

input into buf.

10/12/2022 51

Integer Overflow

• What if len is large (e.g., len = 0xFFFFFFFF)?

• Then len + 5 = 4 (on many platforms)

• Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

CSEP 564 - Fall 2022

size_t len = read_int_from_network();

char *buf;

buf = malloc(len+5);

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)
10/12/2022 52

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Another Type of Vulnerability

• Consider this code:

• Goal: Write to file only with permission

• What can go wrong?

CSEP 564 - Fall 2022

if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));

10/12/2022 53

TOCTOU (Race Condition)

• TOCTOU = “Time of Check to Tile of Use”

• Goal: Write to file only with permission

• Attacker (in another program) can change meaning of
“file” between access and open:
symlink("/etc/passwd", "file");

CSEP 564 - Fall 2022

if (access(“file”, W_OK) != 0) {

exit(1); // user not allowed to write to file

}

fd = open(“file”, O_WRONLY);

write(fd, buffer, sizeof(buffer));

10/12/2022 54

Something Different: Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd

• Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

CSEP 564 - Fall 202210/12/2022 55

Password Checker

• Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

CSEP 564 - Fall 2022

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i])
return FALSE

return TRUE

10/12/2022 56

Attacker Model

• Attacker can guess CandidatePwds through some
standard interface

• Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Is it possible to derive password more quickly?

CSEP 564 - Fall 2022

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i])

return FALSE

return TRUE

10/12/2022 57

Try it

dkohlbre.com/cew

10/12/2022 CSEP 564 - Fall 2022 58

