Applications!

Where we are in the Course

* Application layer protocols are often part of “app”
* But don’t need a GUI, e.g., DNS

Application /\

Transport

Network

Link

Physical

Recall

* Application layer messages are often split over
multiple packets
* Or may be aggregated in a packet ...

HTTP

802.11|IP [TCP | HTTP |
802.11|IP [TCP | HTTP

802.11(IP [TCP | HTTP

Application Communication Needs

*VVary widely; must build on Transport services

Web Message
Series of variable reliability! Skype
length, reliable DNS
request/reply :
, Real-time
exchanges Short, reliable :
renly * (unreliable)
request/reply stream delivery
TCP exchanges
UDP UDP

OSI Session/Presentation Layers

* Remember this? Two relevant concepts...

Considered
part of the
application,
not strictly
layered!

R ¥ L L B = * I

Application

Fresentation

Session

Transport

Metwork

Data link

Fhysical

- Provides functions needed by users
- Converts different representations
- Manages task dialogs

- Provides end-to-end delivery

- Sends packets over multiple links

- Sends frames of information

- Sends bits as signals

Session Concept

e A session is a series of related network interactions
in support of an application task
* Often informal, not explicit

* Examples:
* Web page fetches multiple resources
* Skype call involves audio, video, chat

Presentation Concept

* Apps need to identify the type of content, and encode it
for transfer
* These are Presentation functions

* Examples:
* Media (MIME) types, e.g., image/jpeg, identify content type
* Transfer encodings, e.g., gzip, identify the encoding of content

* Application headers are often simple and readable versus
packed for efficiency

Evolution of Internet Applications

* Always changing, and growing ...

Traffic

7?7

Web (Video)

P2P (BitTorrent)
Web (CDNs)

Web (HTTP)

News (NTTP)

Email

Email (SMTP)

File Transfer (FTP)

Telnet

Secure Shell (ssh)

1970

1980

1990 2000 2010

Evolution of Internet Applications (2)

e For a peek at the state of the Internet:
e Akamai’s State of the Internet Report (quarterly)
e Cisco’s Visual Networking Index
 Mary Meeker’s Internet Report

e Robust Internet growth, esp. video, wireless, mobile,
cats
e Most (70%) traffic is video (expected 80% in 2019)
e Mobile traffic overtakes desktop (2016)
e 15% of traffic is cats (2013)
* Growing attack traffic from China, also U.S. and Russia

Evolution of the Web

Cookies U

HTML 2 551
sVa

Java
M { Y= . -— -—
e S 0.1 1 7 2.1 3 |
= Nets ‘ni | = = - - - - - = = = =
e L) oot 11 12 2 3 4 4.5 6 6.16.2 1
|
o - . - . -
i O [1 2 2.1 3 2.5 2.6 4 5 &
HTTP
Internet Explorer ‘-} | -_;_—; _;__. ﬁ)_ " A _;._ __5.5__._ E—_-
: Safari
HTHL 3 :
HTML 3.2 _
HTHL 4
Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt
Web Fonts

CSEP 561 University of Washington 10

Evolution of the Web (2)

I I M M ™ P I I P
a (=} [=} a =} [=} (=] [=} a
(=} =} a (==} =} = [=} a a
— Pl [I%] b T o = oa [F=]
(553 2D
sva Transforms
Offline Web
PRequest? Apps:AppLache
553 3D
Transforms
i Drag & Drop
- R
- t e, Web
I f Workers
G. g Animation

rJ mJd md
= = = +]
o = 7y +
Content Security -
Policy
Touch Events
e/ tume Full Screen API
input types :

€553
Transitions

HTMLS

Source: http://www.evolutionoftheweb.com, Vizzuality, Google, and Hyperakt

Geolocation
553 Flexbox

RegisterProtocalHandler

CSEP 561 University of Washington

&
File {553 Filters
System APl WebRTC
Web Audio
APl

WebGL poM Mutation
observers

11

Domain Name System

DNS

* Human-readable host names, and more

www.uw.edu?] [128.94.155.135

Network

—

s —
()
k.J

CSEP 561 University of Washington

13

Names and Addresses

* Names are higher-level identifiers for resources

e Addresses are lower-level locators for resources
* Multiple levels, e.g. full name = email = IP address — Ethernet addr

* Resolution (or lookup) is mapping a name to an address

Name, e.g.
“Andy Tanenbaum,”
or “flits.cs.vu.nl”

.
|

Lookup

e

=

Directory

Address, e.g.
“Vrijie Universiteit, Amsterdam”
or IPv4 “130.30.27.38”

Before the DNS - HOSTS.TXT

* Directory was a file HOSTS.TXT regularly retrieved
for all hosts from a central machine at the NIC
(Network Information Center)

* Names were initially flat, became hierarchical (e.g.,
lcs.mit.edu) ~85

* Not manageable or efficient as the ARPANET grew ...

DNS

* A naming service to map between host names and their IP
addresses (and more)
* www.uwa.edu.au = 130.95.128.140

* Goals:
e Easy to manage (esp. with multiple parties)
e Efficient (good performance, few resources)

* Approach:

* Distributed directory based on a hierarchical namespace
* Automated protocol to tie pieces together

DNS Namespace

(O)

e Hierarchical, starting from “.” (dot, typically omitted)

| Generic - | Countries -]
aero com edu gov museum org net --- au ip uk us nl ---
cisco washington acm ieee edu ac co vu oce
eng cs eng jack jill uwa keio nec cs law

/\

robot cs csl filts fluit

TLDs (Top-Level Domains)

*Run by ICANN (Internet Corp. for Assigned Names and Numbers)
e Starting in ‘98; naming is financial, political, and international
* 700+ generic TLDs
* |nitially .com, .edu, .gov., .mil, .org, .net
e Unrestricted (.com) vs Restricted (.edu)
* Added regions (.asia, .kiwi), Brands (.apple), Sponsored (.aero) in 2012

*~250 country code TLDs

* Two letters, e.g., “.au”, plus international characters since 2010
* Widely commercialized, e.g., .tv (Tuvalu)

* Many domain hacks, e.g., instagr.am (Armenia), kurti.sh (St. Helena)

DNS Zones

* A zone is a contiguous portion of the namespace

= Generic = | Countries -]

D @ G @@ @D @GO Cpd G e (i

cisco| \washington @ edu @ @ @
“ld -
ko) Delegation A zone sl

DNS Zones (2)

e Zones are the basis for distribution
* EDU Registrar administers .edu
* UW administers washington.edu
* CSE administers cs.washington.edu

* Each zone has a nameserver to contact for
information about it

* Zone must include contacts for delegations, e.g., .edu
knows nameserver for washington.edu

DNS Resolution

* DNS protocol lets a host resolve any host name
(domain) to IP address

* If unknown, can start with the root nameserver and
work down zones

*Let’s see an example first ...

DNS Resolution (2)

* flits.cs.vu.nl resolves robot.cs.washington.edu

5 Root name server
(a.root-servers.net)

Edu name server
(a.edu-servers.net

1: query
- = i}
——=~ 10:robot.cs.washington.edu | J. -
filts.cs.vu.nl ' Cs. ,
Originator (cs.vu.ni) -edu 5 uw
J name server <, y name server

UWCS
name server

lterative vs. Recursive Queries

* Recursive query
* Nameserver resolves and returns final answer
*E.g., flits = local nameserver

e [terative (Authoritative) query
e Nameserver returns answer or who to contact for answer
*E.g., local nameserver — all others

lterative vs. Recursive Queries (2)

Iterative 5 Root name server
(a.root-servers.net)
Recursive
/ Edu name server
(a.edu-servers.net
1: query

10: robot.cs.washington.edu Local
filts.cs.vu.nl

. C ;
Originator (cs.vu.nl) 'Washmgfﬂﬂ.edu 5 oW
? name server < : name server

UWCS
name server

lterative vs. Recursive Queries (3)

* Recursive query

e Lets server offload client burden (simple resolver) for
manageability

* Lets server cache results for a pool of clients

* [terative query
e Lets server “file and forget”
* Easy to build high load servers

L ocal Nameservers

* Local nameservers often run by IT (enterprise, ISP)

* But may be your host or AP

 Or alternatives e.g., Google public DNS (8.8.8.8)
Cloudflare’s public DNS (1.1.1.1)

* Clients need to be able to contact local nameservers
* Typically configured via DHCP

Root Nameservers

* Root (dot) is served by 13 server names
* a.root-servers.net to m.root-servers.net
* All nameservers need root IP addresses
* Handled via configuration file (named.ca)

* There are >1000 distributed server instances
* Highly reachable, reliable service

* Most servers are reached by IP anycast (Multiple locations
advertise same IP! Routes take client to the closest one.)

e Servers are IPv4 and IPvé6 reachable

r

Root Server Deployment

Ay

Legend

, Multiple instances

Single instance
Source: http://www.root-servers.org. Snapshot on 27.02.12. Does not represent current deployment.

. Imagery ©2013 NASA TerraMetrics - Terms of Use

CSEP 561 University of Washington

lterative vs. Recursive Queries (2)

Root name server
(a.root-servers.net)

Edu name server
(a.edu-servers.net

1: query

EEs==r> 10: robot.cs.washington.edu
filts.cs.vu.nl

Originator

Local
(es.vu.nl)

=0

name server

Caching

* Resolution latency needs to be low
* URLs don’t have much churn

e Cache query/responses to answer future queries

immediately
* Including partial (iterative) answers
* Responses carry a TTL for caching

query I ’ out
response

Nameserver

Caching (2)

*flits.cs.vu.nl looks up and stores
eng.washington.edu

1: query > 2:query ’
#5574 eng.washingtonedu W 3: eng.washington.edu

Local nameserver UW nameserver
(for cs.vu.nl) (for washington.edu)

Caching (3)

*flits.cs.vu.nl now directly resolves
eng.washington.edu

| know the server for]
washington.edu!

= —=/

Local nameserver UW nameserver
(for cs.vu.nl) (for washington.edu)

1: query

"7 4: eng.washington.edu

DNS Protocol

* Query and response messages
* Built on UDP messages, port 53

* ARQ for reliability; server is stateless!
* Messages linked by a 16-bit ID field

Client Query

ID=0x1234

\
—

ID=0x1234

Response

Server

Time

DNS Protocol (2)

*Service reliability via replicas

* Run multiple nameservers for domain
* Return the list; clients use one answer
* Helps distribute load too

|NS for uw.edu?] Use A,BorC
A

[
-
[

CSEP 561 University of Washington

DNS Resource Records

* A zone is comprised of DNS resource records that
give information for its domain names

Type Meaning

SOA Start of authority, has key zone parameters

A IPv4 address of a host

AAAA (“quad A”) | IPv6 address of a host

CNAME Canonical name for an alias

MX Mail exchanger for the domain

NS Nameserver of domain or delegated subdomain

CSEP 561 University of Washington

DNS Resource Records (2)

- Authoritative data for cs_vu.nl

cs.vu.nl.
cs.vu.nl.
cs.vu.nl.
cs.vu.nl.

star
Zephyr
top
WWW
fip

flits
flits
flits
flits
flits

rowboat

little-sister

laserjet

86400
86400
86400
86400

86400
86400
86400
86400
86400

86400
86400
86400
86400
86400

IN
IN
IN
IN

IN
IN
IN
IN
IN

IN
IN
IN
IN
IN

IN
IN
IN
IN

IN

SOA
MX
MX
NS

A
A
A
CNAME
CNAME

A
A
MX
MX
MX

MX
MX

star boss (9527,7200,7200,241920,86400)

1 zephyr
2 top
star

130.37.56.205
130.37.20.10
130.37.20.11
star.cs.vu.nl
zephyr.cs.vu.nl

130.37.16.112
192.31.231.165
1 flits

2 zephyr

3 top

130.37.56.201
1 rowboat

2 zephyr
130.37.62.23

192.31.231.216

Name server

IP addresses
of computers

Mail gateways

CSEP 561 University of Washington

Start of Authority

36

DIG DEMO

DNSSEC (DNS Security Extensions)

* Extends DNS with new record types
* RRSIG for digital signatures of records
* DNSKEY for public keys for validation

* DS for public keys for delegation

* First version in ‘97, revised by '05

* Deployment requires software upgrade at both client and
server
* Root servers upgraded in 2010
* Followed by uptick in deployment

Security

Inside 'Operation Black Tulip’:
DigiNotar hack analysed

CA systems falsely told Iranians they were secure

By John Leyden 6 Sep 2011 at 14:01 28 SHARE ¥

The Google webmail of as many as 300,000 lranians may have been
intercepted using fraudulently issued security certificates made after a
hack against Dutch certificate authority outfit DigiNotar, according to the
preliminary findings of an official report into the megahack.

Fox-IT, the security consultancy hired to examine the breach against
DigiNotar, reveals that DigiNotar was hacked on or around & June —a
month before hackers begun publishing rogue certificates.

Between 10 July and 20 July hackers used compromised access to
DigiNotar's systems to issue rogue 531 SSL certificate for Google and
other domains, including Skype, Mozilla add-ons, Microsoft update and
others. DigiMNotar only began revoking rogue certificates on 19 July and
waited more than a month after this to go public. The fake *.google.com

Gmail.com SSL MITM ATTACK BY Iranian Government -27/8/2011

AGUEST AUGZTTH, 2011 135,655

MEWVER

Not a member of Pastebin yet? Sign Up, it unlocks many cool features!

text G.e8 KE

Certificate:
Data:
Version: 3 (0x2)

Serial Number:

B5:e2:e6:ad:cd:09;ea:54:d6:65 b0 75:Te:22:a2:56

Signature Algorithm: shalWithRSAEncryption

Issuer:
emallAddress =
commonName =
organizationName =
countryName =
Validity
Not Before: Jul 10 19:06:30
Mot After @ Jul 9 19:06:30
Subject:
commonName =
serialNumber =
localityName =
organizationName =
countryName =

Subject Public Key Info:

info@diginotar.nl
DigiNotar Public CA 2025
DigiNotar

NL

2011 GMT
2013 GMT

*.google.com
PKORE229200002
Mountain View
Google Inc

us

Public Key Algorithm: rsaEncryption

RSA Public Key: (2043 bit)
Modulus (2048 bit):

raw

download

clone

embed

report

e

print

Threat Research

Global DNS Hijacking Campaign: DNS Record
Manipulation at Scale

January 10, 2019 | by Muks Hirani, Sarah Jones, Ben Read

Introduction

FireEye's Mandiant Incident Response and Intelligence teams have identified a wave of DNS hijacking that has
affected dozens of domains belonging to government, telecommunications and internet infrastructure entities
across the Middle East and North Africa, Europe and North America. While we do not currently link this activity
to any tracked group, initial research suggests the actor or actors responsible have a nexus to Iran. This
campaign has targeted victims across the globe on an almost unprecedented scale, with a high degree of
success. We have been tracking this activity for several months, mapping and understanding the innovative
tactics, technigues and procedures (TTPs) deploved by the attacker. We have also worked closely with victims,
security organizations, and law enforcement agencies where possible to reduce the impact of the attacks
and/or prevent further compromises.

While this campaign employs some traditional tactics, it is differentiated from other Iranian activity we have
seen by leveraging DNS hijacking at scale. The attacker uses this technigue for their initial foothold, which can
then be exploited in a variety of ways. In this blog post, we detail the three different ways we have seen DNS
records be manipulated to enable victim compromises. Technigue 1, involving the creation of a Let's Encrypt
certificate and changing the A record, was previously documented by Cisco’s TALOS team. The activity
described in their blog post is a subset of the activity we have ocbserved.

Initial Research Suggests Iranian Sponsorship

Attribution analysis for this activity is ongoing. While the DMS record manipulations described in this post are
noteworthy and sophisticated, they may not be exclusive to a single threat actor as the activity spans
disparate timeframes, infrastructure, and service providers.

HTTP

HTTP, (HyperText Transfer Protocol)

* Basis for fetching Web pages

request] ..
- Network — =t

o)

Sir Tim Berners-Lee (1955-)

* Inventor of the Web

* Dominant Internet app since mid 90s
* He now directs the W3C

* Developed Web at CERN in ‘89

* Browser, server and first HTTP
* Popularized via Mosaic (‘93), Netscape
* First WWW conference in '94 ...

CSEP 561 University of Washington 44

Web Context

i e Ry o o Y
O g e hwy Beess lean e : g\
g‘ B ™ E I R e a '] B ‘
W Wby e ey Sl (gt = t
\
\
\
\
\
1'1
\
' youtube.com
\
\
! 1T LT i H \‘
e T HTTP request
Hyperlink b - c —
Fubb B il | '""":":"":"";""I":;_:'“""ﬂ"f—ﬂ'"ﬁ“d:“'hﬂ"i -ﬂ___- - [—
phasmmme e, | o ——=—= HTTP response Web server

;T&F‘GLDG* - -'l;l:-.-'rw-'.\-'n = gt Cooppyes Eopmeergg gy grams ok md mmoag fe oo e
Web www.cs.washington.edu
Web page browser
T e e ey il
e e e e o [k g
L] = & B - - ! .

W e e e —

{

Computer Scidnc 1;-.....--::.. google-analytics.com
informnellc f fer Curmend S 0oalla iy E

——Eﬂ’mﬂ

CSEP 561 University of Washington

45

Web Protocol Context

*HTTP is a request/response protocol for fetching

Web resources
* Runs on TCP, typically port 80
* Part of browser/server app

request

HTTP HTTP
TCP response TCP
IP IP

802.11 802.11

Fetching a Web page with HTTP

e Start with the page URL (Uniform Resource Locator):
http://en.wikipedia.org/wiki/Vegemite

Protocol Server Page on server

* Steps:
* Resolve the server to IP address (DNS)
* Set up TCP connection to the server
* Send HTTP request for the page
* (Await HTTP response for the page)
* Execute/fetch embedded resources/render
* Clean up any idle TCP connections

HTML

* Hypertext Markup Language (HTML)

e Uses Extensible Markup Language (XML) to build a
markup language for web content

e Key innovation was the “hyperlink”, an HTML
element linking to other HTML elements using
URLs

 Also includes Cascading Style Sheets (CSS) for
maintaining look-and-feel across a domain

* Specific standards have been the subject of many
“browser wars”

DOM (Document Object Model)

* Base primitive for web browsers interacting

with HTML

* Use HTML (XML) to create a tree of elements
* Javascript code is embedded in the page and

modifies the DOM based on:

e User actions
* Asynchronous Javascript
e Other server-side actions

EEEEEE

Root element:

<htrl=

Attribute:

DOM Example

<!DOCTYPE html>
<html>
<head:>
<link rel="stylesheet" href="styles.css">
</head>
<body>

<hl>This is a heading</hl>
<p>This is a paragraph.</p=>

</body>
</html>

CSEP 561 University of Washington

50

DOM Examples

* Go to browser and show DOM

HTTP Protocol

*Originally a simple protocol, with many options added over
time
* Text-based commands, headers
*Try it yourself:
* As a “browser” fetching a URL
* Run “telnet en.wikipedia.org 80”
* Type “GET /wiki/Vegemite HTTP/1.0” to server followed by a blank
line
 Server will return HTTP response with the page contents (or other
info)

HTTP Protocol (2)

* Commands used in the request

Fetch

page
Upload

data

“— Basically

— defunct

Method |Description
~GET Read a Web page
HEAD Read a Web page's header
"POST Append to a Web page
PUT Store a Web page
DELETE |Remove the Web page
TRACE Echo the incoming request
CONNECT |Connect through a proxy
OPTIONS |Query options for a page

HTTP Protocol (3)

* Codes returned with the response

Code

Meaning

Examples

1xx

Information

100 = server agrees to handle client's request

Yes! —

2XX

Success

200 = request succeeded; 204 = no content
present

3XX

Redirection

301 = page moved; 304 = cached page still valid

4xX

Client error

403 = forbidden page; 404 = page not found

5xx

Server error

500 = internal server error; 503 = try again later

CSEP 561 University of Washington

54

HTTP Performance

PLT (Page Load Time)

* PLT was the key measure of web performance
* From click until user sees page
* Small increases in PLT decrease sales

* PLT depends on many factors
* Structure of page/content
* HTTP (and TCP!) protocol
* Network RTT and bandwidth

Early Performance

*HTTP/1.0 used one TCP connection
to fetch one web resource
* Made HTTP very easy to build
* But gave fairly poor PLT ...

Time

Connection setup

et

| HTTP
Request

— HTTP
Response

Remember: DOM Example

<!DOCTYPE html>
<html>
<head:>
<link rel="stylesheet" href="styles.css">
</head>
<body>

<hl>This is a heading</hl>
<p>This is a paragraph.</p=>

</body>
</html=

CSEP 561 University of Washington

58

Early Performance (2)

* HTTP/1.0 used one TCP connection
to fetch one web resource Oh we need

e Made HTTP very easy to build ~ *V**®° «

* But gave fairly poor PLT...

Time

l

Connection setup

et

| HTTP
Request

— HTTP
Response

Early Performance (3)

* Many reasons why PLT is larger than
necessary

* Sequential request/responses, even when
to different servers

* Multiple TCP connection setups to the
same server

* Multiple TCP slow-start phases

* Network is not used effectively
* Worse with many small resources / page

Time

l

Connection setup

et

| HTTP
Request

— HTTP
Response

Ways to Decrease PLIT

1. Reduce content size for transfer
* Smaller images, gzip

2. Change HTTP to make better use of bandwidth

3. Change HTTP to avoid repeat sending of same
content
* Caching, and proxies

4. Move content closer to client
* CDNs [later]

Parallel Connections

* One simple way to reduce PLT
* Browser runs multiple (8, say) HTTP instances in parallel

* Server is unchanged; already handled concurrent requests
for many clients

* How does this help?
* Single HTTP wasn’t using network much ...

* So parallel connections aren’t slowed much
* Pulls in completion time of last fetch

Persistent Connections

* Parallel connections compete with each other for
network resources
* 1 parallel client = 8 sequential clients?
* Exacerbates network bursts, and loss

* Persistent connection alternative
* Make 1 TCP connection to 1 server
* Use it for multiple HTTP requests

Persistent Connections (2)

Client

Time

Server

Client

Persistent

Server Client

+Pipelining

Server

Persistent Connections (3)

Time

Connection setup

e

| HTTP
Request

— HTTP
Response

One request per connection

Sequential requests

per connection

CSEP 561 University of Washington

Pipelined

requests i:%_i

Pipelined requests

per connection

65

Persistent Connections (4)

* Widely used as part of HTTP/1.1
* Supports optional pipelining
* PLT benefits depending on page structure, but easy on
network

HT TP Futures

HTTP 1.1

* This was it! Standard protocol until circa 2015.
* HTTP 1.1 everywhere for all web access

* Until our favorite massive web company started noticing some
trends....

Continued Growth

Country Mobile-Only
Internet Users
Egypt 70%
India 59%
South Africa 57%
Indonesia 44%
United States 25%

Thanks to Ben Greenstein @ google for slides

Continued Growth (2)
RAM on Android Devices

100% B >2GEB RAM

B 1-2GB RAM

Bl <1GB RAM
75%
50%
25%
0%

India Indonesia Migeria

Continued Growth (3)

Tecnho Y2

512MB RAM, 8GB ROM
1.3GHz dual-core Cortex-
A7

2G & 3G only

4" (480x800)

Source: Chrome logs

! TECNO

Tecno W3

1GB RAM, 8GB ROM
1.3GHz dual-core Cortex-
A7

2G & 3G only

5" (480x854)

Infinix Hot 4 Lite

1GB RAM, 16GB ROM
1.3GHz quad-core Cortex-
A7

2G & 3G only

5.5”7 (720x1280)

® 284 Requests
® 93 Connections
® 4.5MB

transferred
@® Lots of gaps

|

I

|

S I ———

[— ||
I— —
|
|
|
|

T

Waterfall of first 4
seconds of page
load

—

oo |
|
—

Key user moments (PLT is Dumb)

']
0.0s 22s 4.4s §.6s

0% 0% 0% 12%

*

m First Contentful Paint (FCP) “is it happening?”

m First Meaningful Paint (FMP) “is it useful?”

m Time to Interactive (TTI) “is it usable?”

HTTP Changes

HTTP/1.0: TCP connection per request

HTTP/1.1: Persistence and pipelining

HTTP2/SPDY: Targeted performance specifically TLS
® All happens below HTTP layer \ y
@ Prioritized stream multiplexing TCP
@® Header compression .)
® Server push P
® Started as SPDY, standardized as HTTP/2 in 2015 L)

after everypossible-bikeshed deep discussion

HTTP 2 Optimizations

Prioritized Stream Multiplexing
P 1.0: Each HTTP connection has own TCP
P 1.1: Share one TCP connection to save setup

{

P 2.0: Allow multiple concurrent H

flow to avoid head-of-line blocking
Header Compression
@® HTTP Headers very wordy; Designed to be human readable
@ This was dumb. Lets compress them (usually gzip).

[P connections in a single TCP

Server Push: example resource loading
g a p Browser Server

® Browser requests
and receives HTML,
encounters HTML
<script Request/Response
src="...">

Gap
e Similarly, JavaScript
Merecs Javasars
Request/Response

JavaScript file

Server Push: example resource loading

g a p Browser Server
Use HTTP/2 server push to close gaps

Or use Link: rel=preload HTML No

@® Particularly useful for Request/Response Gap
hidden render blocking
resources (HRBRsS)

Y

Push of
JavaScript
Response

Simple server push lab experiment

Latency improvement vs. HTML Size
(3G, BDP = 35KB)

Result: No benefit when
HTML size > BD Product

Why? No gap even
without push.

Opportunity only on
high BDP networks,
e.g., LTE and Cable

Latency improvement

12.50%

10.00%

7.50%

5.00%

2.50%

0.00%
5KB 20KB 40KB 80KB

HTML Size

QUIC/HTTP 3.0

Goal: make HTTPS transport even
faster!

Deployed at Google starting 2014
IETF working group formed in 2016

Standardized as HTTP 3.0 in
October 2018

HTTP/2

TLS

Y

Y

TCP

V.

HTTP

UDP

IP

QUIC/HTTP 3.0 Innovations (1)

* Speed up connection establishment
*|Include TLS/Encryption in setup (TLS 1.3)
*Similarly pack HTTP content into setup

HTTP Request over TCP+TLS (with 0-RTT)

Client Server

T~tcpsyNn | ..

- -.‘-"""--.* LR} .
4 2
TCP SYN + ACK

\

/

TCP ACK

/

—
TLS ClientHello

/

"'-..-‘_-__
HTTP Request
--‘-“""

P
TLS ServerHello
—

HTTP Response
" s

\

——
TLS Finished

CLOUDFLARE

HTTP Request over QUIC (with 0-RTT)

Client

CSEP 561 University of Washington

T quic

‘-.-_--

HTTP Request
i

Quic —

..--"....
HTTP Response
e

T~ quic

"--.__-’

Server

CLOUDFLARE

81

QUIC/HTTP 3.0 Innovations (2)

e Remove TCP/Switch to UDP

* Error correction: Groups of packets contain a FEC
packet which can be used to recreate lost packet.

* Congestion control: Move congestion control to
user space with pluggable implementations

* BBR Implementation: all packets carry new
sequence numbers, allows for precise roundtrip-
time calculation.

* Per-packet encryption (rather than flow)

QUIC/HTTP 3.0 Innovations (3)

* Support mobility through 64-bit stream IDs

* This means you can change IP address or ports
but still keep your connection alive

Zero RTT Connection Establishment

TCP TEP+TLS QUIC
Sender Receiver (equivalent to TCP + TLS)
Sender Receiver @ Q Sender Receiver
8 @ e & S
FEsEE | ——— -
—_%‘_‘___\\‘—u _7___________—7——.
;
100 ms " 200ms’ 0ms'
300 ms? 100 ms?
1. Repeat connection
ked to server bef

QUIC/HTTP 3.0: Problem of Mobility

* What happens to IP addresses
and HTTP sessions when a user
moves between wifi APs?

QUIC/HTTP 3.0: Problem of Mobility

* What happens to IP addresses * What happens to IP addresses

and HTTP sessions when a user and HTTP sessions when a user
moves between wifi APs? moves between cellular and
wifi?

V\/ V\/

IP Mobility

* Hard problem: IP addresses are supposed to identify nodes in the
network but change as nodes move around.

* Proposed solutions:
* |IP Anchor: Place a server at an IP and tunnel traffic to user.

* DNS Anchor: Have DNS server which rapidly updates as user moves between
IP addresses

* All try to keep some global state constant: IP or DNS Name

L’ﬁ_l \4

QUIC summary

Makes HTTPS faster, particularly in the tail

35% of Google’s egress traffic (7% of the Internet)

Deploying at Google was 3+ years of hard work

% egress over QUIC

35
30
29
20
13
10

5

0

Apr
May

Feb
Mar

Jun
Jul
Aug
Sep
Oct |-
Nov +
Dec E

(]
o
=
un

CDNs

Content Delivery Networks

* As the web took off in the 90s, traffic volumes grew and
grew. This:
1. Concentrated load on popular servers

2. Led to congested networks and need to provision more
bandwidth

3. Gave a poor user experience

*|dea:
* Place popular content near clients
* Helps with all three issues above

Before CDNs

* Sending content from the source to 4 users takes 4 x
3 =12 “network hops” in the example

Ly

> > \
Source \
—@ User

After CDNSs

* Sending content via replicas takesonly 4 + 2 =6
“network hops”

User

0

S Replica\‘
ource ~_ User

CSEP 561 University of Washington

91

After CDNs (2)

* Benefits assuming popular content:
* Reduces server, network load
* Improves user experience

Source

Replica\

~

CSEP 561 University of Washington

—@ User

92

Popularity of Content

» Zipf’s Law: few popular items, many

George Zipf (1902-1950)
unpopular ones; both matter

A
|

Zipf popularity
(kth item is 1/k)

Relative Frequency

o U | | | 2|D = Rank Source: Wikipedia

CSEP 561 University of Washington 93

How to place content near clients?

How to place content near clients?

* Use browser and proxy caches
* Helps, but limited to one client or clients in one
organization

* Want to place replicas across the Internet for use by
all nearby clients
* Done by clever use of DNS

Content Delivery Network

CDN origin 5
server l=.—J Distribution to
Rty '/ CDN nodes

T

H‘"‘"-._‘__
s

Boston Amsterdam

EESE 5NN

Worldwide clients

CSEP 561 University of Washington 96

Content Delivery Network (2)

* DNS gives different answers to clients
* Tell each client the nearest replica (map client IP)

C%}I:Jdgiﬂe CDN origin Amsterdam

server CDN node

1: Distribut tent
— +——I§E—U—E—C—DD—ED— E ____________ - @
A
4: Fetch
page
CDN DNS
2:Query DNS server)
i s 3: “Contact Sydney’ “Contact Amsterdam” = (I

Sydney clients Amsterdam clients

97

Business Model

* Clever model pioneered by Akamai
* Placing site replica at an ISP is win-win
* Improves site experience and reduces’I|SP bandwidth usage

User
Consumer ISP 5
: Replica\‘ _—=
N |\ DN User

CDNs - Issues

* Security
* What about private information?

* How to cache/forward encrypted content?
* Basically can’t! Big players just share/ship keys.

* Net neutrality

* |.org, FreeBasics -> Basically CDNs
* But for reasons of price, not efficiency

* Who decides who gets to place CDNs?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

