
Applications!



Where we are in the Course

• Application layer protocols are often part of “app”
• But don’t need a GUI, e.g., DNS
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Recall

• Application layer messages are often split over 
multiple packets

• Or may be aggregated in a packet …
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Application Communication Needs

• Vary widely; must build on Transport services
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UDP

DNS

TCP

Series of variable 
length, reliable 
request/reply 

exchanges

Web

UDP

Real-time 
(unreliable) 

stream delivery

Skype

Short, reliable 
request/reply 

exchanges

Message 
reliability!



OSI Session/Presentation Layers

• Remember this? Two relevant concepts …
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– Provides functions needed by users

– Converts different representations

– Manages task dialogs

– Provides end-to-end delivery

– Sends packets over multiple links

– Sends frames of information

– Sends bits as signals

Considered 

part of the 

application, 

not strictly 

layered!



Session Concept

• A session is a series of related network interactions 
in support of an application task

• Often informal, not explicit

• Examples:
• Web page fetches multiple resources
• Skype call involves audio, video, chat
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Presentation Concept

• Apps need to identify the type of content, and encode it 
for transfer 

• These are Presentation functions

• Examples:
• Media (MIME) types, e.g., image/jpeg, identify content type
• Transfer encodings, e.g., gzip, identify the encoding of content
• Application headers are often simple and readable versus 

packed for efficiency
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Evolution of Internet Applications

• Always changing, and growing …
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Evolution of Internet Applications (2)

• For a peek at the state of the Internet:
• Akamai’s State of the Internet Report (quarterly)
• Cisco’s Visual Networking Index
• Mary Meeker’s Internet Report

• Robust Internet growth, esp. video, wireless, mobile, 
cats

• Most (70%) traffic is video (expected 80% in 2019)
• Mobile traffic overtakes desktop (2016)
• 15% of traffic is cats (2013)
• Growing attack traffic from China, also U.S. and Russia
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Evolution of the Web
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Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt



Evolution of the Web (2)
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Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt



Domain Name System



DNS

• Human-readable host names, and more
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www.uw.edu?

Network

128.94.155.135



Names and Addresses

• Names are higher-level identifiers for resources
• Addresses are lower-level locators for resources

• Multiple levels, e.g. full name → email → IP address → Ethernet addr
• Resolution (or lookup) is mapping a name to an address
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Name, e.g.
“Andy Tanenbaum,”

or “flits.cs.vu.nl” 

Address, e.g.
“Vrijie Universiteit, Amsterdam”

or IPv4 “130.30.27.38”

Directory

Lookup



Before the DNS – HOSTS.TXT

• Directory was a file HOSTS.TXT regularly retrieved 
for all hosts from a central machine at the NIC 
(Network Information Center)

• Names were initially flat, became hierarchical (e.g., 
lcs.mit.edu) ~85 

• Not manageable or efficient as the ARPANET grew …
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DNS

• A naming service to map between host names and their IP 
addresses (and more)

• www.uwa.edu.au → 130.95.128.140

• Goals:
• Easy to manage (esp. with multiple parties)
• Efficient (good performance, few resources)

• Approach:
• Distributed directory based on a hierarchical namespace
• Automated protocol to tie pieces together
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DNS Namespace

• Hierarchical, starting from “.” (dot, typically omitted)



TLDs (Top-Level Domains)

•Run by ICANN (Internet Corp. for Assigned Names and Numbers)
• Starting in ‘98; naming is financial, political, and international

•700+ generic TLDs
• Initially .com, .edu , .gov., .mil, .org, .net
• Unrestricted (.com) vs Restricted (.edu)
• Added regions (.asia, .kiwi), Brands (.apple), Sponsored (.aero) in 2012

•~250 country code TLDs
• Two letters, e.g., “.au”, plus international characters since 2010
• Widely commercialized, e.g., .tv (Tuvalu)
• Many domain hacks, e.g., instagr.am (Armenia), kurti.sh (St. Helena)
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DNS Zones

• A zone is a contiguous portion of the namespace

A zoneDelegation



DNS Zones (2)

• Zones are the basis for distribution
• EDU Registrar administers .edu
• UW administers washington.edu
• CSE administers cs.washington.edu

• Each zone has a nameserver to contact for 
information about it

• Zone must include contacts for delegations, e.g., .edu 
knows nameserver for washington.edu
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DNS Resolution

• DNS protocol lets a host resolve any host name 
(domain) to IP address

• If unknown, can start with the root nameserver and 
work down zones

• Let’s see an example first …
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DNS Resolution (2)

• flits.cs.vu.nl resolves robot.cs.washington.edu



Iterative vs. Recursive Queries

• Recursive query
• Nameserver resolves and returns final answer
• E.g., flits → local nameserver

• Iterative (Authoritative) query
• Nameserver returns answer or who to contact for answer
• E.g., local nameserver → all others
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Iterative vs. Recursive Queries (2)

Recursive

Iterative



Iterative vs. Recursive Queries (3)

• Recursive query
• Lets server offload client burden (simple resolver) for 

manageability
• Lets server cache results for a pool of clients

• Iterative query
• Lets server “file and forget”
• Easy to build high load servers
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Local Nameservers

• Local nameservers often run by IT (enterprise, ISP)
• But may be your host or AP
• Or alternatives e.g., Google public DNS (8.8.8.8) 

Cloudflare’s public DNS (1.1.1.1)

• Clients need to be able to contact local nameservers
• Typically configured via DHCP
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Root Nameservers

• Root (dot) is served by 13 server names
• a.root-servers.net to m.root-servers.net
• All nameservers need root IP addresses
• Handled via configuration file (named.ca)

• There are >1000 distributed server instances
• Highly reachable, reliable service
• Most servers are reached by IP anycast (Multiple locations 

advertise same IP! Routes take client to the closest one.)
• Servers are IPv4 and IPv6 reachable
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Root Server Deployment
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Source: http://www.root-servers.org. Snapshot on 27.02.12. Does not represent current deployment.



Iterative vs. Recursive Queries (2)



Caching

• Resolution latency needs to be low

• URLs don’t have much churn

• Cache query/responses to answer future queries 
immediately

• Including partial (iterative) answers
• Responses carry a TTL for caching
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Nameserver

query out

response
Cache



Caching (2)

• flits.cs.vu.nl looks up and stores 
eng.washington.edu
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1: query 2: query

UW nameserver
(for washington.edu)

3: eng.washington.edu4: eng.washington.edu

Local nameserver
(for cs.vu.nl)

Cache



Caching (3)

• flits.cs.vu.nl now directly resolves 
eng.washington.edu
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1: query

UW nameserver
(for washington.edu)

4: eng.washington.edu

Local nameserver
(for cs.vu.nl)

I know the server for 
washington.edu!

Cache



DNS Protocol

• Query and response messages
• Built on UDP messages, port 53
• ARQ for reliability; server is stateless!
• Messages linked by a 16-bit ID field

Query

Response

Time

Client Server

ID=0x1234

ID=0x1234



DNS Protocol (2)

• Service reliability via replicas
• Run multiple nameservers for domain

• Return the list; clients use one answer

• Helps distribute load too
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NS for uw.edu?

A

B

C

Use A, B or C



DNS Resource Records

• A zone is comprised of DNS resource records that 
give information for its domain names
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Type Meaning

SOA Start of authority, has key zone parameters

A IPv4 address of a host

AAAA (“quad A”) IPv6 address of a host

CNAME Canonical name for an alias

MX Mail exchanger for the domain

NS Nameserver of domain or delegated subdomain



DNS Resource Records (2)
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IP addresses 
of computers

Name server

Mail gateways

Start of Authority



DIG DEMO



DNSSEC (DNS Security Extensions)

• Extends DNS with new record types
• RRSIG for digital signatures of records
• DNSKEY for public keys for validation
• DS for public keys for delegation
• First version in ‘97, revised by ’05

• Deployment requires software upgrade at both client and 
server

• Root servers upgraded in 2010
• Followed by uptick in deployment
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HTTP



HTTP, (HyperText Transfer Protocol)

• Basis for fetching Web pages
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request

Network
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Sir Tim Berners-Lee (1955–) 

• Inventor of the Web
• Dominant Internet app since mid 90s
• He now directs the W3C

• Developed Web at CERN in ‘89
• Browser, server and first HTTP
• Popularized via Mosaic (‘93), Netscape
• First WWW conference in ’94 …

Source: By Paul Clarke, CC-BY-2.0, via Wikimedia Commons



Web Context 
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HTTP request

HTTP response

Page as a set of related 
HTTP transactions



Web Protocol Context

• HTTP is a request/response protocol for fetching 
Web resources

• Runs on TCP, typically port 80
• Part of browser/server app

TCP

IP

802.11

browser

HTTP

TCP

IP

802.11

server

HTTP
request

response



Fetching a Web page with HTTP

• Start with the page URL (Uniform Resource Locator):
   http://en.wikipedia.org/wiki/Vegemite

• Steps:
• Resolve the server to IP address (DNS)
• Set up TCP connection to the server
• Send HTTP request for the page
• (Await HTTP response for the page)
• Execute/fetch embedded resources/render
• Clean up any idle TCP connections
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Protocol Page on serverServer



HTML

• Hypertext Markup Language (HTML)
• Uses Extensible Markup Language (XML) to build a 

markup language for web content
• Key innovation was the “hyperlink”, an HTML 

element linking to other HTML elements using 
URLs

• Also includes Cascading Style Sheets (CSS) for 
maintaining look-and-feel across a domain

• Specific standards have been the subject of many 
“browser wars”



DOM (Document Object Model)

• Base primitive for web browsers interacting 
with HTML

• Use HTML (XML) to create a tree of elements
• Javascript code is embedded in the page and 

modifies the DOM based on:
• User actions
• Asynchronous Javascript
• Other server-side actions
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DOM Example
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DOM Examples
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 Go to browser and show DOM



HTTP Protocol

•Originally a simple protocol, with many options added over 
time
• Text-based commands, headers

•Try it yourself:
• As a “browser” fetching a URL
• Run “telnet en.wikipedia.org 80”
• Type “GET /wiki/Vegemite HTTP/1.0” to server followed by a blank 

line
• Server will return HTTP response with the page contents (or other 

info)
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HTTP Protocol (2)

• Commands used in the request
Method Description

GET Read a Web page

HEAD Read a Web page's header

POST Append to a Web page

PUT Store a Web page

DELETE Remove the Web page

TRACE Echo the incoming request

CONNECT Connect through a proxy

OPTIONS Query options for a page

Fetch
page

Upload
data

Basically
defunct



HTTP Protocol (3)

• Codes returned with the response
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Code Meaning Examples

1xx Information 100 = server agrees to handle client's request

2xx Success 200 = request succeeded; 204 = no content 
present

3xx Redirection 301 = page moved; 304 = cached page still valid

4xx Client error 403 = forbidden page; 404 = page not found

5xx Server error 500 = internal server error; 503 = try again later

Yes!



HTTP Performance



PLT (Page Load Time)

• PLT was the key measure of web performance 
• From click until user sees page
• Small increases in PLT decrease sales

• PLT depends on many factors
• Structure of page/content
• HTTP (and TCP!) protocol
• Network RTT and bandwidth
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Early Performance

• HTTP/1.0 used one TCP connection 
to fetch one web resource

• Made HTTP very easy to build
• But gave fairly poor PLT …



Remember: DOM Example
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Early Performance (2)

• HTTP/1.0 used one TCP connection 
to fetch one web resource

• Made HTTP very easy to build
• But gave fairly poor PLT…

Oh we need 
styles.css
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Early Performance (3)

• Many reasons why PLT is larger than 
necessary

• Sequential request/responses, even when 
to different servers

• Multiple TCP connection setups to the 
same server

• Multiple TCP slow-start phases

• Network is not used effectively
• Worse with many small resources / page



Ways to Decrease PLT

1. Reduce content size for transfer
• Smaller images, gzip

2. Change HTTP to make better use of bandwidth

3. Change HTTP to avoid repeat sending of same 
content

• Caching, and proxies

4. Move content closer to client
• CDNs [later]
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Parallel Connections

• One simple way to reduce PLT
• Browser runs multiple (8, say) HTTP instances in parallel
• Server is unchanged; already handled concurrent requests 

for many clients

• How does this help?
• Single HTTP wasn’t using network much …
• So parallel connections aren’t slowed much
• Pulls in completion time of last fetch
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Persistent Connections

• Parallel connections compete with each other for 
network resources

• 1 parallel client ≈ 8 sequential clients?
• Exacerbates network bursts, and loss

• Persistent connection alternative
• Make 1 TCP connection to 1 server
• Use it for multiple HTTP requests

CSEP 561 University of Washington 63



Persistent Connections (2)
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Client Server Client Server Client Server

Persistent +Pipelining



Persistent Connections (3)
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One request per connection

Sequential requests 
per connection

Pipelined requests 
per connection



Persistent Connections (4)

• Widely used as part of HTTP/1.1
• Supports optional pipelining
• PLT benefits depending on page structure, but easy on 

network
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HTTP Futures



HTTP 1.1

• This was it! Standard protocol until circa 2015.

• HTTP 1.1 everywhere for all web access

• Until our favorite massive web company started noticing some 
trends….



Continued Growth

Country Mobile-Only
Internet Users

Egypt 70%

India 59%

South Africa 57%

Indonesia 44%

United States 25%

Thanks to Ben Greenstein @ google for slides 



Continued Growth (2)
RAM on Android Devices



Tecno Y2
512MB RAM, 8GB ROM
1.3GHz dual-core Cortex-
A7
2G & 3G only
4” (480x800)

Infinix Hot 4 Lite
1GB RAM, 16GB ROM
1.3GHz quad-core Cortex-
A7
2G & 3G only
5.5” (720x1280)

Tecno W3
1GB RAM, 8GB ROM
1.3GHz dual-core Cortex-
A7
2G & 3G only
5” (480x854)

Source: Chrome logs

Continued Growth (3)



● 284 Requests
● 93 Connections
● 4.5MB 

transferred
● Lots of gaps

Waterfall of first 4 
seconds of page 
load



■ First Contentful Paint (FCP) “is it happening?” 

 ■ First Meaningful Paint (FMP)  “is it useful?” 

 ■ Time to Interactive (TTI)  “is it usable?”

Key user moments (PLT is Dumb)



HTTP Changes

HTTP/1.0: TCP connection per request

HTTP/1.1: Persistence and pipelining

HTTP2/SPDY: Targeted performance specifically
● All happens below HTTP layer
● Prioritized stream multiplexing
● Header compression
● Server push
● Started as SPDY, standardized as HTTP/2 in 2015 

after every possible bikeshed deep discussion

TLS

TCP

IP

HTTP/2 (SPDY)



HTTP 2 Optimizations

Prioritized Stream Multiplexing
● HTTP 1.0: Each HTTP connection has own TCP
● HTTP 1.1: Share one TCP connection to save setup
● HTTP 2.0: Allow multiple concurrent HTTP connections in a single TCP 

flow to avoid head-of-line blocking
Header Compression
● HTTP Headers very wordy; Designed to be human readable
● This was dumb. Lets compress them (usually gzip).



Server Push: example resource loading 
gap
● Browser requests 

and receives HTML, 
encounters 
<script 
src=”...”>
 

● Similarly, JavaScript 
might src a 
dependent 
JavaScript file

Browser Server

HTML 
Request/Response

JavaScript 
Request/Response

Gap



Server Push: example resource loading 
gap
Use HTTP/2 server push to close gaps

Or use Link: rel=preload

● Particularly useful for 
hidden render blocking 
resources (HRBRs)

Browser Server

HTML 
Request/Response

Push of 
JavaScript 
Response

No
Gap



Simple server push lab experiment
Result: No benefit when 
HTML size > BD Product

Why? No gap even 
without push. 

Opportunity only on 
high BDP networks,
e.g., LTE and Cable 



QUIC/HTTP 3.0 

Goal: make HTTPS transport even 
faster!

Deployed at Google starting 2014

IETF working group formed in 2016

Standardized as HTTP 3.0 in 
October 2018

TLS

HTTP/2

TCP

IP

QUIC

UDP

HTTP



QUIC/HTTP 3.0 Innovations (1)

• Speed up connection establishment
Include TLS/Encryption in setup (TLS 1.3)
Similarly pack HTTP content into setup
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QUIC/HTTP 3.0 Innovations (2)

• Remove TCP/Switch to UDP
• Error correction: Groups of packets contain a FEC 

packet which can be used to recreate lost packet.
• Congestion control: Move congestion control to 

user space with pluggable implementations
• BBR Implementation: all packets carry new 

sequence numbers, allows for precise roundtrip-
time calculation.

• Per-packet encryption (rather than flow)
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QUIC/HTTP 3.0 Innovations (3)

• Support mobility through 64-bit stream IDs
• This means you can change IP address or ports 

but still keep your connection alive
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QUIC/HTTP 3.0: Problem of Mobility

• What happens to IP addresses 
and HTTP sessions when a user 
moves between wifi APs?



QUIC/HTTP 3.0: Problem of Mobility

• What happens to IP addresses 
and HTTP sessions when a user 
moves between wifi APs?

• What happens to IP addresses 
and HTTP sessions when a user 
moves between cellular and 
wifi?



IP Mobility

• Hard problem: IP addresses are supposed to identify nodes in the 
network but change as nodes move around. 

• Proposed solutions:
• IP Anchor: Place a server at an IP and tunnel traffic to user.
• DNS Anchor: Have DNS server which rapidly updates as user moves between 

IP addresses
• All try to keep some global state constant: IP or DNS Name



QUIC summary
Makes HTTPS faster, particularly in the tail

35% of Google’s egress traffic (7% of the Internet)

Deploying at Google was 3+ years of hard work



CDNs



Content Delivery Networks

• As the web took off in the 90s, traffic volumes grew and 
grew. This:

1. Concentrated load on popular servers
2. Led to congested networks and need to provision more 

bandwidth
3. Gave a poor user experience

• Idea:
• Place popular content near clients
• Helps with all three issues above
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Before CDNs

• Sending content from the source to 4 users takes 4 x 
3 = 12 “network hops” in the example
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Source

User

User

. . .



After CDNs

• Sending content via replicas takes only 4 + 2 = 6 
“network hops”
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Source

User

User

. . .

Replica



After CDNs (2)

• Benefits assuming popular content:
• Reduces server, network load
• Improves user experience
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Source

User

User

. . .

Replica
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Popularity of Content
• Zipf’s Law: few popular items, many 

unpopular ones; both matter

Zipf popularity
(kth item is 1/k)

Rank Source: Wikipedia

George Zipf (1902-1950)



How to place content near clients? 
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How to place content near clients? 

• Use browser and proxy caches
• Helps, but limited to one client or clients in one 

organization

• Want to place replicas across the Internet for use by 
all nearby clients

• Done by clever use of DNS
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Content Delivery Network
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Content Delivery Network (2)

• DNS gives different answers to clients
• Tell each client the nearest replica (map client IP)
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Business Model

• Clever model pioneered by Akamai
• Placing site replica at an ISP is win-win
• Improves site experience and reduces ISP bandwidth usage
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Consumer
 

site

ISP

User

User

. . .

Replica



CDNs - Issues

• Security
• What about private information?
• How to cache/forward encrypted content?

• Basically can’t! Big players just share/ship keys.

• Net neutrality
• I.org, FreeBasics -> Basically CDNs

• But for reasons of price, not efficiency

• Who decides who gets to place CDNs?
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