
Applications!

Where we are in the Course

• Application layer protocols are often part of “app”
• But don’t need a GUI, e.g., DNS

CSEP 561 University of Washington 2

Physical

Link

Network

Transport

Application

Recall

• Application layer messages are often split over
multiple packets

• Or may be aggregated in a packet …

CSEP 561 University of Washington 3

802.11 IP TCP HTTP

802.11 IP TCP HTTP

802.11 IP TCP HTTP

HTTP

Application Communication Needs

• Vary widely; must build on Transport services

CSEP 561 University of Washington 4

UDP

DNS

TCP

Series of variable
length, reliable
request/reply

exchanges

Web

UDP

Real-time
(unreliable)

stream delivery

Skype

Short, reliable
request/reply

exchanges

Message
reliability!

OSI Session/Presentation Layers

• Remember this? Two relevant concepts …

CSEP 561 University of Washington 5

– Provides functions needed by users

– Converts different representations

– Manages task dialogs

– Provides end-to-end delivery

– Sends packets over multiple links

– Sends frames of information

– Sends bits as signals

Considered

part of the

application,

not strictly

layered!

Session Concept

• A session is a series of related network interactions
in support of an application task

• Often informal, not explicit

• Examples:
• Web page fetches multiple resources
• Skype call involves audio, video, chat

CSEP 561 University of Washington 6

Presentation Concept

• Apps need to identify the type of content, and encode it
for transfer

• These are Presentation functions

• Examples:
• Media (MIME) types, e.g., image/jpeg, identify content type
• Transfer encodings, e.g., gzip, identify the encoding of content
• Application headers are often simple and readable versus

packed for efficiency

CSEP 561 University of Washington 7

Evolution of Internet Applications

• Always changing, and growing …

CSEP 561 University of Washington 8

20101970 19901980 2000

Traffic

File Transfer (FTP)
Email (SMTP)
News (NTTP)

Secure Shell (ssh) Telnet

Email

Web (HTTP)
Web (CDNs)

 P2P (BitTorrent)
 Web (Video)

 ???

Evolution of Internet Applications (2)

• For a peek at the state of the Internet:
• Akamai’s State of the Internet Report (quarterly)
• Cisco’s Visual Networking Index
• Mary Meeker’s Internet Report

• Robust Internet growth, esp. video, wireless, mobile,
cats

• Most (70%) traffic is video (expected 80% in 2019)
• Mobile traffic overtakes desktop (2016)
• 15% of traffic is cats (2013)
• Growing attack traffic from China, also U.S. and Russia

CSEP 561 University of Washington 9

Evolution of the Web

CSEP 561 University of Washington 10

Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt

Evolution of the Web (2)

CSEP 561 University of Washington 11

Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt

Domain Name System

DNS

• Human-readable host names, and more

CSEP 561 University of Washington 13

www.uw.edu?

Network

128.94.155.135

Names and Addresses

• Names are higher-level identifiers for resources
• Addresses are lower-level locators for resources

• Multiple levels, e.g. full name → email → IP address → Ethernet addr
• Resolution (or lookup) is mapping a name to an address

CSEP 561 University of Washington 14

Name, e.g.
“Andy Tanenbaum,”

or “flits.cs.vu.nl”

Address, e.g.
“Vrijie Universiteit, Amsterdam”

or IPv4 “130.30.27.38”

Directory

Lookup

Before the DNS – HOSTS.TXT

• Directory was a file HOSTS.TXT regularly retrieved
for all hosts from a central machine at the NIC
(Network Information Center)

• Names were initially flat, became hierarchical (e.g.,
lcs.mit.edu) ~85

• Not manageable or efficient as the ARPANET grew …

CSEP 561 University of Washington 15

DNS

• A naming service to map between host names and their IP
addresses (and more)

• www.uwa.edu.au → 130.95.128.140

• Goals:
• Easy to manage (esp. with multiple parties)
• Efficient (good performance, few resources)

• Approach:
• Distributed directory based on a hierarchical namespace
• Automated protocol to tie pieces together

CSEP 561 University of Washington 16

DNS Namespace

• Hierarchical, starting from “.” (dot, typically omitted)

TLDs (Top-Level Domains)

•Run by ICANN (Internet Corp. for Assigned Names and Numbers)
• Starting in ‘98; naming is financial, political, and international

•700+ generic TLDs
• Initially .com, .edu , .gov., .mil, .org, .net
• Unrestricted (.com) vs Restricted (.edu)
• Added regions (.asia, .kiwi), Brands (.apple), Sponsored (.aero) in 2012

•~250 country code TLDs
• Two letters, e.g., “.au”, plus international characters since 2010
• Widely commercialized, e.g., .tv (Tuvalu)
• Many domain hacks, e.g., instagr.am (Armenia), kurti.sh (St. Helena)

CSEP 561 University of Washington 18

DNS Zones

• A zone is a contiguous portion of the namespace

A zoneDelegation

DNS Zones (2)

• Zones are the basis for distribution
• EDU Registrar administers .edu
• UW administers washington.edu
• CSE administers cs.washington.edu

• Each zone has a nameserver to contact for
information about it

• Zone must include contacts for delegations, e.g., .edu
knows nameserver for washington.edu

CSEP 561 University of Washington 20

DNS Resolution

• DNS protocol lets a host resolve any host name
(domain) to IP address

• If unknown, can start with the root nameserver and
work down zones

• Let’s see an example first …

CSEP 561 University of Washington 21

DNS Resolution (2)

• flits.cs.vu.nl resolves robot.cs.washington.edu

Iterative vs. Recursive Queries

• Recursive query
• Nameserver resolves and returns final answer
• E.g., flits → local nameserver

• Iterative (Authoritative) query
• Nameserver returns answer or who to contact for answer
• E.g., local nameserver → all others

CSEP 561 University of Washington 23

Iterative vs. Recursive Queries (2)

Recursive

Iterative

Iterative vs. Recursive Queries (3)

• Recursive query
• Lets server offload client burden (simple resolver) for

manageability
• Lets server cache results for a pool of clients

• Iterative query
• Lets server “file and forget”
• Easy to build high load servers

CSEP 561 University of Washington 25

Local Nameservers

• Local nameservers often run by IT (enterprise, ISP)
• But may be your host or AP
• Or alternatives e.g., Google public DNS (8.8.8.8)

Cloudflare’s public DNS (1.1.1.1)

• Clients need to be able to contact local nameservers
• Typically configured via DHCP

CSEP 561 University of Washington 26

Root Nameservers

• Root (dot) is served by 13 server names
• a.root-servers.net to m.root-servers.net
• All nameservers need root IP addresses
• Handled via configuration file (named.ca)

• There are >1000 distributed server instances
• Highly reachable, reliable service
• Most servers are reached by IP anycast (Multiple locations

advertise same IP! Routes take client to the closest one.)
• Servers are IPv4 and IPv6 reachable

CSEP 561 University of Washington 27

Root Server Deployment

CSEP 561 University of Washington 28

Source: http://www.root-servers.org. Snapshot on 27.02.12. Does not represent current deployment.

Iterative vs. Recursive Queries (2)

Caching

• Resolution latency needs to be low

• URLs don’t have much churn

• Cache query/responses to answer future queries
immediately

• Including partial (iterative) answers
• Responses carry a TTL for caching

CSEP 561 University of Washington 30

Nameserver

query out

response
Cache

Caching (2)

• flits.cs.vu.nl looks up and stores
eng.washington.edu

CSEP 561 University of Washington 31

1: query 2: query

UW nameserver
(for washington.edu)

3: eng.washington.edu4: eng.washington.edu

Local nameserver
(for cs.vu.nl)

Cache

Caching (3)

• flits.cs.vu.nl now directly resolves
eng.washington.edu

CSEP 561 University of Washington 32

1: query

UW nameserver
(for washington.edu)

4: eng.washington.edu

Local nameserver
(for cs.vu.nl)

I know the server for
washington.edu!

Cache

DNS Protocol

• Query and response messages
• Built on UDP messages, port 53
• ARQ for reliability; server is stateless!
• Messages linked by a 16-bit ID field

Query

Response

Time

Client Server

ID=0x1234

ID=0x1234

DNS Protocol (2)

• Service reliability via replicas
• Run multiple nameservers for domain

• Return the list; clients use one answer

• Helps distribute load too

CSEP 561 University of Washington 34

NS for uw.edu?

A

B

C

Use A, B or C

DNS Resource Records

• A zone is comprised of DNS resource records that
give information for its domain names

CSEP 561 University of Washington 35

Type Meaning

SOA Start of authority, has key zone parameters

A IPv4 address of a host

AAAA (“quad A”) IPv6 address of a host

CNAME Canonical name for an alias

MX Mail exchanger for the domain

NS Nameserver of domain or delegated subdomain

DNS Resource Records (2)

CSEP 561 University of Washington 36

IP addresses
of computers

Name server

Mail gateways

Start of Authority

DIG DEMO

DNSSEC (DNS Security Extensions)

• Extends DNS with new record types
• RRSIG for digital signatures of records
• DNSKEY for public keys for validation
• DS for public keys for delegation
• First version in ‘97, revised by ’05

• Deployment requires software upgrade at both client and
server

• Root servers upgraded in 2010
• Followed by uptick in deployment

Introduction to Computer Networks 38

HTTP

HTTP, (HyperText Transfer Protocol)

• Basis for fetching Web pages

CSEP 561 University of Washington 43

request

Network

CSEP 561 University of Washington 44

Sir Tim Berners-Lee (1955–)

• Inventor of the Web
• Dominant Internet app since mid 90s
• He now directs the W3C

• Developed Web at CERN in ‘89
• Browser, server and first HTTP
• Popularized via Mosaic (‘93), Netscape
• First WWW conference in ’94 …

Source: By Paul Clarke, CC-BY-2.0, via Wikimedia Commons

Web Context

CSEP 561 University of Washington 45

HTTP request

HTTP response

Page as a set of related
HTTP transactions

Web Protocol Context

• HTTP is a request/response protocol for fetching
Web resources

• Runs on TCP, typically port 80
• Part of browser/server app

TCP

IP

802.11

browser

HTTP

TCP

IP

802.11

server

HTTP
request

response

Fetching a Web page with HTTP

• Start with the page URL (Uniform Resource Locator):
 http://en.wikipedia.org/wiki/Vegemite

• Steps:
• Resolve the server to IP address (DNS)
• Set up TCP connection to the server
• Send HTTP request for the page
• (Await HTTP response for the page)
• Execute/fetch embedded resources/render
• Clean up any idle TCP connections

CSEP 561 University of Washington 47

Protocol Page on serverServer

HTML

• Hypertext Markup Language (HTML)
• Uses Extensible Markup Language (XML) to build a

markup language for web content
• Key innovation was the “hyperlink”, an HTML

element linking to other HTML elements using
URLs

• Also includes Cascading Style Sheets (CSS) for
maintaining look-and-feel across a domain

• Specific standards have been the subject of many
“browser wars”

DOM (Document Object Model)

• Base primitive for web browsers interacting
with HTML

• Use HTML (XML) to create a tree of elements
• Javascript code is embedded in the page and

modifies the DOM based on:
• User actions
• Asynchronous Javascript
• Other server-side actions

CSEP 561 University of Washington 49

DOM Example

CSEP 561 University of Washington 50

DOM Examples

CSEP 561 University of Washington 51

 Go to browser and show DOM

HTTP Protocol

•Originally a simple protocol, with many options added over
time
• Text-based commands, headers

•Try it yourself:
• As a “browser” fetching a URL
• Run “telnet en.wikipedia.org 80”
• Type “GET /wiki/Vegemite HTTP/1.0” to server followed by a blank

line
• Server will return HTTP response with the page contents (or other

info)

CSEP 561 University of Washington 52

HTTP Protocol (2)

• Commands used in the request
Method Description

GET Read a Web page

HEAD Read a Web page's header

POST Append to a Web page

PUT Store a Web page

DELETE Remove the Web page

TRACE Echo the incoming request

CONNECT Connect through a proxy

OPTIONS Query options for a page

Fetch
page

Upload
data

Basically
defunct

HTTP Protocol (3)

• Codes returned with the response

CSEP 561 University of Washington 54

Code Meaning Examples

1xx Information 100 = server agrees to handle client's request

2xx Success 200 = request succeeded; 204 = no content
present

3xx Redirection 301 = page moved; 304 = cached page still valid

4xx Client error 403 = forbidden page; 404 = page not found

5xx Server error 500 = internal server error; 503 = try again later

Yes!

HTTP Performance

PLT (Page Load Time)

• PLT was the key measure of web performance
• From click until user sees page
• Small increases in PLT decrease sales

• PLT depends on many factors
• Structure of page/content
• HTTP (and TCP!) protocol
• Network RTT and bandwidth

CSEP 561 University of Washington 56

CSEP 561 University of Washington 57

Early Performance

• HTTP/1.0 used one TCP connection
to fetch one web resource

• Made HTTP very easy to build
• But gave fairly poor PLT …

Remember: DOM Example

CSEP 561 University of Washington 58

CSEP 561 University of Washington 59

Early Performance (2)

• HTTP/1.0 used one TCP connection
to fetch one web resource

• Made HTTP very easy to build
• But gave fairly poor PLT…

Oh we need
styles.css

CSEP 561 University of Washington 60

Early Performance (3)

• Many reasons why PLT is larger than
necessary

• Sequential request/responses, even when
to different servers

• Multiple TCP connection setups to the
same server

• Multiple TCP slow-start phases

• Network is not used effectively
• Worse with many small resources / page

Ways to Decrease PLT

1. Reduce content size for transfer
• Smaller images, gzip

2. Change HTTP to make better use of bandwidth

3. Change HTTP to avoid repeat sending of same
content

• Caching, and proxies

4. Move content closer to client
• CDNs [later]

CSEP 561 University of Washington 61

Parallel Connections

• One simple way to reduce PLT
• Browser runs multiple (8, say) HTTP instances in parallel
• Server is unchanged; already handled concurrent requests

for many clients

• How does this help?
• Single HTTP wasn’t using network much …
• So parallel connections aren’t slowed much
• Pulls in completion time of last fetch

CSEP 561 University of Washington 62

Persistent Connections

• Parallel connections compete with each other for
network resources

• 1 parallel client ≈ 8 sequential clients?
• Exacerbates network bursts, and loss

• Persistent connection alternative
• Make 1 TCP connection to 1 server
• Use it for multiple HTTP requests

CSEP 561 University of Washington 63

Persistent Connections (2)

CSEP 561 University of Washington 64

Client Server Client Server Client Server

Persistent +Pipelining

Persistent Connections (3)

CSEP 561 University of Washington 65

One request per connection

Sequential requests
per connection

Pipelined requests
per connection

Persistent Connections (4)

• Widely used as part of HTTP/1.1
• Supports optional pipelining
• PLT benefits depending on page structure, but easy on

network

CSEP 561 University of Washington 66

HTTP Futures

HTTP 1.1

• This was it! Standard protocol until circa 2015.

• HTTP 1.1 everywhere for all web access

• Until our favorite massive web company started noticing some
trends….

Continued Growth

Country Mobile-Only
Internet Users

Egypt 70%

India 59%

South Africa 57%

Indonesia 44%

United States 25%

Thanks to Ben Greenstein @ google for slides

Continued Growth (2)
RAM on Android Devices

Tecno Y2
512MB RAM, 8GB ROM
1.3GHz dual-core Cortex-
A7
2G & 3G only
4” (480x800)

Infinix Hot 4 Lite
1GB RAM, 16GB ROM
1.3GHz quad-core Cortex-
A7
2G & 3G only
5.5” (720x1280)

Tecno W3
1GB RAM, 8GB ROM
1.3GHz dual-core Cortex-
A7
2G & 3G only
5” (480x854)

Source: Chrome logs

Continued Growth (3)

● 284 Requests
● 93 Connections
● 4.5MB

transferred
● Lots of gaps

Waterfall of first 4
seconds of page
load

■ First Contentful Paint (FCP) “is it happening?”

 ■ First Meaningful Paint (FMP) “is it useful?”

 ■ Time to Interactive (TTI) “is it usable?”

Key user moments (PLT is Dumb)

HTTP Changes

HTTP/1.0: TCP connection per request

HTTP/1.1: Persistence and pipelining

HTTP2/SPDY: Targeted performance specifically
● All happens below HTTP layer
● Prioritized stream multiplexing
● Header compression
● Server push
● Started as SPDY, standardized as HTTP/2 in 2015

after every possible bikeshed deep discussion

TLS

TCP

IP

HTTP/2 (SPDY)

HTTP 2 Optimizations

Prioritized Stream Multiplexing
● HTTP 1.0: Each HTTP connection has own TCP
● HTTP 1.1: Share one TCP connection to save setup
● HTTP 2.0: Allow multiple concurrent HTTP connections in a single TCP

flow to avoid head-of-line blocking
Header Compression
● HTTP Headers very wordy; Designed to be human readable
● This was dumb. Lets compress them (usually gzip).

Server Push: example resource loading
gap
● Browser requests

and receives HTML,
encounters
<script
src=”...”>

● Similarly, JavaScript
might src a
dependent
JavaScript file

Browser Server

HTML
Request/Response

JavaScript
Request/Response

Gap

Server Push: example resource loading
gap
Use HTTP/2 server push to close gaps

Or use Link: rel=preload

● Particularly useful for
hidden render blocking
resources (HRBRs)

Browser Server

HTML
Request/Response

Push of
JavaScript
Response

No
Gap

Simple server push lab experiment
Result: No benefit when
HTML size > BD Product

Why? No gap even
without push.

Opportunity only on
high BDP networks,
e.g., LTE and Cable

QUIC/HTTP 3.0

Goal: make HTTPS transport even
faster!

Deployed at Google starting 2014

IETF working group formed in 2016

Standardized as HTTP 3.0 in
October 2018

TLS

HTTP/2

TCP

IP

QUIC

UDP

HTTP

QUIC/HTTP 3.0 Innovations (1)

• Speed up connection establishment
Include TLS/Encryption in setup (TLS 1.3)
Similarly pack HTTP content into setup

CSEP 561 University of Washington 80

CSEP 561 University of Washington 81

QUIC/HTTP 3.0 Innovations (2)

• Remove TCP/Switch to UDP
• Error correction: Groups of packets contain a FEC

packet which can be used to recreate lost packet.
• Congestion control: Move congestion control to

user space with pluggable implementations
• BBR Implementation: all packets carry new

sequence numbers, allows for precise roundtrip-
time calculation.

• Per-packet encryption (rather than flow)

CSEP 561 University of Washington 82

QUIC/HTTP 3.0 Innovations (3)

• Support mobility through 64-bit stream IDs
• This means you can change IP address or ports

but still keep your connection alive

CSEP 561 University of Washington 83

QUIC/HTTP 3.0: Problem of Mobility

• What happens to IP addresses
and HTTP sessions when a user
moves between wifi APs?

QUIC/HTTP 3.0: Problem of Mobility

• What happens to IP addresses
and HTTP sessions when a user
moves between wifi APs?

• What happens to IP addresses
and HTTP sessions when a user
moves between cellular and
wifi?

IP Mobility

• Hard problem: IP addresses are supposed to identify nodes in the
network but change as nodes move around.

• Proposed solutions:
• IP Anchor: Place a server at an IP and tunnel traffic to user.
• DNS Anchor: Have DNS server which rapidly updates as user moves between

IP addresses
• All try to keep some global state constant: IP or DNS Name

QUIC summary
Makes HTTPS faster, particularly in the tail

35% of Google’s egress traffic (7% of the Internet)

Deploying at Google was 3+ years of hard work

CDNs

Content Delivery Networks

• As the web took off in the 90s, traffic volumes grew and
grew. This:

1. Concentrated load on popular servers
2. Led to congested networks and need to provision more

bandwidth
3. Gave a poor user experience

• Idea:
• Place popular content near clients
• Helps with all three issues above

CSEP 561 University of Washington 89

Before CDNs

• Sending content from the source to 4 users takes 4 x
3 = 12 “network hops” in the example

CSEP 561 University of Washington 90

Source

User

User

. . .

After CDNs

• Sending content via replicas takes only 4 + 2 = 6
“network hops”

CSEP 561 University of Washington 91

Source

User

User

. . .

Replica

After CDNs (2)

• Benefits assuming popular content:
• Reduces server, network load
• Improves user experience

CSEP 561 University of Washington 92

Source

User

User

. . .

Replica

CSEP 561 University of Washington 93

Popularity of Content
• Zipf’s Law: few popular items, many

unpopular ones; both matter

Zipf popularity
(kth item is 1/k)

Rank Source: Wikipedia

George Zipf (1902-1950)

How to place content near clients?

CSEP 561 University of Washington 94

How to place content near clients?

• Use browser and proxy caches
• Helps, but limited to one client or clients in one

organization

• Want to place replicas across the Internet for use by
all nearby clients

• Done by clever use of DNS

CSEP 561 University of Washington 95

Content Delivery Network

CSEP 561 University of Washington 96

Content Delivery Network (2)

• DNS gives different answers to clients
• Tell each client the nearest replica (map client IP)

CSEP 561 University of Washington 97

Business Model

• Clever model pioneered by Akamai
• Placing site replica at an ISP is win-win
• Improves site experience and reduces ISP bandwidth usage

CSEP 561 University of Washington 98

Consumer

site

ISP

User

User

. . .

Replica

CDNs - Issues

• Security
• What about private information?
• How to cache/forward encrypted content?

• Basically can’t! Big players just share/ship keys.

• Net neutrality
• I.org, FreeBasics -> Basically CDNs

• But for reasons of price, not efficiency

• Who decides who gets to place CDNs?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

