
Physical Layer

Lecture Progression

• Bottom-up through the layers:

• Followed by more detail on:
• Quality of service, Security (VPN, SSL)

Computer Networks 2

Application - HTTP, DNS, CDNs

Transport - TCP, UDP

Network - IP, NAT, BGP

Link - Ethernet, 802.11

Physical - wires, fiber, wireless

Where we are in the Course

• Beginning to work our way up starting with the
Physical layer

CSE 461 University of Washington 3

Physical

Link

Network

Transport

Application

Scope of the Physical Layer

• Concerns how signals are used to transfer message
bits over a link

• Wires etc. carry analog signals
• We want to send digital bits

CSE 461 University of Washington 4

…1011010110…

Signal

Topics

1. Coding and Modulation schemes
• Representing bits, noise

2. Properties of media
• Wires, fiber optics, wireless, propagation
• Bandwidth, attenuation, noise

3. Fundamental limits
• Nyquist, Shannon

CSE 461 University of Washington 5

Coding and Modulation

Topic

• How can we send information across a link?
• This is the topic of coding and modulation
• Modem (from modulator–demodulator)

CSE 461 University of Washington 7

…1011010110…

Signal

A Simple Coding

• Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
• This is called NRZ (Non-Return to Zero)

CSE 461 University of Washington 8

Bits

NRZ

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

+V

-V

A Simple Modulation (3)

• Problems?

Many Other Schemes

• Can use more signal levels
• E.g., 4 levels is 2 bits per symbol

• Practical schemes are driven by engineering
considerations

• E.g., clock recovery

CSE 461 University of Washington 10

Clock Recovery

• Um, how many zeros was that?
• Receiver needs frequent signal transitions to decode bits

• Several possible designs
• E.g., Manchester coding and scrambling (§2.5.1)

CSE 461 University of Washington 11

1 0 0 0 0 0 0 0 0 0 … 0

Answer 1: A Simple Coding

• Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0

• Then go back to 0V for a “Reset”
• This is called RZ (Return to Zero)

CSE 461 University of Washington 12

Bits

RZ

0 1 1 1 0 0 0 1

-V

+V

 0

Answer 2: Clock Recovery – 4B/5B

• Map every 4 data bits into 5 code bits without long
runs of zeros

• 0000 → 11110, 0001 →01001, 1110 → 11100, …
1111 → 11101

• Has at most 3 zeros in a row
• Also invert signal level on a 1 to break up long runs of 1s

(called NRZI, §2.5.1)

CSE 461 University of Washington 13

Modulation vs Coding

• What we have seen so far is called coding
• Signal is sent directly on a wire

• These signals do not propagate well as RF
• Need to send at higher frequencies

• Modulation carries a signal by modulating a carrier
• Baseband is signal pre-modulation
• Keying is the digital form of modulation (equivalent to

coding but using modulation)

CSE 461 University of Washington 14

Passband Modulation (2)

• Carrier is simply a signal oscillating at a desired
frequency:

• We can modulate it by changing:
• Amplitude, frequency, or phase

CSE 461 University of Washington 15

Comparisons

CSE 461 University of Washington 16

NRZ signal of bits

Amplitude shift keying

Frequency shift keying

Phase shift keying

Philosophical Takeaways

●Everything is analog, even digital signals

● Digital information is a discrete concept
represented in an analog physical medium
○ A printed book (analog) vs.
○ Words conveyed in the book (digital)

CSE 461 University of Washington 17

Simple Link Model

• We’ll end with an abstraction of a physical channel
• Rate (or bandwidth, capacity, speed) in bits/second
• Delay in seconds, related to length

• Other important properties:
• Whether the channel is broadcast, and its error rate

CSE 461 University of Washington 18

Delay D, Rate R

Message

Message Latency

• Latency is the delay to send a message over a link
• Transmission delay: time to put M-bit message “on the wire”

T-delay = M (bits) / Rate (bits/sec) = M/R seconds

• Propagation delay: time for bits to propagate across the wire

P-delay = Length / speed of signals = Length / ⅔c = D seconds

• Combining the two terms we have: L = M/R + D

CSE 461 University of Washington 19

Latency Examples

• “Dialup” with a telephone modem:
• D = 5 ms, R = 56 kbps, M = 1250 bytes
• L = (1250x8)/(56 x 103) sec + 5ms = 184 ms!

• Broadband cross-country link:
• D = 50 ms, R = 10 Mbps, M = 1250 bytes
• L = (1250x8) / (10 x 106) sec + 50ms = 51 ms

• A long link or a slow rate means high latency: One component
dominates

CSE 461 University of Washington 20

Bandwidth-Delay Product

• Messages take space on the wire!

• The amount of data in flight is the bandwidth-delay
(BD) product

BD = R x D
• Measure in bits, or in messages
• Small for LANs, big for “long fat” pipes

CSE 461 University of Washington 21

CSE 461 University of Washington 22

Bandwidth-Delay Example

• Fiber at home, cross-country
R=40 Mbps, D=50 ms

110101000010111010101001011

CSE 461 University of Washington 23

Bandwidth-Delay Example (2)

• Fiber at home, cross-country
R=40 Mbps, D=50 ms
BD = 40 x 106 x 50 x 10-3 bits

= 2000 Kbit
= 250 KB

• That’s quite a lot of data in
the network”!

110101000010111010101001011

Media

https://www.merriam-webster.com/dictionary/media

Types of Media

• Media propagate signals that carry bits of
information

• We’ll look at some common types:
• Wires
• Fiber (fiber optic cables)
• Wireless

CSE 461 University of Washington 26

Wires – Twisted Pair

• Very common; used in LANs and telephone lines
• Twists reduce radiated signal

CSE 461 University of Washington 27

Category 5 UTP cable
with four twisted pairs

Fiber

• Long, thin, pure strands of glass
• Enormous bandwidth (high speed) over long distances

CSE 461 University of Washington 28

Light source
(LED, laser)

Photo-
detector

Light trapped by
total internal reflection

Optical fiber

Wireless

• Sender radiates signal over a region
• In many directions, unlike a wire, to potentially many

receivers
• Nearby signals (same freq.) interfere at a receiver; need to

coordinate use

CSE 461 University of Washington 29

Wireless Interference

CSE 461 University of Washington 31

WiFi

WiFi

Wireless (2)

• Unlicensed (ISM) frequencies, e.g., WiFi, are widely
used for computer networking

802.11
b/g/n

802.11a/g/n

Multipath (3)

• Signals bounce off objects and take multiple paths
• Some frequencies attenuated at receiver, varies with

location

CSE 461 University of Washington 33

Wireless (4)

• Various other effects too!
• Wireless propagation is complex, depends on

environment

• Some key effects are highly frequency dependent,
• E.g., multipath at microwave frequencies

CSE 461 University of Washington 34

Limits

Topic

• How rapidly can we send information over a link?
• Nyquist limit (~1924)
• Shannon capacity (1948)

• Practical systems are devised to approach these
limits

CSE 461 University of Washington 36

Key Channel Properties

• The bandwidth (B), signal strength (S), and noise (N)
• B (in hertz) limits the rate of transitions
• S and N limit how many signal levels we can distinguish

CSE 461 University of Washington 37

Bandwidth B Signal S,
Noise N

Nyquist Limit

• The maximum symbol rate is 2B

• Thus if there are V signal levels, ignoring noise, the
maximum bit rate is:

CSE 461 University of Washington 38

R = 2B log2V bits/sec

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Claude Shannon (1916-2001)

• Father of information theory
• “A Mathematical Theory of

Communication”, 1948

• Fundamental contributions
to digital computers, security,
 and communications

CSE 461 University of Washington 39

Credit: Courtesy MIT Museum

Electromechanical mouse
that “solves” mazes!

Shannon Capacity

• How many levels we can distinguish depends on S/N
• Or SNR, the Signal-to-Noise Ratio
• Note noise is random, hence some errors

• SNR given on a log-scale in deciBels:
• SNRdB = 10log10(S/N)

CSE 461 University of Washington 40

0

1

2

3

N

S+N

Shannon Capacity (2)

• Shannon limit is for capacity (C), the maximum
information carrying rate of the channel:

CSE 461 University of Washington 41

C = B log2(1 + S/N) bits/sec

Shannon Capacity Takeaways

CSE 461 University of Washington 42

C = B log2(1 + S/N) bits/sec

• There is some rate at which we can transmit data
without loss over a random channel

• Assuming noise fixed, increasing the signal power
yields diminishing returns : (

• Assuming signal is fixed, increasing bandwith
increases capacity linearly!

Wired/Wireless Perspective (2)

• Wires, and Fiber
• Engineer link to have requisite SNR and B
→Can fix data rate

• Wireless
• Given B, but SNR varies greatly, e.g., up to 60 dB!
→Can’t design for worst case, must adapt data rate

CSE 461 University of Washington 43

Engineer SNR for data rate

Adapt data rate to SNR

All distilled to a simple link model

• Rate (or bandwidth, capacity, speed) in bits/second
• Delay in seconds, related to length

• Other important properties:
• Whether the channel is broadcast, and its error rate

CSE 461 University of Washington 44

Delay D, Rate R

Message

Link Layer

Where we are in the Course

•Moving on up to the Link Layer!

CSE 461 University of Washington 46

Physical

Link

Network

Transport

Application

Scope of the Link Layer

•Concerns how to transfer messages over one or
more connected links

• Messages are frames, of limited size
• Builds on the physical layer

CSE 461 University of Washington 47

Frame

In terms of layers

CSE 461 University of Washington 48

Actual data path

Virtual data path

Network

Link

Physical

Typical Implementation of Layers (2)

CSE 461 University of Washington 49

Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet

CSE 461 University of Washington 50

Framing
Delimiting start/end of frames

Topic

•The Physical layer gives us a stream of bits. How do
we interpret it as a sequence of frames?

CSE 461 University of Washington 52

…10110 …

Um?

Framing Methods

• We’ll look at:
• Byte count (motivation)
• Byte stuffing

• In practice, the physical layer often helps to identify frame boundaries
• E.g., Ethernet, 802.11

CSE 461 University of Washington 53

Simple ideas?

Byte Count

• First try:
• Let’s start each frame with a length field!
• It’s simple, and hopefully good enough …

CSE 461 University of Washington 55

Byte Count (2)

• How well do you think it works?

CSE 461 University of Washington 56

Byte Count (3)

• Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame

CSE 461 University of Washington 57

Byte Stuffing

•Better idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code
• Problem?

CSE 461 University of Washington 58

Byte Stuffing

•Better idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code
• Complication: have to escape the escape code too!

CSE 461 University of Washington 59

Byte Stuffing (2)

• Rules:
• Replace each FLAG in data with ESC FLAG

• Replace each ESC in data with ESC ESC

CSE 461 University of Washington 60

Link Layer: Error detection
and correction

Topic

•Some bits will be received in error due to noise.
What can we do?

• Detect errors with codes
 Retransmit lost frames

• Correct errors with codes

•Reliability is a concern that cuts across the layers

CSE 461 University of Washington 62

Later

Problem – Noise may flip received
bits

CSE 461 University of Washington 63

Signal
0 0 0 0

11 1

0

0 0 0 0

11 1

0

0 0 0 0

11 1

0

Slightly
Noisy

Very
noisy

Approach – Add Redundancy

•Error detection codes
• Add check bits to the message bits to let some errors be

detected

•Error correction codes
• Add more check bits to let some errors be corrected

•Key issue is now to structure the code to detect many
errors with few check bits and modest computation

CSE 461 University of Washington 64

• Simple Ideas?

Motivating Example

•A simple code to handle errors:
• Send two copies! Error if different.

•How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?

CSE 461 University of Washington 66

Motivating Example (2)

•We want to handle more errors with less overhead
• Will look at better codes; they are applied mathematics
• But, they can’t handle all errors
• And they focus on accidental errors (will look at secure

hashes later)

CSE 461 University of Washington 67

Using Error Codes

• Codeword consists of D data plus R check bits
(=systematic block code)

• Sender:
• Compute R check bits based on the D data bits; send the

codeword of D+R bits

CSE 461 University of Washington 68

D R=fn(D)

Data bits Check bits

Using Error Codes (2)

•Receiver:
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits; error if

R doesn’t match R’

CSE 461 University of Washington 69

D R’

Data bits Check bits

R=fn(D)
=?

Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen codeword is unlikely to be correct; overhead
is low

CSE 461 University of Washington 70

All
codewords

Correct
codewords

CSE 461 University of Washington 71

R.W. Hamming (1915-1998)

•Much early work on codes:
• “Error Detecting and Error Correcting

Codes”, BSTJ, 1950

• “If the computer can tell when an error has
occurred, surely there is a way of telling where
the error is so the computer can correct the error
itself” - Hamming

Source: IEEE GHN, © 2009 IEEE

Hamming Distance

•Distance is the number of bit flips needed to change
D1 to D2

•Hamming distance of a coding is the minimum error
distance between any pair of codewords (bit-
strings) that cannot be detected

CSE 461 University of Washington 72

Hamming Distance (2)

•Error detection:
• For a coding of distance d+1, up to d errors will always be

detected

•Error correction:
• For a coding of distance 2d+1, up to d errors can always be

corrected by mapping to the closest valid codeword

CSE 461 University of Washington 73

Simple Error Detection – Parity Bit

•Take D data bits, add 1 check bit that is the sum of
the D bits

• Sum is modulo 2 or XOR

CSE 461 University of Washington 74

Parity Bit (2)

•How well does parity work?
• What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?

CSE 461 University of Washington 75

Checksums

• Idea: sum up data in N-bit words
• Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity

CSE 461 University of Washington 76

1500 bytes 16 bits

Internet Checksum

•Sum is defined in 1s complement arithmetic (must
add back carries)

• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the
one's complement sum of all 16 bit words …” – RFC 791

CSE 461 University of Washington 77

CSE 461 University of Washington 78

Internet Checksum (2)
Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

0001
f204
f4f5
f6f7

+(0000)

2ddf0

ddf0
+ 2

ddf2

220d

CSE 461 University of Washington 79

Internet Checksum (3)
0001
f204
f4f5
f6f7

+(0000)

2ddf1

ddf1
+ 2

ddf3

220c

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

CSE 461 University of Washington 80

Internet Checksum (4)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd

+ 2

ffff

 0000

CSE 461 University of Washington 81

Internet Checksum (5)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd

+ 2

ffff

 0000

Internet Checksum (6)

•How well does the checksum work?
• What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?

CSE 461 University of Washington 82

Why Error Correction is Hard

• If we had reliable check bits we could use them to
narrow down the position of the error

• Then correction would be easy

•But error could be in the check bits as well as the
data bits!

• Data might even be correct

CSE 461 University of Washington 83

Intuition for Error Correcting Code

• Suppose we construct a code with a Hamming distance
of at least 3

• Need ≥3 bit errors to change one valid codeword into another
• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct them
by mapping an error to the closest valid codeword

• Works for d errors if HD ≥ 2d + 1

CSE 461 University of Washington 84

Intuition (2)

• Visualization of code:

CSE 461 University of Washington 85

A

B

Valid
codeword

Error
codeword

Intuition (3)

• Visualization of code:

CSE 461 University of Washington 86

A

B

Valid
codeword

Error
codeword

Single
bit error
from A

Three bit
errors to
get to B

Other Error Correction Codes

•Real codes are more involved than Hamming

•E.g., Convolutional codes (§3.2.3)
• Take a stream of data and output a mix of the input bits
• Makes each output bit less fragile
• Decode using Viterbi algorithm (which can use bit confidence

values)

CSE 461 University of Washington 87

CSE 461 University of Washington 88

More coding theory
•This is a huge field.

•See EE 505, 514, 515 for more info

•Key points:

 Coding allows us to detect and correct bit errors
received from the PHY

 It is very complicated. Abstract away with
Hamming Distance

Detection vs. Correction

• Error correction:
• Needed when errors are expected
• Or when no time for retransmission

• Error detection:
• More efficient when errors are not expected
• And when errors are large when they do occur

CSE 461 University of Washington 89

Error Correction in Practice

• Heavily used in physical layer
• LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, power-line, …
• Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above for
residual errors

• Correction also used in the application layer
• Called Forward Error Correction (FEC)
• Normally with an erasure error model
• E.g., Reed-Solomon (CDs, DVDs, etc.)

CSE 461 University of Washington 90

Link Layer:
Retransmissions

So what do we do if a frame is
corrupted?
• From sender?

• From receiver?

ARQ (Automatic Repeat reQuest)

•ARQ often used when errors are common or must be
corrected

• E.g., WiFi, and TCP (later)

•Rules at sender and receiver:
• Receiver automatically acknowledges correct frames with an

ACK
• Sender automatically resends after a timeout, until an ACK is

received

CSE 461 University of Washington 93

ARQ (2)

•Normal operation (no loss)

CSE 461 University of Washington 94

Frame

ACK
Timeout Time

Sender Receiver

ARQ (3)

•Loss and retransmission

CSE 461 University of Washington 95

ACK

Frame

Timeout Time

Sender Receiver

Frame

X

Duplicates

•What happens if an ACK is lost?

CSE 461 University of Washington 96

X

Frame

ACK
Timeout

Sender Receiver

Duplicates (2)

•What happens if an ACK is lost?

CSE 461 University of Washington 97

Frame

ACK

X

Frame

ACK
Timeout

Sender Receiver

New
Frame??

Duplicates (3)

•Or the timeout is early?

CSE 461 University of Washington 98

ACK

Frame

Timeout

Sender Receiver

Duplicates (4)

•Or the timeout is early?

CSE 461 University of Washington 99

Frame

ACK

Frame

ACK

Timeout

Sender Receiver

New
Frame??

So What’s Tricky About ARQ?

• Two non-trivial issues:
• How long to set the timeout?
• How to avoid accepting duplicate frames as new frames

• Want performance in the common case and
correctness always

• Ideas?

CSE 461 University of Washington 100

Timeouts

• Timeout should be:
• Not too big (link goes idle)
• Not too small (spurious resend)

• Fairly easy on a LAN
• Clear worst case, little variation

• Fairly difficult over the Internet
• Much variation, no obvious bound
• We’ll revisit this with TCP (later)

CSE 461 University of Washington 101

Sequence Numbers

•Frames and ACKs must both carry sequence
numbers for correctness

•To distinguish the current frame from the next one,
a single bit (two numbers) is sufficient

• Called Stop-and-Wait

CSE 461 University of Washington 102

Stop-and-Wait

• In the normal case:

CSE 461 University of Washington 103

Time

Sender Receiver

Stop-and-Wait (2)

• In the normal case:

CSE 461 University of Washington 104

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1

Stop-and-Wait (3)

•With ACK loss:

CSE 461 University of Washington 105

X

Frame 0

ACK 0
Timeout

Sender Receiver

Stop-and-Wait (4)

•With ACK loss:

CSE 461 University of Washington 106

Frame 0

ACK 0

X

Frame 0

ACK 0
Timeout

Sender Receiver

It’s a
Resend!

Stop-and-Wait (5)

•With early timeout:

CSE 461 University of Washington 107

ACK 0

Frame 0

Timeout

Sender Receiver

Stop-and-Wait (6)

•With early timeout:

CSE 461 University of Washington 108

Frame 0

ACK 0

Frame 0

ACK 0

Timeout

Sender Receiver

It’s a
Resend

OK …

Multiple Access

Topic

• Multiplexing is the network word for the sharing of a resource

• What are some obvious ways to multiple a resource?

CSE 461 University of Washington 110

Topic

• Multiplexing is the network word for the sharing of a resource

• Classic scenario is sharing a link among different users
• Time Division Multiplexing (TDM)
• Frequency Division Multiplexing (FDM)

CSE 461 University of Washington 111

Time Division Multiplexing (TDM)

•Users take turns on a fixed schedule

CSE 461 University of Washington 112

2 2 2 2

Frequency Division Multiplexing
(FDM)
• Put different users on different frequency bands

CSE 461 University of Washington 113

Overall FDM channel

TDM versus FDM (2)

• In TDM a user sends at a high rate a fraction of the
time; in FDM, a user sends at a low rate all the time

CSE 461 University of Washington 114

Rate

Time
FDM

TDM

TDM/FDM Usage

•Statically divide a resource
• Suited for continuous traffic, fixed number of users

•Widely used in telecommunications
• TV and radio stations (FDM)
• GSM (2G cellular) allocates calls using TDM within FDM

CSE 461 University of Washington 115

Multiplexing Network Traffic

•Network traffic is bursty
• ON/OFF sources
• Load varies greatly over time

CSE 461 University of Washington 116

Rate

Time
Rate

Time

R

R

Multiplexing Network Traffic (2)

•Network traffic is bursty
• Inefficient to always allocate user their ON needs with

TDM/FDM

CSE 461 University of Washington 117

Rate

Time
Rate

Time

R

R

Multiplexing Network Traffic (3)

•Multiple access schemes multiplex users according
to demands – for gains of statistical multiplexing

CSE 461 University of Washington 118

Rate

Time
Rate

Time

Rate

Time

R

R

R’<2R

Two users, each need R
Together they need R’ < 2R

How to control?

Two classes of multiple access algorithms: Centralized and distributed

• Centralized: Use a privileged “Scheduler” to pick who gets to transmit and
when.

• Positives: Scales well, usually efficient.
• Negatives: Requirements management, fairness
• Examples: Cellular networks (tower coordinates)

• Distributed: Have all participants “figure it out” through some mechanism.
• Positives: Operates well under low load, easy to set up, equality
• Negatives: Scaling is really hard,
• Examples: Wifi networks

Distributed (random) Access

•How do nodes share a single link? Who sends when,
e.g., in WiFI?

• Explore with a simple model

•Assume no-one is in charge
• Distributed system

CSE 461 University of Washington 120

Distributed (random) Access (2)

•We will explore random multiple access control
(MAC) protocols

• This is the basis for classic Ethernet
• Remember: data traffic is bursty

CSE 461 University of Washington 121

Zzzz..Busy! Ho hum

CSE 461 University of Washington 122

ALOHA Network

•Seminal computer network
connecting the Hawaiian
islands in the late 1960s

• When should nodes send?
• A new protocol was devised by

Norm Abramson …
Hawaii

ALOHA Protocol

•Simple idea:
• Node just sends when it has traffic.
• If there was a collision (no ACK received) then wait a

random time and resend

•That’s it!

CSE 461 University of Washington 123

CSE 461 University of Washington 124

ALOHA Protocol (2)

•Some frames will
be lost, but many
may get through…

•Limitations?

ALOHA Protocol (3)

•Simple, decentralized protocol that works well
under low load!

•Not efficient under high load
• Analysis shows at most 18% efficiency
• Improvement: divide time into slots and efficiency goes up to 36%

•We’ll look at other improvements

CSE 461 University of Washington 125

CSE 461 University of Washington 126

Classic Ethernet
•ALOHA inspired Bob Metcalfe to

invent Ethernet for LANs in 1973
• Nodes share 10 Mbps coaxial cable
• Hugely popular in 1980s, 1990s

: © 2009 IEEE

CSMA (Carrier Sense Multiple
Access)
• Improve ALOHA by listening for activity before we

send (Doh!)
• Can do easily with wires, not wireless

•So does this eliminate collisions?
• Why or why not?

CSE 461 University of Washington 127

CSMA (2)

•Still possible to listen and hear nothing when
another node is sending because of delay

CSE 461 University of Washington 128

CSMA (3)

•CSMA is a good defense against collisions only when
BD is small

CSE 461 University of Washington 129

X

CSMA/CD (with Collision Detection)

•Can reduce the cost of collisions by detecting them
and aborting (Jam) the rest of the frame time

• Again, we can do this with wires

CSE 461 University of Washington 130

X X X X X X X XJam! Jam!

CSMA/CD Complications

•Everyone who collides needs to know it happened
• How long do we need to wait to know there wasn’t a JAM?

CSE 461 University of Washington 131

X

CSMA/CD Complications

•Everyone who collides needs to know it happened
• How long do we need to wait to know there wasn’t a JAM?
• Time window in which a node may hear of a collision

(transmission + jam) is 2D seconds

CSE 461 University of Washington 132

X

CSMA/CD Complications (2)

• Impose a minimum frame length of 2D seconds
• So node can’t finish before collision
• Ethernet minimum frame is 64 bytes – Also sets maximum

network length (500m w/ coax, 100m w/ Twisted Pair)

CSE 461 University of Washington 133

X

CSMA “Persistence”

•What should a node do if another node is sending?

• Idea: Wait until it is done, and send

CSE 461 University of Washington 134

What now?

CSMA “Persistence” (2)

•Problem is that multiple waiting nodes will queue
up then collide

• More load, more of a problem

CSE 461 University of Washington 135

Now! Now!Uh oh

CSMA “Persistence” (2)

•Problem is that multiple waiting nodes will queue
up then collide

• Ideas?

CSE 461 University of Washington 136

Now! Now!Uh oh

CSMA “Persistence” (3)

• Intuition for a better solution
• If there are N queued senders, we want each to send next

with probability 1/N

CSE 461 University of Washington 137

Send p=½WhewSend p=½

Binary Exponential Backoff (BEB)

•Cleverly estimates the probability
• 1st collision, wait 0 or 1 frame times
• 2nd collision, wait from 0 to 3 times
• 3rd collision, wait from 0 to 7 times …

•BEB doubles interval for each successive collision
• Quickly gets large enough to work
• Very efficient in practice

CSE 461 University of Washington 138

Classic Ethernet, or IEEE 802.3

•Most popular LAN of the 1980s, 1990s
• 10 Mbps over shared coaxial cable, with baseband signals
• Multiple access with “1-persistent CSMA/CD with BEB”

CSE 461 University of Washington 139

Ethernet Frame Format

•Has addresses to identify the sender and receiver

•CRC-32 for error detection; no ACKs or
retransmission

•Start of frame identified with physical layer
preamble Packet from Network layer (IP)

Modern Ethernet

•Based on switches, not multiple access, but still
called Ethernet

• We’ll get to it in a later segment

CSE 461 University of Washington 141

Switch

Twisted pair

Switch ports

Topic

•How do wireless nodes share a single link? (Yes, this
is WiFi!)

• Build on our simple, wired model

CSE 461 University of Washington 142

Send? Send?

Wireless Complications

•Wireless is more complicated than the wired case
(Surprise!)

1. Media is infinite – can’t Carrier Sense
2. Nodes can’t hear while sending – can’t Collision Detect

CSE 461 University of Washington 143

≠ CSMA/CD

No CS: Different Coverage Areas

•Wireless signal is broadcast and received nearby,
where there is sufficient SNR

CSE 461 University of Washington 144

No CS: Hidden Terminals

•Nodes A and C are hidden terminals when sending
to B

• Can’t hear each other (to coordinate) yet collide at B
• We want to avoid the inefficiency of collisions

CSE 461 University of Washington 145

No CS: Exposed Terminals

•B and C are exposed terminals when sending to A
and D

• Can hear each other yet don’t collide at receivers A and D
• We want to send concurrently to increase performance

CSE 461 University of Washington 146

Nodes Can’t Hear While Sending

•With wires, detecting collisions (and aborting)
lowers their cost

•More wasted time with wireless

CSE 461 University of Washington 147

Time XXXXXXXXX

XXXXXXXXX

Wireless
Collision

ResendX

X

Wired
Collision

Resend

Wireless Problems:

• Ideas?

MACA (Multiple Access with Collision
Avoidance)
• MACA uses a short handshake instead of CSMA (Karn, 1990)

• 802.11 uses a refinement of MACA (later)

• Protocol rules:
1. A sender node transmits a RTS (Request-To-Send, with frame length)

2. The receiver replies with a CTS (Clear-To-Send, with frame length)

3. Sender transmits the frame while nodes hearing the CTS stay silent
• Collisions on the RTS/CTS are still possible, but less likely

CSE 461 University of Washington 149

MACA – Hidden Terminals

• A → B with hidden terminal C
1. A sends RTS, to B

CSE 461 University of Washington 150

DCBA
RTS

MACA – Hidden Terminals (2)

• A → B with hidden terminal C
2. B sends CTS, to A, and C too

CSE 461 University of Washington 151

DCBA
RTS

CTSCTS

Alert!

MACA – Hidden Terminals (3)

• A → B with hidden terminal C
3. A sends frame while C defers

CSE 461 University of Washington 152

Frame

Quiet...

MACA – Exposed Terminals

•B → A, C → D as exposed terminals
• B and C send RTS to A and D

CSE 461 University of Washington 153

DCBA
RTSRTS

MACA – Exposed Terminals (2)

•B → A, C→ D as exposed terminals
• A and D send CTS to B and C

CSE 461 University of Washington 154

DCBA
RTSRTS

CTSCTS

All OKAll OK

MACA – Exposed Terminals (3)

•B → A, C → D as exposed terminals
• A and D send CTS to B and C

CSE 461 University of Washington 155

DCBA
FrameFrame

MACA

• Assumptions? Where does this break?

Centralized MAC: Cellular

• Spectrum suddenly very very scarce
• We can’t waste all of it sending JAMs

• We have QoS requirements
• Can’t be as loose with expectations
• Can’t have traffic fail

• We also have client/server
• Centralized control
• Not peer-to-peer/decentralized

GSM MAC

• FDMA/TDMA

• Use one channel for coordination – Random access w/BEB (no CSMA,
can’t detect)

• Use other channels for traffic
• Dedicated channel for QoS

Link Layer: Switching

Topic

•How do we connect nodes with a switch instead of
multiple access

• Uses multiple links/wires
• Basis of modern (switched) Ethernet

CSE 461 University of Washington 160

Switch

Switched Ethernet

•Hosts are wired to Ethernet switches with twisted
pair

• Switch serves to connect the hosts
• Wires usually run to a closet

CSE 461 University of Washington 161

Switch

Twisted pair

Switch ports

CSE 461 University of Washington 162

What’s in the box?
•Remember from protocol layers:

Network

Link

Network

Link

Link Link

Physical PhysicalHub, or
repeater

Switch

Router

All look like this:

Inside a Hub

•All ports are wired together; more convenient and
reliable than a single shared wire

CSE 461 University of Washington 163

↔

Inside a Repeater

•All inputs are connected; then amplified before
going out

CSE 461 University of Washington 164

↔

Inside a Switch

•Uses frame addresses (MAC addresses in Ethernet)
to connect input port to the right output port;
multiple frames may be switched in parallel

CSE 461 University of Washington 165

Fabric

. . .

1
2

3

N

. . .

1
2

3

N

Inside a Switch (2)

•Port may be used for both input and output (full-
duplex)

• Just send, no multiple access protocol

166

1 4
and

2 3

Inside a Switch (3)

•Need buffers for multiple inputs to send to one
output

CSE 461 University of Washington 167

. . .

. . .

.

Input Buffer Output BufferFabric

Input Output

Inside a Switch (4)

•Sustained overload will fill buffer and lead to frame
loss

CSE 461 University of Washington 168

. . .

. . .

.

Input Buffer Output BufferFabric

Input Output

XXX

Loss!

Advantages of Switches

•Switches and hubs (mostly switches) have replaced the
shared cable of classic Ethernet

• Convenient to run wires to one location
• More reliable; wire cut is not a single point of failure that is

hard to find

•Switches offer scalable performance
• E.g., 100 Mbps per port instead of 100 Mbps for all nodes of

shared cable / hub

CSE 461 University of Washington 169

Switch Forwarding

•Switch needs to find the right output port for the
destination address in the Ethernet frame. How?

• Link-level, don’t look at IP

. . .

. . .

.

Source

Destination

Ethernet Frame

Switch Forwarding

• Ideas?

. . .

. . .

.

Source

Destination

Ethernet Frame

Backward Learning

• Switch forwards frames with a port/address table as follows:
1. To fill the table, it looks at the source address of input frames

2. To forward, it sends to the port, or else broadcasts to all ports

CSE 461 University of Washington 172

Backward Learning (2)

• 1: A sends to D

CSE 461 University of Washington 173

Switch

D

Address Port

A

B

C

D

Backward Learning (3)

• 2: D sends to A

CSE 461 University of Washington 174

Switch

D

Address Port

A 1

B

C

D

Backward Learning (4)

• 3: A sends to D

CSE 461 University of Washington 175

Address Port

A 1

B

C

D 4

Switch

D

Learning with Multiple Switches

• Just works with multiple switches and a mix of hubs,
e.g., A -> D then D -> A

CSE 461 University of Washington 176

Switch

Learning with Multiple Switches

• Just works with multiple switches and a mix of hubs,
e.g., A -> D then D -> A

CSE 461 University of Washington 177

Switch

Problems?

CSE 461 University of Washington 178

Problem – Forwarding Loops

•May have a loop in the topology
• Redundancy in case of failures
• Or a simple mistake

•Want LAN switches to “just work”
• Plug-and-play, no changes to hosts
• But loops cause a problem …

Redundant
Links

CSE 461 University of Washington 179

Forwarding Loops (2)
•Suppose the network is started and

A sends to F. What happens?

Left / Right

A B

C

D

E F

CSE 461 University of Washington 180

Forwarding Loops (3)
• Suppose the network is started and A sends to F.

What happens?
• A → C → B, D-left, D-right
• D-left → C-right, E, F
• D-right → C-left, E, F
• C-right → D-left, A, B
• C-left → D-right, A, B
• D-left → …
• D-right → …

Left / Right

A B

C

D

E F

Spanning Tree Solution

•Switches collectively find a spanning tree for the
topology

• A subset of links that is a tree (no loops) and reaches all
switches

• They switches forward as normal on the spanning tree
• Broadcasts will go up to the root of the tree and down all

the branches

CSE 461 University of Washington 181

Spanning Tree (2)

CSE 461 University of Washington 182

Topology One ST Another ST

Spanning Tree (3)

CSE 461 University of Washington 183

Topology One ST Another ST

Root

Spanning Tree Algorithm

• Rules of the distributed game:
• All switches run the same algorithm
• They start with no information
• Operate in parallel and send messages
• Always search for the best solution

• Ensures a highly robust solution
• Any topology, with no configuration
• Adapts to link/switch failures, …

CSE 461 University of Washington 184

CSE 461 University of Washington 185

Radia Perlman (1952–)

• Key early work on routing protocols
• Routing in the ARPANET
• Spanning Tree for switches (next)
• Link-state routing (later)
• Worked at Digital Equipment Corp (DEC)

• Now focused on network security

Spanning Tree Algorithm (2)

• Outline:
1. Elect a root node of the tree (switch with the lowest address)

2. Grow tree as shortest distances from the root (using lowest address to
break distance ties)

3. Turn off ports for forwarding if they aren’t on the spanning tree

CSE 461 University of Washington 186

Spanning Tree Algorithm (3)

•Details:
• Each switch initially believes it is the root of the tree
• Each switch sends periodic updates to neighbors with:

• Its address, address of the root, and distance (in hops) to root
• Short-circuit when topology changes

• Switches favors ports with shorter distances to lowest root
• Uses lowest address as a tie for distances

CSE 461 University of Washington 187

C

Hi, I’m C, the root is A, it’s 2 hops away or (C, A, 2)

CSE 461 University of Washington 188

Spanning Tree Example
• 1st round, sending:

• A sends (A, A, 0) to say it is root
• B, C, D, E, and F do likewise

• 1st round, receiving:
• A still thinks is it (A, A, 0)
• B still thinks (B, B, 0)
• C updates to (C, A, 1)
• D updates to (D, C, 1)
• E updates to (E, A, 1)
• F updates to (F, B, 1)

A,A,0 B,B,0

C,C,0

D,D,0

E,E,0 F,F,0

CSE 461 University of Washington 189

Spanning Tree Example (2)
• 2nd round, sending

• Nodes send their updated state

• 2nd round receiving:
• A remains (A, A, 0)
• B updates to (B, A, 2) via C
• C remains (C, A, 1)
• D updates to (D, A, 2) via C
• E remains (E, A, 1)
• F remains (F, B, 1)

A,A,0 B,B,0

C,A,1

D,C,1

E,A,1 F,B,1

CSE 461 University of Washington 190

Spanning Tree Example (3)
• 3rd round, sending

• Nodes send their updated state

• 3rd round receiving:
• A remains (A, A, 0)
• B remains (B, A, 2) via C
• C remains (C, A, 1)
• D remains (D, A, 2) via C-left
• E remains (E, A, 1)
• F updates to (F, A, 3) via B

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,B,1

CSE 461 University of Washington 191

Spanning Tree Example (4)
•4th round

• Steady-state has been reached
• Nodes turn off forwarding that is

not on the spanning tree

•Algorithm continues to run
• Adapts by timing out information
• E.g., if A fails, other nodes forget it,

and B will become the new root

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3

CSE 461 University of Washington 192

Spanning Tree Example (5)
• Forwarding proceeds as usual on the ST

• Initially D sends to F:
• D → C-left
• C → A, B
• A → E
• B → F

• And F sends back to D:
• F → B
• B → C
• C → D

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3

CSE 461 University of Washington 193

Spanning Tree Example (6)
• Forwarding proceeds as usual on the ST

• Initially D sends to F:
• D → C-left
• C → A, B
• A → E
• B → F

• And F sends back to D:
• F → B
• B → C
• C → D

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3

Problems?

Link Layer: Software
Defined Networking

Topic

•How do we scale these networks up?
• Answer 1: Network of networks, a.k.a. The Internet
• Answer 2: Ah, just kinda hope spanning tree works?

CSE 461 University of Washington 195

SwitchSwitch Switch

Rise of the Datacenter

CSE 461 University of Washington 196

Datacenter Networking

CSE 461 University of Washington 197

Scaling the Link Layer

• Fundamentally, it’s hard to scale distributed algorithms
 Exacerbated when failures become common
 Nodes go down, gotta run spanning tree again…

 If nodes go down faster than spanning tree resolves, we get race conditions
 If they don’t, we may still be losing paths and wasting resources

• Ideas?

CSE 461 University of Washington 198

Software Defined Networking (SDN)

• Core idea: stop being a distributed system
 Centralize the operation of the network

 Create a “controller” that manages the network
 Push new code, state, and configuration from “controller” to switches

 Run link state with a global view of the network rather than in a distributed
fashion.

 Allows for “global” policies to be enforced.
 Can resolve failures in more robust, faster manners

 Problems?

CSE 461 University of Washington 199

SDN – Problem 1

• Problem: How do we talk to the switches if there’s no network?
 Seems a little chicken-and-egg
 Nodes go down, gotta run spanning tree again…

 If nodes go down faster than spanning tree resolves, we get race conditions
 If they don’t, we may still be losing paths and wasting resources

• Ideas?

CSE 461 University of Washington 200

SDN – Control and Data Planes

CSE 461 University of Washington 201

SDN – Problem 2

• Problem: How do we efficiently run algorithms on switches?
 These are extremely time-sensitive boxes

 Gotta move the packets!
 Need to be able to support

 Fast packet handling
 Quick route changes
 Long-term policy updates

• Ideas?

CSE 461 University of Washington 202

SDN – OpenFlow

CSE 461 University of Washington 203

Control Program AControl Program A Control Program BControl Program B

ControllerController

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Flow
Table(s)

Flow
Table(s)

“If header = p, send to port 4”

“If header = ?, send to me”

“If header = q, overwrite header with r,
 add header s, and send to ports 5,6”

SDN – OpenFlow

• Two different classes of programmability

• At Controller
 Can be heavy processing algorithms
 Results in messages that update switch flow table

• At switch
 Local flow table
 Built from basic set of networking primitives
 Allows for fast operation

CSE 461 University of Washington 204

SDN – Timescales

CSE 461 University of Washington 205

Data Control Management

Time-
scale

Packet (nsec) Event (10
msec to sec)

Human (min
to hours)

Location Linecard
hardware

Router
software

Humans or
scripts

SDN – OpenFlow

CSE 461 University of Washington 206

Control Program AControl Program A Control Program BControl Program B

ControllerController

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Packet
Forwarding

Flow
Table(s)

Flow
Table(s)

“If header = p, send to port 4”

“If header = ?, send to me”

“If header = q, overwrite header with r,
 add header s, and send to ports 5,6”

SDN – Key outputs

• Simplify network design and implementation?
 Sorta. Kinda pushed the complexity around if anything

• However...
 Does enable code reuse and libraries
 Does standardize and simplify deployment of rules to switches
 Allows for fast operation

CSE 461 University of Washington 207

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207

