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Lecture Progression

• Bottom-up through the layers:

• Followed by more detail on:
• Quality of service, Security (VPN, SSL) 

Computer Networks 2

Application      - HTTP, DNS, CDNs

Transport         - TCP, UDP

Network           - IP, NAT, BGP

Link               - Ethernet, 802.11

Physical         - wires, fiber, wireless



Where we are in the Course

• Beginning to work our way up starting with the 
Physical layer
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Scope of the Physical Layer

• Concerns how signals are used to transfer message 
bits over a link

• Wires etc. carry analog signals
• We want to send digital bits
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Topics

1. Coding and Modulation schemes
• Representing bits, noise

2. Properties of media
• Wires, fiber optics, wireless, propagation
• Bandwidth, attenuation, noise

3. Fundamental limits
• Nyquist, Shannon
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Coding and Modulation



Topic

• How can we send information across a link?
• This is the topic of coding and modulation
• Modem (from modulator–demodulator)
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A Simple Coding

• Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
• This is called NRZ (Non-Return to Zero)
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Bits

NRZ

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

+V

-V



A Simple Modulation (3)

• Problems?



Many Other Schemes

• Can use more signal levels
• E.g., 4 levels is 2 bits per symbol 

• Practical schemes are driven by engineering 
considerations

• E.g., clock recovery
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Clock Recovery

• Um, how many zeros was that?
• Receiver needs frequent signal transitions to decode bits

• Several possible designs
• E.g., Manchester coding and scrambling (§2.5.1)
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Answer 1: A Simple Coding

• Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0

• Then go back to 0V for a “Reset”
• This is called RZ (Return to Zero)
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Bits

RZ

0 1 1 1 0 0 0 1

-V

+V

 0



Answer 2: Clock Recovery – 4B/5B

• Map every 4 data bits into 5 code bits without long 
runs of zeros

• 0000 → 11110, 0001 →01001,           1110 → 11100, … 
1111 → 11101

• Has at most 3 zeros in a row
• Also invert signal level on a 1 to break up long runs of 1s 

(called NRZI, §2.5.1) 
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Modulation vs Coding

• What we have seen so far is called coding
• Signal is sent directly on a wire

• These signals do not propagate well as RF
• Need to send at higher frequencies

• Modulation carries a signal by modulating a carrier
• Baseband is signal pre-modulation
• Keying is the digital form of modulation (equivalent to 

coding but using modulation)
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Passband Modulation (2)

• Carrier is simply a signal oscillating at a desired 
frequency:

• We can modulate it by changing:
• Amplitude, frequency, or phase
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Comparisons
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NRZ signal of bits

Amplitude shift keying

Frequency shift keying

Phase shift keying



Philosophical Takeaways

●Everything is analog, even digital signals

● Digital information is a discrete concept 
represented in an analog physical medium
○ A printed book (analog) vs.
○ Words conveyed in the book (digital)
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Simple Link Model

• We’ll end with an abstraction of a physical channel
• Rate (or bandwidth, capacity, speed) in bits/second
• Delay in seconds, related to length

• Other important properties:
• Whether the channel is broadcast, and its error rate
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Delay D, Rate R 

Message



Message Latency

• Latency is the delay to send a message over a link
• Transmission delay: time to put M-bit message “on the wire”

T-delay = M (bits) / Rate (bits/sec) = M/R seconds

• Propagation delay: time for bits to propagate across the wire

P-delay = Length / speed of signals = Length / ⅔c = D seconds

• Combining the two terms we have:    L = M/R + D
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Latency Examples

• “Dialup” with a telephone modem:
• D = 5 ms, R = 56 kbps, M = 1250 bytes
• L = (1250x8)/(56 x 103) sec + 5ms = 184 ms!

• Broadband cross-country link:
• D = 50 ms, R = 10 Mbps, M = 1250 bytes
• L = (1250x8) / (10 x 106) sec + 50ms = 51 ms

• A long link or a slow rate means high latency: One component 
dominates
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Bandwidth-Delay Product

• Messages take space on the wire! 

• The amount of data in flight is the bandwidth-delay 
(BD) product

BD = R x D
• Measure in bits, or in messages
• Small for LANs, big for “long fat” pipes
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Bandwidth-Delay Example

• Fiber at home, cross-country 
R=40 Mbps, D=50 ms

110101000010111010101001011
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Bandwidth-Delay Example (2)

• Fiber at home, cross-country 
R=40 Mbps, D=50 ms
BD = 40 x 106 x 50 x 10-3 bits 

= 2000 Kbit
= 250 KB

•  That’s quite a lot of data in 
the network”!

110101000010111010101001011



Media



https://www.merriam-webster.com/dictionary/media



Types of Media

• Media propagate signals that carry bits of 
information

• We’ll look at some common types:
• Wires
• Fiber (fiber optic cables)
• Wireless
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Wires – Twisted Pair

• Very common; used in LANs and telephone lines
• Twists reduce radiated signal
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Category 5 UTP cable 
with four twisted pairs



Fiber

• Long, thin, pure strands of glass
• Enormous bandwidth (high speed) over long distances
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Light source
(LED, laser)

Photo-
detector

Light trapped by
total internal reflection

Optical fiber



Wireless

• Sender radiates signal over a region
• In many directions, unlike a wire, to potentially many 

receivers
• Nearby signals (same freq.) interfere at a receiver; need to 

coordinate use
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Wireless Interference
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WiFi

WiFi



Wireless (2)

• Unlicensed (ISM) frequencies, e.g., WiFi, are widely 
used for computer networking

802.11
b/g/n

802.11a/g/n



Multipath (3)

• Signals bounce off objects and take multiple paths
• Some frequencies attenuated at receiver, varies with 

location
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Wireless (4)

• Various other effects too!
• Wireless propagation is complex, depends on 

environment

• Some key effects are highly frequency dependent, 
• E.g., multipath at microwave frequencies
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Limits



Topic

• How rapidly can we send information over a link? 
• Nyquist limit (~1924)
• Shannon capacity (1948)

• Practical systems are devised to approach these 
limits
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Key Channel Properties

• The bandwidth (B), signal strength (S), and noise (N)
• B (in hertz) limits the rate of transitions
• S and N limit how many signal levels we can distinguish
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Bandwidth B Signal S,
Noise N



Nyquist Limit

• The maximum symbol rate is 2B

• Thus if there are V signal levels, ignoring noise, the 
maximum bit rate is:
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R = 2B log2V bits/sec

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



Claude Shannon (1916-2001)

• Father of information theory
• “A Mathematical Theory of 

Communication”, 1948

• Fundamental contributions 
to digital computers, security, 
         and communications
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Credit: Courtesy MIT Museum

Electromechanical mouse 
that “solves” mazes!



Shannon Capacity

• How many levels we can distinguish depends on S/N
• Or SNR, the Signal-to-Noise Ratio
• Note noise is random, hence some errors

• SNR given on a log-scale in deciBels:
• SNRdB =  10log10(S/N)
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Shannon Capacity (2)

• Shannon limit is for capacity (C), the maximum 
information carrying rate of the channel:
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C = B log2(1 + S/N) bits/sec



Shannon Capacity Takeaways
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C = B log2(1 + S/N) bits/sec

• There is some rate at which we can transmit data 
without loss over a random channel

• Assuming noise fixed, increasing the signal power 
yields diminishing returns : (

• Assuming signal is fixed, increasing bandwith 
increases capacity linearly!



Wired/Wireless Perspective (2)

• Wires, and Fiber
• Engineer link to have requisite SNR and B
→Can fix data rate

• Wireless
• Given B, but SNR varies greatly, e.g., up to 60 dB!
→Can’t design for worst case, must adapt data rate
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Engineer SNR for data rate

Adapt data rate to SNR



All distilled to a simple link model

• Rate (or bandwidth, capacity, speed) in bits/second
• Delay in seconds, related to length

• Other important properties:
• Whether the channel is broadcast, and its error rate
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Delay D, Rate R 

Message



Link Layer



Where we are in the Course

•Moving on up to the Link Layer!
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Link

Network
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Application



Scope of the Link Layer

•Concerns how to transfer messages over one or 
more connected links

• Messages are frames, of limited size
• Builds on the physical layer
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Frame



In terms of layers
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Actual data path

Virtual data path

Network

Link

Physical



Typical Implementation of Layers (2)
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Topics

1. Framing
• Delimiting start/end of frames

2. Error detection and correction
• Handling errors

3. Retransmissions
• Handling loss

4. Multiple Access
• 802.11, classic Ethernet

5. Switching
• Modern Ethernet
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Framing
Delimiting start/end of frames



Topic

•The Physical layer gives us a stream of bits. How do 
we interpret it as a sequence of frames?
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Um?



Framing Methods

• We’ll look at:
• Byte count (motivation)
• Byte stuffing 

• In practice, the physical layer often helps to identify frame boundaries
• E.g., Ethernet, 802.11
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Simple ideas?



Byte Count

• First try:
• Let’s start each frame with a length field!
• It’s simple, and hopefully good enough …
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Byte Count (2)

• How well do you think it works?
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Byte Count (3)

• Difficult to re-synchronize after framing error
• Want a way to scan for a start of frame
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Byte Stuffing

•Better idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code
• Problem?
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Byte Stuffing

•Better idea:
• Have a special flag byte value for start/end of frame
• Replace (“stuff”) the flag with an escape code
• Complication: have to escape the escape code too!
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Byte Stuffing (2)

• Rules:
• Replace each FLAG in data with ESC FLAG

• Replace each ESC in data with ESC ESC
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Link Layer: Error detection 
and correction



Topic

•Some bits will be received in error due to noise. 
What can we do?

• Detect errors with codes
 Retransmit lost frames

• Correct errors with codes

•Reliability is a concern that cuts across the layers
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Later



Problem – Noise may flip received 
bits 
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Approach – Add Redundancy 

•Error detection codes
•  Add check bits to the message bits to let some errors be 

detected

•Error correction codes
• Add more check bits to let some errors be corrected

•Key issue is now to structure the code to detect many 
errors with few check bits and modest computation
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• Simple Ideas?



Motivating Example

•A simple code to handle errors:
• Send two copies! Error if different.

•How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?
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Motivating Example (2)

•We want to handle more errors with less overhead
• Will look at better codes; they are applied mathematics
• But, they can’t handle all errors
• And they focus on accidental errors (will look at secure 

hashes later)
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Using Error Codes

• Codeword consists of D data plus R check bits 
(=systematic block code)

• Sender: 
• Compute R check bits based on the D data bits; send the 

codeword of D+R bits
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D R=fn(D)

Data bits Check bits



Using Error Codes (2)

•Receiver:  
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits; error if 

R doesn’t match R’
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D R’

Data bits Check bits

R=fn(D)
=?



Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen codeword is unlikely to be correct; overhead 
is low
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All
codewords

Correct
codewords
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R.W. Hamming (1915-1998)

•Much early work on codes:
• “Error Detecting and Error Correcting 

Codes”, BSTJ, 1950

• “If the computer can tell when an error has 
occurred, surely there is a way of telling where 
the error is so the computer can correct the error 
itself” - Hamming

Source: IEEE GHN, © 2009 IEEE



Hamming Distance

•Distance is the number of bit flips needed to change 
D1 to D2

•Hamming distance of a coding is the minimum error 
distance between any pair of codewords (bit-
strings) that cannot be detected

CSE 461 University of Washington 72



Hamming Distance (2)

•Error detection:
• For a coding of distance d+1, up to d errors will always be 

detected

•Error correction:
• For a coding of distance 2d+1, up to d errors can always be 

corrected by mapping to the closest valid codeword
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Simple Error Detection – Parity Bit

•Take D data bits, add 1 check bit that is the sum of 
the D bits

• Sum is modulo 2 or XOR
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Parity Bit (2)

•How well does parity work?
• What is the distance of the code?
• How many errors will it detect/correct?
 

•What about larger errors?
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Checksums

• Idea: sum up data in N-bit words
• Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity
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1500 bytes 16 bits



Internet Checksum

•Sum is defined in 1s complement arithmetic (must 
add back carries)

• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the 
one's complement sum of all 16 bit words …” – RFC 791
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Internet Checksum (2)
Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum

0001 
f204 
f4f5 
f6f7 

+(0000)
------ 
2ddf0 

ddf0 
+    2 
------ 

ddf2 

220d 
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Internet Checksum (3)
0001 
f204 
f4f5 
f6f7 

+(0000)
------ 
2ddf1 

ddf1 
+    2 
------ 

ddf3 

220c 

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add

3.Add any carryover back to get 16 bits

4.Negate (complement) to get sum
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Internet Checksum (4)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------ 
2fffd 

 
fffd 

+    2 
------ 

ffff 

   0000 
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Internet Checksum (5)
Receiving:

1. Arrange data in 16-bit words

2. Checksum will be non-zero, add

3. Add any carryover back to get 16 bits

4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------ 
2fffd 

 
fffd 

+    2 
------ 

ffff 

   0000 



Internet Checksum (6)

•How well does the checksum work?
• What is the distance of the code?
• How many errors will it detect/correct?
 

•What about larger errors?
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Why Error Correction is Hard

• If we had reliable check bits we could use them to 
narrow down  the position of the error

• Then correction would be easy

•But error could be in the check bits as well as the 
data bits!

• Data might even be correct 
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Intuition for Error Correcting Code

• Suppose we construct a code with a Hamming distance 
of at least 3

• Need ≥3 bit errors to change one valid codeword into another
• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct them 
by mapping an error to the closest valid codeword

• Works for d errors if HD ≥ 2d + 1

CSE 461 University of Washington 84



Intuition (2)

• Visualization of code:
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A

B

Valid
codeword

Error
codeword



Intuition (3)

• Visualization of code:
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A

B

Valid
codeword

Error
codeword

Single 
bit error
from A

Three bit 
errors to 
get to B



Other Error Correction Codes

•Real codes are more involved than Hamming

•E.g., Convolutional codes (§3.2.3)
• Take a stream of data and output a mix of the input bits
• Makes each output bit less fragile
• Decode using Viterbi algorithm (which can use bit confidence 

values)
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More coding theory 
•This is a huge field. 

•See EE 505, 514, 515 for more info

•Key points:

 Coding allows us to detect and correct bit errors 
received from the PHY

 It is very complicated. Abstract away with 
Hamming Distance 



Detection vs. Correction

• Error correction: 
• Needed when errors are expected
• Or when no time for retransmission

• Error detection: 
• More efficient when errors are not expected
• And when errors are large when they do occur
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Error Correction in Practice

• Heavily used in physical layer
• LDPC is the future, used for demanding links like 802.11, DVB, WiMAX, power-line, …
• Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above for 
residual errors

• Correction also used in the application layer
• Called Forward Error Correction (FEC)
• Normally with an erasure error model
• E.g., Reed-Solomon (CDs, DVDs, etc.)
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Link Layer: 
Retransmissions



So what do we do if a frame is 
corrupted?
• From sender?

• From receiver?



ARQ (Automatic Repeat reQuest)

•ARQ often used when errors are common or must be 
corrected

• E.g., WiFi, and TCP (later)

•Rules at sender and receiver:
• Receiver automatically acknowledges correct frames with an 

ACK
• Sender automatically resends after a timeout, until an ACK is 

received
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ARQ (2)

•Normal operation (no loss)
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Frame

ACK
Timeout Time

Sender Receiver



ARQ (3)

•Loss and retransmission
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ACK

Frame

Timeout Time

Sender Receiver

Frame

X



Duplicates

•What happens if an ACK is lost?
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X

Frame

ACK
Timeout

Sender Receiver



Duplicates (2)

•What happens if an ACK is lost?
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Frame

ACK

X

Frame

ACK
Timeout

Sender Receiver

New 
Frame??



Duplicates (3)

•Or the timeout is early?
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ACK

Frame

Timeout

Sender Receiver



Duplicates (4)

•Or the timeout is early?
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Frame

ACK

Frame

ACK

Timeout

Sender Receiver

New 
Frame??



So What’s Tricky About ARQ?

• Two non-trivial issues:
• How long to set the timeout? 
• How to avoid accepting duplicate frames as new frames 

• Want performance in the common case and 
correctness always

• Ideas?
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Timeouts

• Timeout should be:
• Not too big (link goes idle)
• Not too small (spurious resend)

• Fairly easy on a LAN
• Clear worst case, little variation

• Fairly difficult over the Internet
• Much variation, no obvious bound
• We’ll revisit this with TCP (later)
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Sequence Numbers

•Frames and ACKs must both carry sequence 
numbers for correctness

•To distinguish the current frame from the next one, 
a single bit (two numbers) is sufficient

• Called Stop-and-Wait
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Stop-and-Wait

• In the normal case:
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Time

Sender Receiver



Stop-and-Wait (2)

• In the normal case:
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Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1



Stop-and-Wait (3)

•With ACK loss:
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X

Frame 0

ACK 0
Timeout

Sender Receiver



Stop-and-Wait (4)

•With ACK loss:
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Frame 0

ACK 0

X

Frame 0

ACK 0
Timeout

Sender Receiver

It’s a 
Resend!



Stop-and-Wait (5)

•With early timeout:
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ACK 0

Frame 0

Timeout

Sender Receiver



Stop-and-Wait (6)

•With early timeout:
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Frame 0

ACK 0

Frame 0

ACK 0

Timeout

Sender Receiver

It’s a
Resend

OK …



Multiple Access



Topic

• Multiplexing is the network word for the sharing of a resource

• What are some obvious ways to multiple a resource?
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Topic

• Multiplexing is the network word for the sharing of a resource

• Classic scenario is sharing a link among different users
• Time Division Multiplexing (TDM)
• Frequency Division Multiplexing (FDM)

CSE 461 University of Washington 111



Time Division Multiplexing (TDM)

•Users take turns on a fixed schedule
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Frequency Division Multiplexing 
(FDM)
• Put different users on different frequency bands
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Overall FDM channel



TDM versus FDM (2)

• In TDM a user sends at a high rate a fraction of the 
time; in FDM, a user sends at a low rate all the time 
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Rate

Time
FDM

TDM



TDM/FDM Usage

•Statically divide a resource
• Suited for continuous traffic, fixed number of users

•Widely used in telecommunications
• TV and radio stations (FDM)
• GSM (2G cellular) allocates calls using TDM within FDM
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Multiplexing Network Traffic

•Network traffic is bursty
• ON/OFF sources 
• Load varies greatly over time
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Multiplexing Network Traffic (2)

•Network traffic is bursty
• Inefficient to always allocate user their ON needs with 

TDM/FDM
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Multiplexing Network Traffic (3)

•Multiple access schemes multiplex users according 
to demands – for gains of statistical multiplexing
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Two users, each need R
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How to control?

Two classes of multiple access algorithms: Centralized and distributed

• Centralized: Use a privileged “Scheduler” to pick who gets to transmit and 
when.

• Positives: Scales well, usually efficient.
• Negatives: Requirements management, fairness
• Examples: Cellular networks (tower coordinates)

• Distributed: Have all participants “figure it out” through some mechanism.
• Positives: Operates well under low load, easy to set up, equality
• Negatives: Scaling is really hard, 
• Examples: Wifi networks



Distributed (random) Access

•How do nodes share a single link? Who sends when, 
e.g., in WiFI?

• Explore with a simple model

•Assume no-one is in charge
• Distributed system
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Distributed (random) Access (2)

•We will explore random multiple access control 
(MAC) protocols

• This is the basis for classic Ethernet
• Remember: data traffic is bursty
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Zzzz..Busy! Ho hum



CSE 461 University of Washington 122

ALOHA Network

•Seminal computer network 
connecting the Hawaiian        
islands in the late 1960s

• When should nodes send?
• A new protocol was devised by 

Norm Abramson …
Hawaii



ALOHA Protocol

•Simple idea:
• Node just sends when it has traffic. 
• If there was a collision (no ACK received) then wait a 

random time and resend

•That’s it!
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ALOHA Protocol (2)

•Some frames will 
be lost, but many 
may get through…

•Limitations?

 



ALOHA Protocol (3)

•Simple, decentralized protocol that works well 
under low load!

•Not efficient under high load
• Analysis shows at most 18% efficiency
• Improvement: divide time into slots and efficiency goes up to 36%

•We’ll look at other improvements
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Classic Ethernet 
•ALOHA inspired Bob Metcalfe to 

invent Ethernet for LANs in 1973
• Nodes share 10 Mbps coaxial cable
• Hugely popular in 1980s, 1990s

: © 2009 IEEE



CSMA (Carrier Sense Multiple 
Access)
• Improve ALOHA by listening for activity before we 

send (Doh!)
• Can do easily with wires, not wireless

•So does this eliminate collisions?
• Why or why not?
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CSMA (2)

•Still possible to listen and hear nothing when 
another node is sending because of delay

CSE 461 University of Washington 128



CSMA (3)

•CSMA is a good defense against collisions only when 
BD is small
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CSMA/CD (with Collision Detection)

•Can reduce the cost of collisions by detecting them 
and aborting (Jam) the rest of the frame time

• Again, we can do this with wires
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CSMA/CD Complications

•Everyone who collides needs to know it happened
• How long do we need to wait to know there wasn’t a JAM?
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X



CSMA/CD Complications

•Everyone who collides needs to know it happened
• How long do we need to wait to know there wasn’t a JAM?
• Time window in which a node may hear of a collision 

(transmission + jam) is 2D seconds

CSE 461 University of Washington 132

X



CSMA/CD Complications (2)

• Impose a minimum frame length of 2D seconds
• So node can’t finish before collision
• Ethernet minimum frame is 64 bytes – Also sets maximum 

network length (500m w/ coax, 100m w/ Twisted Pair)
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CSMA “Persistence”

•What should a node do if another node is sending?

• Idea: Wait until it is done, and send 

CSE 461 University of Washington 134

What now?



CSMA “Persistence” (2)

•Problem is that multiple waiting nodes will queue 
up then collide

• More load, more of a problem

CSE 461 University of Washington 135

Now! Now!Uh oh



CSMA “Persistence” (2)

•Problem is that multiple waiting nodes will queue 
up then collide

• Ideas?
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Now! Now!Uh oh



CSMA “Persistence” (3)

• Intuition for a better solution
• If there are N queued senders, we want each to send next 

with probability 1/N
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Send p=½WhewSend p=½



Binary Exponential Backoff (BEB)

•Cleverly estimates the probability
• 1st collision, wait 0 or 1 frame times
• 2nd collision, wait from 0 to 3 times
• 3rd collision, wait from 0 to 7 times …

•BEB doubles interval for each successive collision
• Quickly gets large enough to work
• Very efficient in practice

CSE 461 University of Washington 138



Classic Ethernet, or IEEE 802.3

•Most popular LAN of the 1980s, 1990s
• 10 Mbps over shared coaxial cable, with baseband signals
• Multiple access with “1-persistent CSMA/CD with BEB”
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Ethernet Frame Format

•Has addresses to identify the sender and receiver

•CRC-32 for error detection; no ACKs or 
retransmission

•Start of frame identified with physical layer 
preamble Packet from Network layer (IP)



Modern Ethernet

•Based on switches, not multiple access, but still 
called Ethernet

• We’ll get to it in a later segment
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Switch

Twisted pair

Switch ports



Topic

•How do wireless nodes share a single link? (Yes, this 
is WiFi!)

• Build on our simple, wired model
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Send? Send?



Wireless Complications

•Wireless is more complicated than the wired case 
(Surprise!)

1. Media is infinite – can’t Carrier Sense
2. Nodes can’t hear while sending – can’t Collision Detect 
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≠ CSMA/CD



No CS: Different Coverage Areas

•Wireless signal is broadcast and received nearby, 
where there is sufficient SNR
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No CS: Hidden Terminals

•Nodes A and C are hidden terminals when sending 
to B

• Can’t hear each other (to coordinate) yet collide at B
• We want to avoid the inefficiency of collisions
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No CS: Exposed Terminals

•B and C are exposed terminals when sending to A 
and D

• Can hear each other yet don’t collide at receivers A and D
• We want to send concurrently to increase performance
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Nodes Can’t Hear While Sending

•With wires, detecting collisions (and aborting) 
lowers their cost

•More wasted time with wireless
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Time XXXXXXXXX

XXXXXXXXX

Wireless
Collision

ResendX

X

Wired
Collision

Resend



Wireless Problems:

• Ideas?



MACA (Multiple Access with Collision 
Avoidance) 
• MACA uses a short handshake instead of CSMA (Karn, 1990)

• 802.11 uses a refinement of MACA (later) 

• Protocol rules:
1. A sender node transmits a RTS (Request-To-Send, with frame length)

2. The receiver replies with a CTS (Clear-To-Send, with frame length)

3. Sender transmits the frame while nodes hearing the CTS stay silent
• Collisions on the RTS/CTS are still possible, but less likely
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MACA – Hidden Terminals

• A → B with hidden terminal C
1. A sends RTS, to B 
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MACA – Hidden Terminals (2)

• A → B with hidden terminal C
2. B sends CTS, to A, and C too 
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DCBA
RTS

CTSCTS

Alert!



MACA – Hidden Terminals (3)

• A → B with hidden terminal C
3. A sends frame while C defers
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Frame

Quiet...



MACA – Exposed Terminals

•B → A, C → D as exposed terminals
• B and C send RTS to A and D 
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DCBA
RTSRTS



MACA – Exposed Terminals (2)

•B → A, C→ D as exposed terminals
• A and D send CTS to B and C 
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DCBA
RTSRTS

CTSCTS

All OKAll OK



MACA – Exposed Terminals (3)

•B → A, C → D as exposed terminals
• A and D send CTS to B and C 
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DCBA
FrameFrame



MACA

• Assumptions? Where does this break?



Centralized MAC: Cellular

• Spectrum suddenly very very scarce
• We can’t waste all of it sending JAMs

• We have QoS requirements
• Can’t be as loose with expectations
• Can’t have traffic fail

• We also have client/server
• Centralized control
• Not peer-to-peer/decentralized



GSM MAC

• FDMA/TDMA

• Use one channel for coordination – Random access w/BEB (no CSMA, 
can’t detect)

• Use other channels for traffic
• Dedicated channel for QoS



Link Layer: Switching



Topic

•How do we connect nodes with a switch instead of 
multiple access

• Uses multiple links/wires 
• Basis of modern (switched) Ethernet
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Switched Ethernet

•Hosts are wired to Ethernet switches with twisted 
pair

• Switch serves to connect the hosts
• Wires usually run to a closet
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Switch

Twisted pair

Switch ports
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What’s in the box?
•Remember from protocol layers:

Network

Link

Network

Link

Link Link

Physical PhysicalHub, or
repeater

Switch

Router

All look like this:



Inside a Hub

•All ports are wired together; more convenient and 
reliable than a single shared wire
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Inside a Repeater

•All inputs are connected; then amplified before 
going out
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↔



Inside a Switch

•Uses frame addresses (MAC addresses in Ethernet) 
to connect input port to the right output port; 
multiple frames may be switched in parallel
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Fabric

. . .

1
2

3

N



. . .

1
2

3

N

Inside a Switch (2)

•Port may be used for both input and output (full-
duplex)

• Just send, no multiple access protocol

166

1  4
and

2  3



Inside a Switch (3)

•Need buffers for multiple inputs to send to one 
output
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. . .

. . .

. . . . . .

Input Buffer Output BufferFabric

Input Output



Inside a Switch (4)

•Sustained overload will fill buffer and lead to frame 
loss
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. . .

. . .

. . . . . .

Input Buffer Output BufferFabric

Input Output

XXX

Loss!



Advantages of Switches

•Switches and hubs (mostly switches) have replaced the 
shared cable of classic Ethernet

• Convenient to run wires to one location
• More reliable; wire cut is not a single point of failure that is 

hard to find

•Switches offer scalable performance
• E.g., 100 Mbps per port instead of 100 Mbps for all nodes of 

shared cable / hub
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Switch Forwarding

•Switch needs to find the right output port for the 
destination address in the Ethernet frame. How?

• Link-level, don’t look at IP

. . .

. . .

. . . . . .

Source

Destination

Ethernet Frame



Switch Forwarding

• Ideas?

. . .

. . .

. . . . . .

Source

Destination

Ethernet Frame



Backward Learning

• Switch forwards frames with a port/address table as follows:
1. To fill the table, it looks at the source address of input frames

2. To forward, it sends to the port, or else broadcasts to all ports
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Backward Learning (2)

• 1: A sends to D

CSE 461 University of Washington 173

Switch

D

Address Port

A

B

C

D



Backward Learning (3)

• 2: D sends to A
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Switch

D

Address Port

A 1

B

C

D



Backward Learning (4)

• 3: A sends to D
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Address Port

A 1

B

C

D 4

Switch

D



Learning with Multiple Switches

• Just works with multiple switches and a mix of hubs, 
e.g., A -> D then D -> A 
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Learning with Multiple Switches

• Just works with multiple switches and a mix of hubs, 
e.g., A -> D then D -> A 
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Switch

Problems?
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Problem – Forwarding Loops 

•May have a loop in the topology
• Redundancy in case of failures
• Or a simple mistake

•Want LAN switches to “just work”
• Plug-and-play, no changes to hosts
• But loops cause a problem …

Redundant 
Links
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Forwarding Loops (2) 
•Suppose the network is started and 

A sends to F. What happens?

Left / Right

A B

C

D

E F
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Forwarding Loops (3) 
• Suppose the network is started and A sends to F. 

What happens?
• A →  C →  B, D-left, D-right
• D-left →  C-right, E, F
• D-right →  C-left, E, F
• C-right →  D-left, A, B
• C-left →  D-right, A, B
• D-left →  …
• D-right →  …

Left / Right

A B

C

D

E F



Spanning Tree Solution

•Switches collectively find a spanning tree for the 
topology

• A subset of links that is a tree (no loops) and reaches all 
switches

• They switches forward as normal on the spanning tree
• Broadcasts will go up to the root of the tree and down all 

the branches
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Spanning Tree (2)
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Topology One ST Another ST



Spanning Tree (3)
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Topology One ST Another ST

Root



Spanning Tree Algorithm

• Rules of the distributed game:
• All switches run the same algorithm
• They start with no information
• Operate in parallel and send messages
• Always search for the best solution

• Ensures a highly robust solution
• Any topology, with no configuration
• Adapts to link/switch failures, …

CSE 461 University of Washington 184



CSE 461 University of Washington 185

Radia Perlman (1952–)

• Key early work on routing protocols
• Routing in the ARPANET
• Spanning Tree for switches (next)
• Link-state routing (later)
• Worked at Digital Equipment Corp (DEC)

• Now focused on network security



Spanning Tree Algorithm (2)

• Outline:
1. Elect a root node of the tree (switch with the lowest address)

2. Grow tree as shortest distances from the root (using lowest address to 
break distance ties)

3. Turn off ports for forwarding if they aren’t on the spanning tree
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Spanning Tree Algorithm (3)

•Details:
• Each switch initially believes it is the root of the tree
• Each switch sends periodic updates to neighbors with:

• Its address, address of the root, and distance (in hops) to root
• Short-circuit when topology changes

• Switches favors ports with shorter distances to lowest root
• Uses lowest address as a tie for distances
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C

Hi, I’m C, the root is A, it’s 2 hops away or (C, A, 2)
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Spanning Tree Example
• 1st round, sending:

• A sends (A, A, 0) to say it is root
• B, C, D, E, and F do likewise

• 1st round, receiving:
• A still thinks is it (A, A, 0)
• B still thinks (B, B, 0)
• C updates to (C, A, 1)
• D updates to (D, C, 1)
• E updates to (E, A, 1)
• F updates to (F, B, 1)

A,A,0 B,B,0

C,C,0

D,D,0

E,E,0 F,F,0



CSE 461 University of Washington 189

Spanning Tree Example (2)
• 2nd round, sending

• Nodes send their updated state

• 2nd round receiving:
• A remains (A, A, 0)
• B updates to (B, A, 2) via C
• C remains (C, A, 1)
• D updates to (D, A, 2) via C
• E remains (E, A, 1)
• F remains (F, B, 1)

A,A,0 B,B,0

C,A,1

D,C,1

E,A,1 F,B,1
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Spanning Tree Example (3)
• 3rd round, sending

• Nodes send their updated state

• 3rd round receiving:
• A remains (A, A, 0)
• B remains (B, A, 2) via C
• C remains (C, A, 1)
• D remains (D, A, 2) via C-left
• E remains (E, A, 1)
• F updates to (F, A, 3) via B

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,B,1
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Spanning Tree Example (4)
•4th round

• Steady-state has been reached
• Nodes turn off forwarding that  is 

not on the spanning tree

•Algorithm continues to run
• Adapts by timing out information
• E.g., if A fails, other nodes forget it, 

and B will become the new root

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3
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Spanning Tree Example (5)
• Forwarding  proceeds as usual on the ST

• Initially D sends to F:
• D → C-left
• C → A, B 
• A →  E
• B →  F

• And F sends back to D:
• F →  B
• B →  C
• C →  D

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3
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Spanning Tree Example (6)
• Forwarding  proceeds as usual on the ST

• Initially D sends to F:
• D → C-left
• C → A, B 
• A →  E
• B →  F

• And F sends back to D:
• F →  B
• B →  C
• C →  D

A,A,0 B,A,2

C,A,1

D,A,2

E,A,1 F,A,3

Problems?



Link Layer: Software 
Defined Networking



Topic

•How do we scale these networks up?
• Answer 1: Network of networks, a.k.a. The Internet
• Answer 2: Ah, just kinda hope spanning tree works?
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SwitchSwitch Switch



Rise of the Datacenter
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Datacenter Networking
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Scaling the Link Layer

• Fundamentally, it’s hard to scale distributed algorithms
 Exacerbated when failures become common
 Nodes go down, gotta run spanning tree again…

 If nodes go down faster than spanning tree resolves, we get race conditions
 If they don’t, we may still be losing paths and wasting resources

• Ideas?
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Software Defined Networking (SDN)

• Core idea: stop being a distributed system
 Centralize the operation of the network

 Create a “controller” that manages the network
 Push new code, state, and configuration from “controller” to switches

 Run link state with a global view of the network rather than in a distributed 
fashion.

 Allows for “global” policies to be enforced.
 Can resolve failures in more robust, faster manners

 Problems? 

CSE 461 University of Washington 199



SDN – Problem 1

• Problem: How do we talk to the switches if there’s no network?
 Seems a little chicken-and-egg
 Nodes go down, gotta run spanning tree again…

 If nodes go down faster than spanning tree resolves, we get race conditions
 If they don’t, we may still be losing paths and wasting resources

• Ideas?
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SDN – Control and Data Planes
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SDN – Problem 2

• Problem: How do we efficiently run algorithms on switches?  
 These are extremely time-sensitive boxes

 Gotta move the packets!
 Need to be able to support

 Fast packet handling
 Quick route changes
 Long-term policy updates 

• Ideas?
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SDN – OpenFlow

CSE 461 University of Washington 203

Control Program AControl Program A Control Program BControl Program B

ControllerController

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Flow
Table(s)

Flow
Table(s)

“If header = p, send to port 4”

“If header = ?, send to me”

“If header = q, overwrite header with r, 
   add header s, and send to ports 5,6”



SDN – OpenFlow 

• Two different classes of programmability

• At Controller 
 Can be heavy processing algorithms
 Results in messages that update switch flow table

•  At switch
 Local flow table
 Built from basic set of networking primitives
 Allows for fast operation
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SDN – Timescales
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Data Control Management

Time-
scale

Packet (nsec) Event (10 
msec to sec)

Human (min 
to hours)

Location Linecard 
hardware

Router 
software

Humans or 
scripts



SDN – OpenFlow
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Control Program AControl Program A Control Program BControl Program B

ControllerController

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Packet
Forwarding 

Flow
Table(s)

Flow
Table(s)

“If header = p, send to port 4”

“If header = ?, send to me”

“If header = q, overwrite header with r, 
   add header s, and send to ports 5,6”



SDN – Key outputs 

• Simplify network design and implementation?
 Sorta. Kinda pushed the complexity around if anything

•  However...
 Does enable code reuse and libraries
 Does standardize and simplify deployment of rules to switches
 Allows for fast operation
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