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Where we are in the Course

• Moving on up to the Network Layer!

CSE 461 University of Washington 2

Physical

Link

Network

Transport

Application



Network Layer

• How to connect different link layer networks
• Routing as the primary concern
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Why do we need a Network layer?

• We can already build networks with links and 
switches and send frames between hosts …
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Shortcomings of Switches

1. Don’t scale to large networks
• Blow up of routing table, broadcast
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Table for all destinations in the world!

Broadcast new destinations to the whole world!



Shortcomings of Switches (2)

2. Don’t work across more than one link layer 
technology

• Hosts on Ethernet + 3G + 802.11  …
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Can we play too? Go away!



Shortcomings of Switches (3)

3. Don’t give much traffic control
• Want to plan routes / bandwidth
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That was lame.



Network Layer Approach

• Scaling:
• Hierarchy, in the form of prefixes

• Heterogeneity:
• IP for internetworking

• Bandwidth Control:
• Lowest-cost routing

• Later QOS (Quality of Service)
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Topics

• Network service models
• Datagrams (packets), virtual circuits

• IP (Internet Protocol)
• Internetworking

• Forwarding (Longest Matching Prefix)

• Helpers: ARP and DHCP

• Errors: ICMP (traceroute!)
• IPv6, scaling IP to the world

• NAT, and “middleboxs”

• Routing Algorithms
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Routing vs. Forwarding

• Routing is the process of deciding in which direction 
to send traffic

• Network wide (global) and expensive
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Which way?

Which way?

Which way?



Routing vs. Forwarding (2)

• Forwarding is the process of sending a packet 
• Node process (local) and fast
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Forward!
packet



Networking Services



Topic

• What kind of service does the Network layer 
provide to the Transport layer?

• How is it implemented at routers?
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Service? What’s he talking about?



Two Network Service Models

• Datagrams, or connectionless service
• Like postal letters
• (IP as an example)

• Virtual circuits, or connection-oriented service
• Like a telephone call
• Cut for space
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Store-and-Forward Packet Switching

• Implemented with store-and-forward packet 
switching

• Routers receive a complete packet, storing it temporarily if 
necessary before forwarding it onwards

• We use statistical multiplexing to share link bandwidth 
over time
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Store-and-Forward (2)

• Switching element has internal buffering for 
contention
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Store-and-Forward (3)

• Simplified view with per port output buffering
• Buffer is typically a FIFO (First In First Out) queue
• If full, packets are discarded (congestion, later)
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Datagram Model

• Packets contain a destination address; each router 
uses it to forward packets, maybe on different paths
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ISP’s equipment



Datagram Model (2)

• Each router has a forwarding table keyed by address
• Gives next hop for each destination address; may change
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A’s table (initially)     A’s table (later)    C’s Table          E’s Table

B
B



IP (Internet Protocol)

• Network layer of the Internet, uses datagrams (next)
• IPv4 carries 32 bit addresses on each packet (often 1.5 KB)
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Payload (e.g., TCP segment)



Internetworking (IP)



Topic

• How do we connect different networks together?
• This is called internetworking
• We’ll look at how IP does it
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Hi there! Hi yourself



How Networks May Differ

• Basically, in a lot of ways:
• Service model (datagrams, Virtual Circuits)
• Addressing (what kind)

• QOS (priorities, no priorities)

• Packet sizes

• Security (whether encrypted)

• Internetworking hides the differences with a common 
protocol. (Uh oh.)
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Internetworking – Cerf and Kahn

• Pioneers: Cerf and Kahn
• “Fathers of the Internet”
• In 1974, later led to TCP/IP

• Tackled the problems of 
interconnecting networks

• Instead of mandating a single 
network technology
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© 2009 IEEE

Vint Cerf Bob Kahn



Internet Reference Model

• Internet Protocol (IP) is the “narrow waist” 
• Supports many different links below and apps above
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IP as a Lowest Common Denominator

• Suppose only some networks support QOS or 
security etc.

• Difficult for internetwork to support

• Pushes IP to be a “lowest common denominator”
• Asks little of lower-layer networks
• Gives little as a higher layer service 
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IPv4 (Internet Protocol)

• Various fields to meet straightforward needs
• Version, Header (IHL), Total length, Protocol, and Header Checksum
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Payload (e.g., TCP segment)



Payload (e.g., TCP segment)

IPv4 (2)

• Some fields to handle packet size differences
• Identification, Fragment offset, Fragment control bits
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Payload (e.g., TCP segment)

IPv4 (3)

• Other fields to meet other needs (later, later)
• Differentiated Services, Time to live (TTL)
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Later, with 
ICMP

Later, with 
QOS



Payload (e.g., TCP segment)

IPv4 (4)

• Network layer of the Internet, uses datagrams 
• Provides a layer of addressing above link addresses (next)
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IP Addresses

• IPv4 uses 32-bit addresses
• Later we’ll see IPv6, which uses 128-bit addresses

• Written in “dotted quad” notation
• Four 8-bit numbers separated by dots
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aaaaaaaabbbbbbbbccccccccdddddddd  ↔ A.B.C.D

8 bits 8 bits 8 bits 8 bits

00010010000111110000000000000001  ↔



IP Prefixes

• Addresses are allocated in blocks called prefixes
• Addresses in an L-bit prefix have the same top L bits
• There are 232-L addresses aligned on 232-L boundary
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IP Prefixes (2)

• Written in “IP address/length” notation
• Address is lowest address in the prefix, length is prefix bits
• E.g., 128.13.0.0/16 is 128.13.0.0 to 128.13.255.255
• So a /24 (“slash 24”) is 256 addresses, and a /32 is one 

address
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000100100001111100000000xxxxxxxx ↔ 

↔ 128.13.0.0/16



Classful IP Addressing

• Originally, IP addresses came in fixed size blocks 
with the class/size encoded in the high-order bits

• They still do, but the classes are now ignored
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0 16 24 32 bits8

Class A, 224 addresses

Class B, 216 addresses

Class C, 28 addresses

Network portion Host portion



Classful IP Addressing

• This is an ARPANet assignment.



IP Forwarding

• Addresses on one network belong to a unique prefix

• Node uses a table that lists the next hop for prefixes
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D

CB

A

Prefix Next Hop

192.24.0.0/19 D

192.24.12.0/22 B



Longest Matching Prefix

• Prefixes in the table might overlap!
• Combines hierarchy with flexibility

• Longest matching prefix forwarding rule:
• For each packet, find the longest prefix that contains the 

destination address, i.e., the most specific entry
• Forward the packet to the next hop router for that prefix
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Longest Matching Prefix (2)
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Prefix Next Hop

192.24.0.0/19 D

192.24.12.0/22 B

192.24.0.0

192.24.63.255

/19

/22

192.24.12.0

192.24.15.255

IP address

192.24.6.0      → 
192.24.14.32  →
192.24.54.0    →

More 
specific



IP Address Work Slide:

• Route to D =     192.00011x.x.x

• Route to B =     192.00011000.000011x.x

• 192.24.6.0     = 192.00011000.00000110.00000000

• 192.24.14.32 = 192.00011000.00001110.00010000

• 192.24.54.0   = 192.00011000.00110110.00000000



Longest Matching Prefix (2)
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Prefix Next Hop

192.24.0.0/19 D

192.24.12.0/22 B

192.24.0.0

192.24.63.255

/19

/22

192.24.12.0

192.24.15.255

IP address

192.24.6.0      → D 
192.24.14.32  → B
192.24.54.0    → D

More 
specific



Host/Router Distinction

• In the Internet:
• Routers do the routing, know way to all destinations
• Hosts send remote traffic (out of prefix) to nearest router
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It’s my job to know 
which way to go …

Not for my network? Send it 
to the gateway (router)



Host Networking

• Consists of 4 pieces of data:
• IP Address
• Subnet Mask

• Defines local addresses

• Gateway
• Who (local) to send non-local packets to for routing

• DNS Server (Later)



Host Forwarding Table

• Give using longest matching prefix
• 0.0.0.0/0 is a default route that catches all IP addresses
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Prefix Next Hop

My network prefix Send to that IP

0.0.0.0/0 Send to my router



Flexibility of Longest Matching Prefix

• Can provide default behavior, with less specifics
• Send traffic going outside an organization to a border 

router (gateway)

• Can special case behavior, with more specifics
• For performance, economics, security, …
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Performance of Longest Matching Prefix

• Uses hierarchy for a compact table
• Relies on use of large prefixes

• Lookup more complex than table
• Used to be a concern for fast routers
• Not an issue in practice these days
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Routing



Routing versus Forwarding

• Forwarding is the 
process of sending a 
packet on its way

• Routing is the process of 
deciding in which 
direction to send traffic
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Forward!
packet

Which way?

Which way?

Which way?



Improving on the Spanning Tree

• Spanning tree provides 
basic connectivity

• e.g., some path B→C

• Routing uses all links to 
find “best” paths

• e.g., use BC, BE, and CE
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A B C

D E F

A B C

D E F

Unused



Perspective on Bandwidth Allocation

• Routing allocates network bandwidth adapting to 
failures; other mechanisms used at other timescales 
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Mechanism Timescale / Adaptation

Load-sensitive routing Seconds / Traffic hotspots

Routing Minutes / Equipment failures

Traffic Engineering Hours / Network load

Provisioning Months / Network customers



Delivery Models

• Different routing used for different delivery models
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Unicast
(§5.2)

Multicast
(§5.2.8)

Anycast
(§5.2.9)

Broadcast
(§5.2.7)



Goals of Routing Algorithms

• We want several properties of any routing scheme:
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Property Meaning

Correctness Finds paths that work

Efficient paths Uses network bandwidth well

Fair paths Doesn’t starve any nodes

Fast convergence Recovers quickly after changes

Scalability Works well as network grows large



Rules of Routing Algorithms

• Decentralized, distributed setting
• All nodes are alike; no controller
• Nodes only know what they learn by exchanging messages 

with neighbors 
• Nodes operate concurrently 
• May be node/link/message failures
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Who’s there?



Host/Router Combination

• Hosts attach to routers as IP prefixes (usually /32)
• Router needs table to reach all hosts
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Rest of
network

IP router
“A”

Single network
(One IP prefix “P”)

LAN switch



Network Topology for Routing

• Send out routes for hosts you have paths to
• “Advertise” the routes
• And the routes you’ve received
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A

B

E
E

B

A,B,E



Network Topology for Routing (2)

• Routing now works!
• Routers advertise IP prefixes for hosts
• Router addresses are “/32” prefixes
• Lets all routers find a path to hosts
• Hosts find by sending to their router

CSEP 561 University of Washington 55



IP Prefix Aggregation and Subnets



Idea

• Scale routing by adjusting the size of IP prefixes
• Split (subnets) and join (aggregation)
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I’m the whole region

Region
1

2

3

IP /16
IP1 /18

IP2 /18

IP3 /17



Prefixes and Hierarchy

• IP prefixes help to scale routing, but can go further
• Use a less specific (larger) IP prefix as a name for a region
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I’m the whole region

Region

1

2

3

IP /16
IP1 /18
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Subnets and Aggregation

• Two use cases for adjusting the size of IP prefixes; 
both reduce routing table

1. Subnets
• Internally split one large prefix into multiple smaller ones

2. Aggregation
• Join multiple smaller prefixes into one large prefix
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Subnets

• Internally split up one IP prefix

32K addresses

One prefix sent to 
rest of Internet16K

8K

4K Company Rest of Internet



Aggregation

• Externally join multiple separate IP prefixes

One prefix sent to 
rest of Internet

\

ISPRest of Internet



Routing Process

1. Ship these prefixes or regions around to nearby routers

2. Receive multiple prefixes and the paths of how you got them

3. Build a global routing table 



Best Path Routing
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What are “Best” paths anyhow?
• Many possibilities:

• Latency, avoid circuitous paths
• Bandwidth, avoid slow links
• Money, avoid expensive links
• Hops, to reduce switching

• But only consider topology
• Ignore workload, e.g., hotspots

A B

C

D

E

F

G

H



Shortest Paths

We’ll approximate “best” by a cost function that 
captures the factors

• Often call lowest “shortest”

1. Assign each link a cost (distance)

2. Define best path between each pair of nodes as 
the path that has  the lowest total cost (or is 
shortest)

3. Pick randomly to any break ties
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Shortest Paths (2)

• Find the shortest path A → E

• All links are bidirectional, with 
equal costs in each direction

• Can extend model to unequal         
costs if needed A B

C

D

E

F

G

H
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4
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Shortest Paths (3)

• ABCE is a shortest path

• dist(ABCE) = 4 + 2 + 1 = 7

• This is less than:
• dist(ABE) = 8
• dist(ABFE) = 9
• dist(AE) = 10
• dist(ABCDE) = 10
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Shortest Paths (4)

• Optimality property:
• Subpaths of shortest paths are 

also shortest paths 

• ABCE is a shortest path
 So are ABC, AB, BCE, BC, CE
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Sink Trees

• Sink tree for a destination is 
the union of all shortest paths 
towards the destination

• Similarly source tree

• Find the sink tree for E A B
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Sink Trees (2)

• Implications:
• Only need to use destination to 

follow shortest paths
• Each node only need to send to 

the next hop

• Forwarding table at a node
• Lists next hop for each 

destination
• Routing table may know more

A B

C

D

E

F

G

H

2

1

10

2

2

4

2
4

4

3

3

3



Link-State Routing



Link-State Routing

• Broad class of routing algorithms
• Other is distance vector which is used when computation 

is harder 

• Widely used in practice
• Used in Internet/ARPANET from 1979
• Modern networks use OSPF (L3) and IS-IS (L2)
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Link-State Setting

Nodes compute their forwarding table in the classic 
distributed setting:

1. Nodes know only the cost to their neighbors; not topology

2. Nodes can talk only to their neighbors using messages

3. All nodes run the same algorithm concurrently

4. Nodes/links may fail, messages may be lost
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Link-State Algorithm

Proceeds in two phases:

1. Nodes flood topology with link state packets
• Each node learns full topology

2. Each node computes its own forwarding table
• By running Dijkstra (or equivalent)
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Part 1: Flood Routing



Flooding

• Rule used at each node:
• Sends an incoming message on to all other neighbors
• Remember the message so that it is only flooded once 
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Flooding (2)

• Consider a flood from A; first reaches B via AB, E via 
AE
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Flooding (3)

• Next B floods BC, BE, BF, BG, and E floods EB, EC, ED, 
EF
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A B

C

D

E

F

G

H

E and B send to 
each other



Flooding (4)

• C floods CD, CH; D floods DC; F floods FG; G floods 
GF

79

A B

C

D

E

F

G

H

F gets another copy



Flooding (5)

• H has no-one to flood … and we’re done
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A B

C

D

E

F

G

H

Each link carries the 
message, and in at 
least one direction



Flooding Details

• Remember message (to stop flood) using source 
and sequence number

• So next message (with higher sequence) will go through

• To make flooding reliable, use ARQ
• So receiver acknowledges, and sender resends if needed
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Flooding Details

• Remember message (to stop flood) using source 
and sequence number

• So next message (with higher sequence) will go through

• To make flooding reliable, use ARQ
• So receiver acknowledges, and sender resends if needed
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Problem?



Flooding Problem

• F receives the same message multiple times
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A B

C

D

E

F

G

H

E and B send to 
each other too



Part 2: Dijkstra’s Algorithm
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Edsger W. Dijkstra (1930-2002)

• Famous computer scientist
• Programming languages
• Distributed algorithms
• Program verification

• Dijkstra’s algorithm, 1969
• Single-source shortest paths, given 

network with non-negative link costs
By Hamilton Richards, CC-BY-SA-3.0, via Wikimedia Commons



Dijkstra’s Algorithm

Algorithm:

• Mark all nodes tentative, set distances from source 
to 0 (zero) for source, and ∞ (infinity) for all other 
nodes

• While tentative nodes remain:
• Extract N, a node with lowest distance
• Add link to N to the shortest path tree
• Relax the distances of neighbors of N by lowering any 
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Dijkstra’s Algorithm (2)

• Initialization
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∞

∞

We’ll compute 
shortest paths 

from A ∞



Dijkstra’s Algorithm (3)

• Relax around A
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Dijkstra’s Algorithm (4)

• Relax around B
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Dijkstra’s Algorithm (5)

• Relax around C
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Dijkstra’s Algorithm (6)

• Relax around G (say)
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Dijkstra’s Algorithm (7)

• Relax around F (say)
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Dijkstra’s Algorithm (8)

• Relax around E
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Dijkstra’s Algorithm (9)

• Relax around D
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Dijkstra’s Algorithm (10)

• Finally, H … done
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Dijkstra Comments

• Finds shortest paths in order of increasing distance 
from source

• Leverages optimality property

• Runtime depends on cost of extracting min-cost 
node

• Superlinear in network size (grows fast) 
• Using Fibonacci Heaps the complexity turns out to be 

O(|E|+|V|log| V|)

• Gives complete source/sink tree
• More than needed for forwarding!
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Bringing it all together…
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Phase 1: Topology Dissemination
• Each node floods link state packet 

(LSP) that describes their portion  of 
the topology

A B

C

D

E
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H
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2
4

4

3

3

3

Seq. #

A 10

B 4

C 1

D 2

F 2

Node E’s LSP 
flooded to A, B, 
C, D, and F



Phase 2: Route Computation

• Each node has full topology
• By combining all LSPs

• Each node simply runs Dijkstra
• Replicated computation, but finds required routes directly
• Compile forwarding table from sink/source tree
• That’s it folks!
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Forwarding Table
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To Next

A C

B C

C C

D D

E --

F F

G F

H C

A B

C

D
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H
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2
4

4

3

3

3

Source Tree for E (from Dijkstra) E’s Forwarding Table



Handling Changes

• On change, flood updated LSPs, re-compute routes
• E.g., nodes adjacent to failed link or node initiate
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XXXX
Seq. #

A 4

C 2

E 4

F 3

G ∞

B’s LSP
Seq. #

B 3

E 2

G ∞

F’s LSP
Failure!



Handling Changes (2)

• Link failure
• Both nodes notice, send updated LSPs
• Link is removed from topology

• Node failure
• All neighbors notice a link has failed (link state!)
• Failed node can’t update its own LSP
• But it is OK: all links to node removed
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Handling Changes (3)

• Addition of a link or node
• Add LSP of new node to topology
• Old LSPs are updated with new link

• Additions are the easy case …
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Link-State Complications

• Things that can go wrong:
• Seq. number reaches max, or is corrupted
• Node crashes and loses seq. number
• Network partitions then heals

• Strategy:
• Include age on LSPs and forget old information that is not 

refreshed

• Much of the complexity is due to handling corner 
cases
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Border Gateway Protocol (BGP)



Structure of the Internet

• Networks (ISPs, CDNs, etc.) group with IP prefixes
• Networks are richly interconnected, often using IXPs 

CDN C

Prefix C1

ISP A

Prefix A1

Prefix A2
Net F

Prefix F1

IXP
IXP

IXP
IXP

CDN D

Prefix D1

Net E

Prefix E1

Prefix E2

ISP B

Prefix B1



Internet-wide Routing Issues

• Two problems beyond routing within a network

1. Scaling to very large networks
• Techniques of IP prefixes, hierarchy, prefix aggregation

2. Incorporating policy decisions
• Letting different parties choose their routes to suit their 

own needs
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Yikes!
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Effects of Independent Parties

• Each party selects routes to 
suit its own interests

• e.g, shortest path in ISP

• What path will be chosen 
for A2→B1 and B1→A2?

• What is the best path?
Prefix B2

Prefix A1

ISP A ISP B

Prefix B1

Prefix A2
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Effects of Independent Parties (2)

• Selected paths are longer 
than overall shortest path

• And symmetric too!

• This is a consequence of 
independent goals and 
decisions, not hierarchy Prefix B2

Prefix A1

ISP A ISP B

Prefix B1

Prefix A2



Routing Policies

• Capture the goals of different parties
• Could be anything
• E.g., Internet2 only carries non-commercial traffic

• Common policies we’ll look at:
• ISPs give TRANSIT service to customers
• ISPs give PEER service to each other
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Routing Policies – Transit
• One party (customer) gets TRANSIT

service from another party (ISP)
• ISP accepts traffic for customer from 

the rest of Internet
• ISP sends traffic from customer to the 

rest of Internet
• Customer pays ISP for the privilege

Customer 1

ISP

Customer 2

Rest of
Internet

Non-
customer
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Routing Policies – Peer
• Both party (ISPs in example) get 

PEER service from each other
• Each ISP accepts traffic from the other 

ISP only for their customers
• ISPs do not carry traffic to the rest  of 

the Internet for each other
• ISPs don’t pay each other

Customer A1

ISP A

Customer A2

Customer B1

ISP B

Customer B2



Routing with BGP (Border Gateway 
Protocol)
• iBGP is for internal routing

• eBGP is interdomain routing for the Internet
• Path vector, a kind of distance vector

113

ISP A
Prefix A1

Prefix A2Net F

Prefix F1

IXP

ISP B
Prefix B1 Prefix F1 via ISP 

B, Net F at IXP



Routing with BGP (2)

•Parties like ISPs are called AS (Autonomous 
Systems)
• AS numbers assigned by regional Internet Assigned 

Numbers Authority (IANA) like APNIC

•AS’s MANUALLY configure their internal BGP 
routes/advertisements

•External routes go through complicated filters 
for forwarding/filtering

•AS BGP routers communicate with each other to 
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Routing with BGP (2)

•Border routers of ASes announce BGP routes

•Route announcements have IP prefix, path 
vector, next hop
• Path vector is list of ASes on the way to the prefix
• List is to find loops

•Route announcements move in the opposite 
direction to traffic
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Routing with BGP (3)
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• Application-layer protocol (uses TCP)

• Types of BGP Messages

• Open: Create a relationship

• Keepalive: Still here (reset timeouts)

• Update: A route changed

• Notification: Error message

• Route Refresh: Please send me the route again



Routing with BGP (5)
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Prefix



Routing with BGP (5)
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Routing with BGP (6)

Policy is implemented in two ways:

1. Border routers of ISP announce paths only to 
other parties who may use those paths

• Filter out paths others can’t use

2. Border routers of ISP select the best path of the 
ones they hear in any, non-shortest way
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Routing with BGP (7)

• TRANSIT: AS1 says [B, (AS1, AS3)], [C, (AS1, AS4)] to AS2
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Routing with BGP (8)

• CUSTOMER (other side of TRANSIT): AS2 says [A, (AS2)] to  AS1
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Routing with BGP (9)

• PEER: AS2 says [A, (AS2)] to AS3, AS3 says [B, (AS3)] to AS2
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Routing with BGP (10)

• AS2 has two routes to B (AS1, AS3) and chooses AS3 (Free!) 
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BGP Thoughts

•Much more beyond basics to explore!

•Policy is a substantial factor
• Can independent decisions be sensible overall?

•Other important factors:
• Convergence effects
• How well it scales
• Integration with intradomain routing
• And more …
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IP Services



Issues?

• What else is missing?



Issues?

• Where does this break down?

Bootstrapping (DHCP)

Finding Link nodes (ARP)

Errors in the network (ICMP)

Running out of addresses (IPv6, NAT)



Dynamic Host Configuration 
Protocol (DHCP)



Bootstrapping

• Problem:
• A node wakes up for the first time …
• What is its IP address? What’s the IP address of its router? 
• At least Ethernet address is on NIC
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What’s my IP?



Bootstrapping (2)

1. Manual configuration (old days)
• Can’t be factory set, depends on use

2. DHCP: Automatically configure addresses 
• Shifts burden from users to IT folk
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Use A.B.C.DWhat’s my IP?



DHCP

• DHCP (Dynamic Host Configuration Protocol), from 
1993, widely used

• It leases IP address to nodes

• Provides other parameters too
• Network prefix
• Address of local router
• DNS server, time server, etc.
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DHCP Protocol Stack

• DHCP is a client-server application
• Uses UDP ports 67, 68
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Ethernet

IP

UDP

DHCP



DHCP Addressing

• Bootstrap issue:
• How does node send a message to DHCP server before it 

is configured?

• Answer:
• Node sends broadcast messages that delivered to all 

nodes on the network
• Broadcast address is all 1s
• IP (32 bit): 255.255.255.255
• Ethernet (48 bit): ff:ff:ff:ff:ff:ff
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DHCP Messages
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Client Server

One link



DHCP Messages (2)
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Client Server

DISCOVER

REQUEST

OFFER

ACK

All Broadcast (255.255.255.255)



DHCP Messages (3)

• To renew an existing lease, an abbreviated sequence 
is used:

• REQUEST, followed by ACK

• Protocol also supports replicated servers for 
reliability
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Address Resolution Protocol (ARP)



Sending an IP Packet

• Problem:
• A node needs Link layer addresses to send a frame over 

the local link
• How does it get the destination link address from a 

destination IP address?
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Uh oh … My IP is 1.2.3.4



ARP (Address Resolution Protocol)

• Node uses to map a local IP address to its Link layer 
addresses
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Source
Ethernet

Dest.
Ethernet

Source 
IP

Dest.
IP Payload …

Link layer

From
DHCP

From
NIC

From ARP



ARP Protocol Stack

• ARP sits right on top of link layer
• No servers, just asks node with target IP to identify itself
• Uses broadcast to reach all nodes
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Ethernet

ARP



ARP Messages
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Node Target

One link 



ARP Messages (2)

[root@host ~]# tcpdump -lni any arp & 
( sleep 1; arp -d 10.0.0.254; ping -c1 -n 
10.0.0.254 )

listening on any, link-type LINUX_SLL 
(Linux cooked), capture size 96 bytes

17:58:02.155495 arp who-has 
10.2.1.224 tell 10.2.1.253

17:58:02.317444 arp who-has 10.0.0.96 
tell 10.0.0.253

17:58:02.370446 arp who-has 10.3.1.12 
tell 10.3.1.61
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Node Target

REQUEST Broadcast

Who has IP 1.2.3.4?

REPLY

I do at 1:2:3:4:5:6



ARP Table

# arp -an | grep 10

? (10.241.1.114) at 00:25:90:3e:dc:fc [ether] on vlan241

? (10.252.1.8) at 00:c0:b7:76:ac:19 [ether] on vlan244

? (10.252.1.9) at 00:c0:b7:76:ae:56 [ether] on vlan244

? (10.241.1.111) at 00:30:48:f2:23:fd [ether] on vlan241

? (10.252.1.6) at 00:c0:b7:74:fb:9a [ether] on vlan244

? (10.241.1.121) at 00:25:90:2c:d4:f7 [ether] on vlan241

[...]



Discovery Protocols

• Help nodes find each other
• There are more of them!

• E.g., Zeroconf, Bonjour

• Often involve broadcast
• Since nodes aren’t introduced
• Very handy glue 
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Internet Control Message 
Protocol (ICMP)



Topic

• Problem: What happens when something goes 
wrong during forwarding?

• Need to be able to find the problem
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Yikes!What happened?
XXXXXXX



Internet Control Message Protocol

• ICMP is a companion protocol to IP
• They are implemented together
• Sits on top of IP (IP Protocol=1)

• Provides error report and testing
• Error is at router while forwarding
• Also testing that hosts can use
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ICMP Errors

• When router encounters an error while forwarding:
• It sends an ICMP error report back to the IP source
• It discards the problematic packet; host needs to rectify
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Report then toss it!Oh, now I see …

XXXXXXX

ICMP report



ICMP Message Format (2)

• Each ICMP message has a Type, Code, and Checksum

• Often carry the start of the offending packet as payload

• Each message is carried in an IP packet
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Src=router, Dst=A
Protocol = 1

Type=X, Code=Y
Src=A, Dst=B

XXXXXXXXXXXXXXX

Portion of offending packet,
starting with its IP header

ICMP headerIP header ICMP data



Example ICMP Messages
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Name Type / Code Usage

Dest. Unreachable (Net or Host) 3 / 0 or 1 Lack of connectivity

Dest. Unreachable (Fragment) 3 / 4 Path MTU Discovery

Time Exceeded (Transit) 11 / 0 Traceroute

Echo Request or Reply 8 or 0 / 0 Ping

Testing, not a forwarding error: Host sends Echo Request, 
and destination responds with an Echo Reply



Traceroute

• IP header contains TTL (Time to live) field
• Decremented every router hop, with ICMP error at zero
• Protects against forwarding loops
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Traceroute (2)

• Traceroute repurposes TTL and ICMP functionality
• Sends probe packets increasing TTL starting from 1
• ICMP errors identify routers on the path
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. . . Local
Host

Remote
Host1 hop 2 hops

3 hops N-1 hops
N hops



Network Address Translation (NAT)
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• Many billions of 
hosts

• And we’re using 32-
bit addresses!

Problem: Internet Growth



The End of New IPv4 Addresses

• Now running on leftover blocks held by the regional 
registries; much tighter allocation policies
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IANA
(All IPs)

ARIN 
(US, Canada)

APNIC
(Asia Pacific)

RIPE
(Europe)

LACNIC
(Latin Amer.)

AfriNIC
(Africa)

ISPs

Companies

Exhausted
on 2/11! End of the world ? 12/21/12?

Exhausted
on 4/11

and 9/12!



Solution 1: Network Address Translation (NAT)

• Basic idea: Map many “Private” IP addresses to one 
“Public” IP.

• Allocate IPs for private use (192.168.x, 10.x)
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I’m a NAT box too!

Internet



Layering Review

• Remember how layering is meant to work?
• “Routers don’t look beyond the IP header.” Well …
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TCP

IP

802.11

App

IP

802.11

IP

Ethernet

TCP

IP

802.11

App

IP

802.11

IP

Ethernet

Router



Middleboxes

• Sit “inside the network” but perform “more than IP” 
processing on packets to add new functionality

• NAT box, Firewall / Intrusion Detection System
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TCP

IP

802.11

App

IP

802.11

IP

Ethernet

TCP

IP

802.11

App

IP

802.11

IP

Ethernet

Middlebox

App / TCP



Middleboxes (2)

• Advantages
• A possible rapid deployment path when no other option
• Control over many hosts (IT)

• Disadvantages
• Breaking layering interferes with connectivity

• strange side effects

• Poor vantage point for many tasks
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NAT (Network Address Translation)

• NAT box maps an internal IP to an external IP
• Many internal hosts connected using few external addresses
• Middlebox that “translates addresses”

• Motivated by IP address scarcity
• Controversial at first, now accepted
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NAT (2)

• Common scenario:
• Home computers use “private” IP addresses

• 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
• NAT (in AP/firewall) connects home to ISP using a single 

external IP address

163

ISP

Unmodified computers at home Looks like one 
computer outside

NAT box



How NAT Works

• Keeps an internal/external translation table
• Typically uses IP address + TCP port
• This is address and port translation

• Need ports to make mapping 1-1 since there are fewer external IPs

164

Internal IP : port External IP : port

192.168.1.12 : 5523 44.25.80.3 : 1500

192.168.1.13 : 1234 44.25.80.3 : 1501

192.168.2.20 : 1234 44.25.80.3 : 1502

What ISP thinksWhat host thinks



How NAT Works (2)

• Internal → External:
• Look up and rewrite Source IP/port
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Internal  IP:port External  IP : port

192.168.1.12 : 5523 44.25.80.3 : 1500

NAT

External 
destination
IP=X, port=Y

Internal
source

Dst =

Src =

Dst =

Src = 192.168.1.12:5523

123.1.1.10:5000



How NAT Works (2)

• Internal → External:
• Look up and rewrite Source IP/port
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Internal  IP:port External  IP : port

192.168.1.12 : 5523 44.25.80.3 : 1500

NAT

External 
destination
IP=X, port=Y

Internal
source

Src =

Dst =

Src =

Dst =

192.168.1.12:5523

123.1.1.10:5000

44.25.80.3:1500

123.1.1.10:5000



How NAT Works (3)

• External ← Internal
• Look up and rewrite Destination IP/port
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Internal  IP:port External  IP : port

192.168.1.12 : 5523 44.25.80.3 : 1500

NAT

External 
source

IP=X, port=Y

Internal
destination

Src =

Dst =

Src =

Dst =

123.1.1.10:5000

192.168.1.12:5523

123.1.1.10:5000

44.25.80.3:1500



How NAT Works (4)

• Need to enter translations in the table for it to work
• Create external name when host makes a TCP connection
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Internal  IP:port External  IP : port

192.168.1.12 : 5523

NAT

External 
destination
IP=X, port=Y

Internal
source

Src =

Dst =

Src =

Dst =

192.168.1.12:5523

123.1.1.10:5000

?

123.1.1.10:5000



How NAT Works (5)

• What happens when a message arrives for an 
internal source without a table entry?
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Internal  IP:port External  IP : port

192.168.1.12 : 5523

NAT

External 
destination
IP=X, port=Y

Internal
source

Src =

Dst =

Src =

Dst =

123.1.1.10:5000

?

123.1.1.10:5000

44.25.80.3:1500



NAT Downsides

• Connectivity has been broken!
• Can only send incoming packets after an outgoing 

connection is set up
• Difficult to run servers or peer-to-peer apps (Skype) 

• Doesn’t work when there are no connections (UDP)

• Breaks apps that expose their IP addresses (FTP)
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NAT Upsides

• Relieves much IP address pressure
• Many home hosts behind NATs

• Easy to deploy
• Rapidly, and by you alone

• Useful functionality
• Firewall, helps with privacy

• Kinks will get worked out eventually
• “NAT Punching/Traversal” for incoming traffic
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IPv6



Problem: Internet Growth

• Many billions of 
hosts

• And we’re using 
32-bit addresses!
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IP Version 6 to the Rescue

• Effort started by the IETF in 1994
• Much larger addresses (128 bits)
• Many sundry improvements

• Became an IETF standard in 1998
• Nothing much happened for a decade
• Hampered by deployment issues, and a lack of adoption 

incentives 
• Big push ~2011 as exhaustion loomed
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IPv6

• Features large addresses
• 128 bits, most of header

• New notation
• 8 groups of 4 hex digits (16 bits)
• Omit leading zeros, groups of zeros
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Ex:   2001:0db8:0000:0000:0000:ff00:0042:8329
→   2001:db8::ff00:42:8329

32 bits



IPv6 (2)

• Lots of other changes
• Only public addresses

• No more NAT!

• Streamlined header processing
• Flow label to group of packets
• IPSec by default
• Better fit with “advanced” features (mobility, multicasting, 

security)
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32 bits



IPv6 (3)

• Does this fix ARP?
• Does this fix DHCP?
• Does this fix NAT?
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32 bits



IPv6 (3)

• Does this fix ARP? No: NDP
• Does this fix DHCP? No: SLAAC
• Does this fix NAT? Yes!
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32 bits



Neighbor Discovery Protocol

• Uses ICMPv6
• DHCP Functions:
⚫Router discovery (133)/advertisement (134)

• ARP Functions:
⚫Neighbor discovery (135)/advertisement (136)
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Stateless Autoconfiguration (SLAAC)

• Replaces DHCP (sorta…)

• Uses ICMPv6

• Process:
• Send broadcast message
• Get prefix from router
• Attach MAC to router Prefix /w some math
⚫ 48 bit → EUI-64  format
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MAC: 0200:1234:5678 → 0000:12FF:FE34:5678
Address: 2000:1234:5678::12FF:FE34:5678  

Address: 2000:1234:5678::1001/64
Prefix: 2000:1234:5678:: /64



IPv6 Transition

• The Big Problem:
• How to deploy IPv6?
• Fundamentally incompatible with IPv4

• Dozens of approaches proposed
• Dual stack (speak IPv4 and IPv6)
• Translators (convert packets)
• Tunnels (carry IPv6 over IPv4)
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